JPS5845679B2 - magnetic detection device - Google Patents

magnetic detection device

Info

Publication number
JPS5845679B2
JPS5845679B2 JP54142677A JP14267779A JPS5845679B2 JP S5845679 B2 JPS5845679 B2 JP S5845679B2 JP 54142677 A JP54142677 A JP 54142677A JP 14267779 A JP14267779 A JP 14267779A JP S5845679 B2 JPS5845679 B2 JP S5845679B2
Authority
JP
Japan
Prior art keywords
magnetic
ship
output
detectors
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54142677A
Other languages
Japanese (ja)
Other versions
JPS5666779A (en
Inventor
紀夫 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Seisakusho Ltd
Original Assignee
Shimadzu Seisakusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Seisakusho Ltd filed Critical Shimadzu Seisakusho Ltd
Priority to JP54142677A priority Critical patent/JPS5845679B2/en
Publication of JPS5666779A publication Critical patent/JPS5666779A/en
Publication of JPS5845679B2 publication Critical patent/JPS5845679B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明は動揺の影響が補正された移動可能な磁気検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a movable magnetic sensing device that is compensated for the effects of agitation.

磁性金属の探知に磁気検出器を用いる方法がある。There is a method of using a magnetic detector to detect magnetic metals.

例えば海面上を移動して海底に沈んでいる磁性金属を探
知する場合、船上から適当な深さの所まで磁気検出器を
垂下し、適当な方法で地磁気の影響を消去すると、検出
される磁界は磁性金属が地磁気の誘導作用で磁化されて
発生している磁界であるからその磁界の強い方へ船を移
動させて行くと探知しようとしている金属の上へ来るこ
とができる。
For example, when moving on the sea surface and detecting magnetic metal sunk on the ocean floor, if you hang a magnetic detector from the ship to an appropriate depth and use an appropriate method to eliminate the influence of the geomagnetic field, the detected magnetic field is a magnetic field generated when magnetic metal is magnetized by the induction effect of the earth's magnetic field, so if you move the ship toward the direction where the magnetic field is stronger, you will be able to land on the metal you are trying to detect.

このような磁気検出装置として第1図に示すようなもの
が提案されている。
As such a magnetic detection device, one shown in FIG. 1 has been proposed.

即ち磁気検出器Soを中心とする正多角形の各頂点に夫
々磁気検出器81〜S4を配置し、これらを一体的に結
合して船から海中に垂下する。
That is, the magnetic detectors 81 to S4 are arranged at each vertex of a regular polygon centered on the magnetic detector So, and these are integrally connected and suspended from the ship into the sea.

これらの磁気検出器は鉛直方向の磁界強度に応答した信
号を出し、船上等に配置された他の磁気検出器によって
地磁気の垂直成分を検出して上記5o−84の各磁気検
出器の出力から引算すれば5o−s3は地磁気の歪成分
即ち磁性金属が出している磁力線を検出していることに
なる。
These magnetic detectors output signals in response to the magnetic field strength in the vertical direction, and the vertical component of the earth's magnetism is detected by other magnetic detectors placed on board the ship, etc., and the output of each magnetic detector in 5o-84 above is detected. By subtraction, 5o-s3 detects the distorted component of earth's magnetism, that is, the lines of magnetic force emitted by magnetic metal.

このようにして81〜S4のうち最大の検出出力を出し
ているものの方向に他の磁気検出器の出力の方が犬にな
るまで船を移動(横すべり的な移動も行う)させると云
う操作を繰返していくと船は屈曲した航路を画きながら
検出しようとする金属に近づいて行き、最終的にはSo
が最大検出出力を出す位置に来る。
In this way, the ship is moved in the direction of the one that outputs the maximum detection output among 81 to S4 until the output of the other magnetic detectors becomes a dog (also performs a sideways movement). As the ship repeats the process, it approaches the metal it is trying to detect while drawing a curved course, and eventually the ship approaches the metal it is trying to detect.
comes to the position where the maximum detection output is produced.

