JPS5845687B2 - Movement distance and speed measuring device - Google Patents

Movement distance and speed measuring device

Info

Publication number
JPS5845687B2
JPS5845687B2 JP451175A JP451175A JPS5845687B2 JP S5845687 B2 JPS5845687 B2 JP S5845687B2 JP 451175 A JP451175 A JP 451175A JP 451175 A JP451175 A JP 451175A JP S5845687 B2 JPS5845687 B2 JP S5845687B2
Authority
JP
Japan
Prior art keywords
grating
diffraction
light beams
light
gratings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP451175A
Other languages
Japanese (ja)
Other versions
JPS50104037A (en
Inventor
ウイルヘルム イエルク
カウル デイートマール
ホツク フロムント
エルベ ワルター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ernst Leitz Wetzlar GmbH
Original Assignee
Ernst Leitz Wetzlar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2401476A external-priority patent/DE2401476A1/en
Priority claimed from DE2431551A external-priority patent/DE2431551C2/en
Application filed by Ernst Leitz Wetzlar GmbH filed Critical Ernst Leitz Wetzlar GmbH
Publication of JPS50104037A publication Critical patent/JPS50104037A/ja
Publication of JPS5845687B2 publication Critical patent/JPS5845687B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • G02B27/4277Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path being separated by an air space
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 本発明は光束発生用光源と、光束を少なくとも2つの互
に離れる部分光束に分離する第1回折格子と、回折され
た部分光束を再び集合させる少なくとも1つの別の光回
折素子と、別々の部分光束を部分光束が互に干渉するこ
とのできるように同じ方向に転向する1つの最後の光回
折格子と、前記格子もしくは素子の相対反対方向の光源
に交叉する方向の運動の際に干渉により変調される光束
のうちの少なくとも1つの光束の違った位相位置を秤量
する光電手段とを有する、直線運動距離又は角運動距離
並びに直線速度又は角速度を測定する装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a light source for generating a luminous flux, a first diffraction grating for separating the luminous flux into at least two mutually separated partial luminous fluxes, and at least one further grating for recombining the diffracted partial luminous fluxes. a diffraction element, one last optical diffraction grating which redirects the separate partial beams in the same direction so that the partial beams can interfere with each other, and a beam in the direction that intersects the light source in the relative opposite direction of said grating or element. Device for measuring linear or angular distances and linear or angular velocities, comprising photoelectric means for weighing the different phase positions of at least one of the light beams modulated by interference during movement be.

ジャーナル オブ サイエンテイフイク インストルー
メント(J、of 5cie、In5tr、 ) 36
巻(1959年5月)227〜230頁から、平行光束
の分離及び再集合のため3個の光方向に順次配置した回
折格子が利用される干渉計は公知である。
Journal of Scientific Instruments (J, of 5cie, In5tr, ) 36
(May 1959), pages 227-230, an interferometer is known in which diffraction gratings are used which are arranged successively in three optical directions for the separation and recombination of parallel light beams.

分離された光束の1つの中に試験対象物が入れられる。A test object is placed in one of the separated beams.

格子の間隔及び格子定数が第1格子で分離された光線が
最後の格子に1つの点で集合され干渉されるように選定
される。
The spacing of the gratings and the grating constants are selected such that the rays separated by the first grating are collected at one point in the last grating and interfered.

アプライド オプテイクス(App 1.Opt ic
e )6巻11号(1967年11月)1861〜18
65頁には2つの格子からなる直線移動を測定するため
の入射装置(Auflichteinrichtung
)が記載されている。
Applied Optics (App 1. Optic
e) Volume 6, No. 11 (November 1967) 1861-18
On page 65, an injection device (Auflichteinrichtung) for measuring linear displacement consisting of two gratings is described.
) are listed.

光線方向における第1の格子は光線を分離し、そして分
離光線を第2格子での反射の後に又集合させる用をなす
The first grating in the beam direction serves to separate the beams and to recombine the separated beams after reflection at the second grating.