このときSOの直下から成る算式によって定まる距離の
所に目的物がある。
At this time, the object is located directly below the SO at a distance determined by a formula.

上述したように船を屈曲した航路によって段階的に目的
物に近づけて行くよりも81〜S4の出力からベクトル
的計算で磁界の勾配を求め勾配の最大の方向に連続的に
船を進めて行けばより能率的である。
As mentioned above, rather than moving the ship closer to the target step by step along a curved route, the gradient of the magnetic field is calculated using vectorial calculations from the outputs of 81 to S4, and the ship is moved continuously in the direction of the maximum gradient. It is more efficient.

しかし倒れにしても上述した装置では波による船の動揺
のために船と磁気検出器との位置関係が原理上想定して
いる位置関係と異なることになり、船の航跡が不必要に
ふらつくことになる。
However, even if it falls over, with the above-mentioned device, the positional relationship between the ship and the magnetic detector will be different from the positional relationship that is assumed in principle due to the shaking of the ship due to the waves, causing the ship's wake to wander unnecessarily. become.

第2図はその理由を説明するもので、Fは海面、Bは金
属探査船で、Sが船Bから降している磁気検出器群であ
る。
Figure 2 explains the reason: F is the sea surface, B is a metal exploration ship, and S is a group of magnetic detectors dismounted from ship B.

船Bと磁気検出器群Sとの位置関係を固定するためSを
垂下している腕Aは剛体であって船Bに固定されている
In order to fix the positional relationship between the ship B and the magnetic detector group S, the arm A that hangs down from S is a rigid body and is fixed to the ship B.

従って船Bが波によって角度θだげ傾くと磁気検出器S
は本来の位置からJ = 1sinθだけずれた場所の
磁界に応答することになる。
Therefore, if ship B is tilted by an angle θ due to waves, magnetic detector S
will respond to a magnetic field at a location shifted by J = 1 sin θ from its original location.

なおその場所の磁界の垂直成分をHz。水平成分をHx
とすると磁気検出器Sの出力はHzでなく、HzcoS
θ+Hx sinθとなっているがθは5°程度なので
一応COSθ=1.sinθ二〇として扱う。
Note that the vertical component of the magnetic field at that location is Hz. The horizontal component is Hx
Then, the output of the magnetic detector S is not Hz, but HzcoS
θ+Hx sin θ, but since θ is about 5 degrees, COS θ=1. Treated as sin θ20.

船Bにおいては上の検出結果を磁気検出器群Sが正規の
位置にあるものとして船の進行方向を決めると船の動揺
によって船の進行方向がふらつくことになる。
In ship B, if the direction of travel of the ship is determined based on the above detection results assuming that the magnetic detector group S is in the normal position, the direction of travel of the ship will be swayed due to the movement of the ship.

本発明はこのようなふらつきをなくし迅速的確に目的に
接近できるようにした磁気検出装置を提供しようとする
ものである。
It is an object of the present invention to provide a magnetic detection device that eliminates such wandering and allows a user to quickly and accurately approach a target.

以下実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

第3図は本発明の一実施例装置における磁気検出器の水
平配置を示す。
FIG. 3 shows the horizontal arrangement of magnetic detectors in an embodiment of the present invention.

SO,81〜S4が磁気検出器でSOを中心とする正方
形の各頂点にS□〜S4が配置されており、各磁気検出
器は垂直磁界を検出するもので相互の位置関係は固定、
剛体の腕によって船より垂下されることは第1,2図に
示した従来例と同じである。
SO, 81 to S4 are magnetic detectors, and S□ to S4 are arranged at each vertex of a square centered on SO, and each magnetic detector detects a vertical magnetic field, and the mutual positional relationship is fixed.
It is the same as the conventional example shown in FIGS. 1 and 2 that it is suspended from the ship by a rigid arm.

磁気検出器群S。〜S4を垂下する上記腕の上端に船の
傾きを検出する傾斜計が取付けである。
Magnetic detector group S. ~An inclinometer to detect the inclination of the ship is attached to the upper end of the arm hanging down S4.

傾斜計は1,202つあって、その一つは第3図でX方
向と鉛直方向(図の紙面に垂直)とを含む面内の傾きθ
を検出するものであり、他の1つはY方向と鉛直方向と
を含む面内の傾きφを検出する。
There are 1,202 inclinometers, one of which measures the inclination θ in a plane including the X direction and the vertical direction (perpendicular to the plane of the figure) in Figure 3.
The other one detects the inclination φ in a plane including the Y direction and the vertical direction.

これらの傾斜計の出力θ、φから各磁気検出器の正しい
位置からのずれのX方向、Y方向の成分X、Yが、X
= l sinθ Y = l sinφ として求まる。
From the outputs θ and φ of these inclinometers, the components X and Y in the X and Y directions of the deviation of each magnetic detector from the correct position are
It is determined as = l sin θ Y = l sin φ.

各磁気検出器5o−84の出力から船上に置かれた磁気
検出器の出力を引算することによって地磁気成分を消去
したものが以下述べる演算における入力信号となる。
By subtracting the output of the magnetic detector placed on board the ship from the output of each magnetic detector 5o-84, the geomagnetic component is eliminated, and the result becomes an input signal in the calculations described below.

以下ではこの信号を単に5o−s4の出力と云い、HO
yH1〜H4で表わす。
Below, this signal will simply be referred to as the output of 5o-s4, and it will be referred to as the output of HO
Represented by yH1 to H4.

今船が傾いたときの中心磁気検出器Soの位置を原点と
し、Soとsl −s4等との間の距離を長さの単位と
して第4図のように座標軸を定め、船の傾きが00とき
の磁気検出器5o−s4の位置がSo′〜84′である
とする。
The origin is the position of the central magnetic detector So when the ship is tilted, and the coordinate axes are set as shown in Figure 4 using the distance between So and sl-s4 etc. as the unit of length, and the tilt of the ship is 0. It is assumed that the positions of the magnetic detectors 5o-s4 at this time are So' to 84'.

磁気検出器80〜S4の位置のずれは並進的であるから
その移動はSoの原点からの変移ベクトル(X、Y)で
表わせる。
Since the displacement of the magnetic detectors 80 to S4 is translational, the movement can be expressed by a displacement vector (X, Y) from the origin of So.

磁界の鉛直成分の磁気検出器So −s4等により検出
される検出出力の水平方向の分布をH(X 、y )と
する。
Let H(X, y) be the horizontal distribution of the detection output detected by the magnetic detector So-s4 or the like for the vertical component of the magnetic field.

こ工で本発明装置によって得られているデータはX、Y
と各磁気検出器の船の傾きによりずれた位置における検
出出力H8〜H4である。
In this process, the data obtained by the device of the present invention are X, Y
and detection outputs H8 to H4 of each magnetic detector at positions shifted due to the inclination of the ship.

演算の第1段はこのデータから船の傾きがOであるとき
の各磁気検出器の出力H8’、H,’〜H4′を求める
ことである。
The first stage of calculation is to obtain the outputs H8', H,' to H4' of each magnetic detector when the ship's inclination is O from this data.

H(xy)を、上記(8)〜αカ式を(3)〜(7)式
に入れてa1〜Cを求めこれを(1)式に入れると(1
)式が具体的に定まる。
Putting H(xy) into equations (8) to α above into equations (3) to (7), obtain a1 to C, and inserting these into equation (1), we get (1
) formula is determined specifically.