両方の格子定数は1つの格子定数が他の格子の格子定数
の整数倍の関係にあり、そしてその間隔は、間隔が分離
された光線を一点で再び一致し互に干渉するように選定
されている。
Both lattice constants are such that one lattice constant is an integer multiple of the lattice constant of the other lattice, and the spacing is chosen such that the rays separated by the spacing coincide again at one point and interfere with each other. There is.

同じ測定装置が又オプティカル テクノロジー(0pt
ical Technology ) 38巻10号(
1971年10月)588〜590頁に記載されている
The same measuring device also uses optical technology (0pt
ical Technology) Volume 38, No. 10 (
(October 1971), pages 588-590.

ここではしかし前後に続く3つの回折過程が3個の反射
格子で行なわれる。
Here, however, three successive diffraction processes take place on three reflection gratings.

互に干渉する光束は種々の回折次数に屈折され、そこで
光電受信器系により電気的プッシュプル信号に変換され
ることができる互に180°だけ位相のずれた波形の光
波の変調を生じ、前記電気的プッシュプル信号は差形成
により、光電信号の変調されない直流成分を抑制するの
に役立つ。
The mutually interfering light beams are refracted into different orders of diffraction, resulting in the modulation of the light waves in waveforms 180° out of phase with each other, which can then be converted into electrical push-pull signals by a photoelectric receiver system. The electrical push-pull signal serves to suppress the unmodulated DC component of the photoelectric signal by differential formation.

しかし光波を合成した場合に合成振幅を示すベクトルが
いわば電気における回転磁界のように回転するには少な
くとも900又は90’の奇数倍だけ位相のずれた信号
が必要であるがこの信号が欠如している。
However, when light waves are synthesized, in order for the vector indicating the synthesized amplitude to rotate like a rotating magnetic field in electricity, a signal with a phase shift of at least 900 or an odd multiple of 90' is required, but this signal is missing. There is.

光波の合成による合成振幅を示すベクトルの回転方向に
より回折格子の相対運動方向を検知することができる。
The relative movement direction of the diffraction grating can be detected from the rotation direction of the vector indicating the composite amplitude resulting from the synthesis of light waves.

したがって本発明は回転磁界に相当する合成振幅のベク
トルが回転する回転ベクトル場を形成するために、必要
とする全ての位相ずれ信号を生ずることができ、簡単な
信号計量を許容する前記種類の測定装置を作り出すこと
を課題としている。
Therefore, the present invention provides a method for measurements of the aforementioned type, which can generate all the necessary out-of-phase signals and which allows simple signal quantification in order to form a rotating vector field in which a vector of composite amplitudes corresponding to a rotating magnetic field rotates. The challenge is to create a device.

この課題は本発明によると特許請求の範囲第1項の特徴
部分の構成要件により解決した。
This problem has been solved according to the invention by the features of the characteristic part of claim 1.

本発明の進んだ形態によると又少なくとも2つの格子の
面が互にある角度をなしているときに分離を達成するこ
とができる。
According to an advanced form of the invention, separation can also be achieved when the faces of at least two gratings are at an angle to each other.

本発明の装置の特別の利点は、単一の格子領域から回転
ベクトル場を定めるために必要な全ての信号を同時に得
ることに成功したことにある。
A particular advantage of the device of the invention lies in the success in simultaneously obtaining all the signals necessary to define the rotating vector field from a single grating area.

本発明の詳細を図に示す実施例により説明する。The details of the present invention will be explained with reference to embodiments shown in the figures.

第1区および第2図に示すように、第1格子11よりい
ろいろの方向に回折された光1例えば+1次回折の光N
+1、 i次回折の光1−.が第2格子12により向
きを変えられ、第3格子に再び干渉するように集中させ
られ、その場合上記第3格子13は、すべての格子の格
子常数が同じ場合には、集中点から光軸に沿うて△lの
距離だけずらされている。
As shown in the first section and FIG.
+1, i-th diffraction light 1-. is redirected by the second grating 12 and concentrated so as to interfere again with the third grating, in which case said third grating 13 is directed from the point of concentration to the optical axis if the lattice constants of all gratings are the same. is shifted by a distance of Δl along.

第3格子13の後方で干渉する光線路は間隔Sを有し、
光学系15の焦点面14では同じ傾向の干渉縞が生ずる
The optical paths interfering behind the third grating 13 have a spacing S,
At the focal plane 14 of the optical system 15, interference fringes with the same tendency occur.

焦点面14に光電式受光系(第1a図)を置くときは、
位相のずれた信号を得ることが出来、上記受光系の個々
の受光面a、b。
When placing the photoelectric receiving system (Fig. 1a) on the focal plane 14,
Phase-shifted signals can be obtained from the individual light receiving surfaces a and b of the light receiving system.

c、dに干渉縞iが別々に現われ、かくして回転ベクト
ル場信号を生ずる。
Interference fringes i appear separately at c and d, thus producing rotating vector field signals.

光線誘導の分離により、光源像の局部的光度変調が後側
焦点面に作り出される。
The separation of the beam guides creates local intensity modulation of the source image at the back focal plane.

第3図は原理的に似た構成を示すもので、この実施例で
は格子11.12.13は相互間隔が同一であり、これ
に対し格子常数d1□およびd13又はd12は相互に
異なっており、第3格子にて間隔Sへの所望の光線分離
が達成されるようにしである。
FIG. 3 shows a configuration similar in principle; in this embodiment, the gratings 11, 12, and 13 have the same mutual spacing, whereas the grating constants d1□ and d13 or d12 are different from each other. , such that the desired beam separation into the spacing S is achieved at the third grating.

位相のずれた信号の外に、受光面である焦点面14に於
ても光軸からいろいろの距離に於て、他の回折次数によ
る光線流を測定することが可能であり、これを第3図に
示している。
In addition to the phase-shifted signals, it is also possible to measure the ray flow due to other diffraction orders at various distances from the optical axis at the focal plane 14, which is the light-receiving surface. As shown in the figure.

第4図は反射光による実施例を示す。FIG. 4 shows an embodiment using reflected light.

この場合、格子間の異なる各間隔は、格子12の面を格
子11の面に角度εだけ傾斜させることにより達成され
る。
In this case, each different spacing between the gratings is achieved by tilting the plane of the grating 12 to the plane of the grating 11 by an angle ε.

光線を所望のように量Sだけ分離することは、こ\で述
べたとは異なる方法によっても得られることを附言する
It should be noted that the desired separation of the light beams by the amount S can also be obtained by methods different from those described here.

例えば平行格子間に光学楔を配置し1つの格子により異
なる回折次数に屈折された光線を光学楔を通し、別の格
子で反射されて再び光学楔を通して間隔Sの平行線とす
る方法や、放射状に等間隔に形成したスリットを有する
放射型格子を2個用い1つの格子を透過した光を他方の
格子で反射させる方法等がある。
For example, there is a method in which an optical wedge is placed between parallel gratings, and the light rays refracted by one grating into different orders of diffraction are passed through the optical wedge, reflected by another grating, and then passed through the optical wedge again to become parallel lines with a spacing of S. There is a method of using two radiation type gratings having slits formed at equal intervals, and causing light transmitted through one grating to be reflected by the other grating.

本発明の実施例を述べれば、次のごとくである。Examples of the present invention are as follows.

(1)互に異なる格子常数を有する格子11.12゜1
3が設けられていることを特徴とする特許請求の範囲に
記載の装置。
(1) Lattice 11.12°1 with mutually different lattice constants
3. Device according to claim 1, characterized in that: 3 is provided.

(2)格子11.12.13間の間隔が互に異なること
を特徴とする特許請求の範囲又は前項に記載の装置。
(2) A device according to the claims or the preceding paragraph, characterized in that the spacing between the gratings 11, 12, 13 is different from each other.

(3)少くとも2つの格子11.12の面が角度をなし
ている特許請求の範囲又は前記第1項に記載の装置。
(3) A device according to claim 1, wherein the faces of at least two gratings 11,12 form an angle.

【図面の簡単な説明】 第1図および第2図は格子間隔の異なる透過光線型装置
の図、第1a図は光電受光器の実施例を示す図、第3図
は格子常数の異なる格子を有する透過光線型装置の図、
第4図は互に傾斜せる格子を有する反射光線型装置の図
である。 11・・・・・・第1回折格子、12・・・・・・回折
素子、13・・・・・・最後の回折格子。
[Brief Description of the Drawings] Figures 1 and 2 are diagrams of transmitted light type devices with different grating spacings, Figure 1a is a diagram showing an embodiment of a photoelectric receiver, and Figure 3 is a diagram showing gratings with different lattice constants. Diagram of a transmitted light type device having,
FIG. 4 is a diagram of a reflected beam device with mutually tilted gratings. 11...First diffraction grating, 12...Diffraction element, 13...Last diffraction grating.

Claims (1)

【特許請求の範囲】[Claims] 1 光束発生用光源と、該光束を少なくとも2つの互に
分離する部分光束に4蕗する第1回折格子と、回折され
た部分光束を再び集合させる少なくとも1つの別の回折
素子と、別々の部分光束を同じ方向に転向し、したがっ
て部分光束が互に干渉することができるようにす□る最
後の1つの回折格子と、前記格子もしくは素子の相対反
対方向の光線に交叉する方向の運動の際に干渉により変
調される光束のうちの少なくとも1つの光束の変化する
位相位置を秤量する光電手段とを有し、前記回折格子と
回折素子の倒れか1つを被測定部に固定して直線又は角
運動距離並びに直線速度又は角速度を測定する装置にお
いて、はゾ平行で互に可動なる回折格子もしくは回折素
子の間隔と格子定数の少なくとも一方が、第1回折格子
11の一点から出る光線(l+1.l□)が最後の回折
格子11:13では少なくとも2つの横に並ぶ点に現わ
れるように選定されていることを特徴とする装置。
1. A light source for generating a luminous flux, a first diffraction grating that divides the luminous flux into at least two mutually separating partial luminous fluxes, at least one other diffraction element that recollects the diffracted partial luminous fluxes, and separate parts. one last diffraction grating which deflects the light beams in the same direction, thus allowing the partial light beams to interfere with each other, and upon movement of said grating or element in a direction that intersects the light beams in relatively opposite directions; and a photoelectric means for measuring the changing phase position of at least one of the light beams modulated by interference, and one of the diffraction grating and the tilted diffraction element is fixed to the part to be measured, and a linear or In a device for measuring angular motion distance and linear velocity or angular velocity, at least one of the spacing and the grating constant of the diffraction gratings or diffraction elements that are parallel to each other and movable relative to each other is such that the light ray (l+1. 1□) is selected such that it appears in at least two side-by-side points in the last grating 11:13.
JP451175A 1974-01-12 1975-01-08 Movement distance and speed measuring device Expired JPS5845687B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2401476A DE2401476A1 (en) 1974-01-12 1974-01-12 Light modulation system - has three successive diffracting elements at specified spacings
DE2431551A DE2431551C2 (en) 1974-07-01 1974-07-01 Arrangement for measuring movements and speeds

Publications (2)

Publication Number Publication Date
JPS50104037A JPS50104037A (en) 1975-08-16
JPS5845687B2 true JPS5845687B2 (en) 1983-10-12

Family

ID=25766457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP451175A Expired JPS5845687B2 (en) 1974-01-12 1975-01-08 Movement distance and speed measuring device

Country Status (5)

Country Link
JP (1) JPS5845687B2 (en)
CH (1) CH601799A5 (en)
FR (1) FR2257915B1 (en)
GB (1) GB1474049A (en)
NL (1) NL7500316A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157118A (en) * 1981-03-24 1982-09-28 Mitsutoyo Mfg Co Ltd Photoelectric type displacement detecting device
GB8320629D0 (en) * 1983-07-30 1983-09-01 Pa Consulting Services Displacement measuring apparatus
US4584484A (en) * 1983-10-03 1986-04-22 Hutchin Richard A Microscope for producing high resolution images without precision optics
GB8413955D0 (en) * 1984-05-31 1984-07-04 Pa Consulting Services Displacement measuring apparatus
DE3706277C2 (en) * 1986-02-28 1995-04-27 Canon Kk Rotation encoder
DE3633574A1 (en) * 1986-10-02 1988-04-14 Heidenhain Gmbh Dr Johannes LIGHT ELECTRIC ANGLE MEASURING DEVICE
GB8729246D0 (en) * 1987-12-15 1988-01-27 Renishaw Plc Opto-electronic scale-reading apparatus
DE3938639A1 (en) * 1988-11-21 1990-05-23 Ricoh Kk OPTICAL RECORDING / PLAYBACK
GB2239088B (en) * 1989-11-24 1994-05-25 Ricoh Kk Optical movement measuring method and apparatus
DE59004252D1 (en) * 1990-10-20 1994-02-24 Heidenhain Gmbh Dr Johannes Interferential measuring device for at least one measuring direction.
AT395914B (en) * 1991-04-18 1993-04-26 Rsf Elektronik Gmbh PHOTOELECTRIC POSITION MEASURING DEVICE
DE69325799T2 (en) * 1992-05-05 2000-04-13 Microe, Inc. APPARATUS FOR DETECTING A RELATIVE MOVEMENT
US5486923A (en) * 1992-05-05 1996-01-23 Microe Apparatus for detecting relative movement wherein a detecting means is positioned in the region of natural interference
JPH0727543A (en) * 1993-07-12 1995-01-27 Canon Inc Optical displacement sensor
JP3028716B2 (en) * 1993-09-29 2000-04-04 キヤノン株式会社 Optical displacement sensor
GB9424969D0 (en) * 1994-12-10 1995-02-08 Renishaw Plc Opto-electronic scale reading apparatus
GB0004120D0 (en) 2000-02-23 2000-04-12 Renishaw Plc Opto-electronic scale reading apparatus
CN110530283A (en) * 2018-05-23 2019-12-03 宁波舜宇光电信息有限公司 Project structured light device and its manufacturing method

Also Published As

Publication number Publication date
JPS50104037A (en) 1975-08-16
FR2257915A1 (en) 1975-08-08
CH601799A5 (en) 1978-07-14
FR2257915B1 (en) 1979-07-20
NL7500316A (en) 1975-07-15
GB1474049A (en) 1977-05-18

Similar Documents

Publication Publication Date Title
US4091281A (en) Light modulation system
JPS5845687B2 (en) Movement distance and speed measuring device
SU1560068A3 (en) Device for measuring displacements
US3904295A (en) Method and apparatus for the no-contact measurement of velocities, changes in relative position, or displacement paths
JPS6333604A (en) Relative-displacement measuring device
JPS60243514A (en) Photoelectric measuring device
JPS626119A (en) Rotary encoder
JP3144143B2 (en) Optical displacement measuring device
US4188124A (en) Interferometric measuring system
JPS62121314A (en) Photoelectric position measuring device
JPH08261724A (en) Length or angle measuring instrument
US5717488A (en) Apparatus for measuring displacement using first and second detecting means for measuring linear and rotary motion
US3930734A (en) Process and apparatus for sensing magnitude and direction of lateral displacement
JP3005131B2 (en) Displacement detector
GB2218505A (en) Optical position measurement
JP3109900B2 (en) measuring device
US5050993A (en) Diffraction encoded position measuring apparatus
US20020021448A1 (en) Measuring instrument
JPH06174424A (en) Length measuring and angle measuring device
JPH05256666A (en) Rotary encoder
JP2503561B2 (en) Laser interference encoder
US6403950B1 (en) Method of producing a carrier frequency modulated signal
JPS6213603B2 (en)
JP2675317B2 (en) Moving amount measuring method and moving amount measuring device
SU853378A1 (en) Interference device for measuring linear and angular displacements