船を進めるべき方向Rは位置(x、y)におけるH(x
y)の勾配最大の方向で、それはベクトルg rad
Hの方向であり、このベクトルのX。
The direction R in which the ship should proceed is H(x, y) at position (x, y)
y), it is the vector g rad
H direction and the X of this vector.

y各方向の成分は、 Hx (XY ) =a1+2 a 2 ・X+cY
”=(13)Hy (XY ) =bi+z b 2
・Y+ cX −・−・−(t4)0、a4式に前
記(3)〜αの式を入れることに上り0゜一式は装置に
よって得られているデータだけで実際の値が定められ、
これによって船の進行方向が決定される。
The components in each y direction are: Hx (XY) = a1+2 a 2 ・X+cY
”=(13)Hy (XY) =bi+z b 2
・Y+ cX −・−・−(t4)0, by inserting the above formulas (3) to α into the a4 formula, the actual value of the 0° set is determined only by the data obtained by the device,
This determines the ship's direction of travel.

第3図で3は傾斜計1,2の出力から上記X。In Fig. 3, 3 is the above-mentioned X from the outputs of the inclinometers 1 and 2.

Yを算出する計算回路、4は5o−s4の出力から係数
a1〜b27cを算出する計算回路、5はこれらX、Y
、a1〜cの出力により前記(13) 、 e14)式
によって磁界の鉛直成分の水平方向の分布における最大
勾配の方向を計算する計算回路で、6はその計算結果を
船を移動させる方向として表示する表示装置である。
A calculation circuit that calculates Y, 4 a calculation circuit that calculates coefficients a1 to b27c from the output of 5o-s4, 5 these X, Y
, a1-c is a calculation circuit that calculates the direction of the maximum gradient in the horizontal distribution of the vertical component of the magnetic field using the above equations (13) and e14, and 6 displays the calculation result as the direction in which the ship will move. It is a display device that

本発明磁気検出装置は上述したような構成で磁気検出器
の位置が不規則に変動してもその変位量を検出し、変位
しないときの磁気検出器出力を推定して移動方向を決定
するから指示される方向は略安定したものとなり、過去
のデータの記憶等の機能を要せず的確迅速に目的に到達
することができるようになる。
The magnetic detection device of the present invention has the above-described configuration, and even if the position of the magnetic detector fluctuates irregularly, it detects the amount of displacement, and determines the direction of movement by estimating the output of the magnetic detector when there is no displacement. The indicated direction becomes substantially stable, and it becomes possible to reach the target accurately and quickly without requiring functions such as storing past data.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象となっている装置における磁気検
出器の配置を示す平面図、第2図は同じく装置全体の側
面図、第3図は本発明の一実施例装置の構成を示すブロ
ック図、第4図は本発明装置の作用を説明する平面図で
ある。 5OjS工〜S4・・・・・・磁気検出器、1,2・・
・・・・傾斜計、3,4,5・・・・・・計算回路、6
・・・・・・表示装置。
FIG. 1 is a plan view showing the arrangement of magnetic detectors in a device to which the present invention is applied, FIG. 2 is a side view of the entire device, and FIG. 3 is a diagram showing the configuration of a device according to an embodiment of the present invention. The block diagram and FIG. 4 are plan views illustrating the operation of the device of the present invention. 5OjS engineering ~ S4... Magnetic detector, 1, 2...
... Inclinometer, 3, 4, 5 ... Calculation circuit, 6
...Display device.

Claims (1)

【特許請求の範囲】[Claims] 1 一つの磁気検出器を中心とする多角形の各頂点に他
の磁気検出器を配置し、これらの磁気検出器の相互位置
関係を固定して移動体より垂下した型の磁気検出装置に
おいて、移動体の傾きを検出する手段と、検出された傾
き角と上記磁気検出器群の垂下距離とから同群の水平方
向変位量を算出する回路と、上記各磁気検出器からの出
力と上記変位量とから移動体の傾きがOであるときの上
記各磁気検出器の出力を算出する回路と、この回路によ
り算出された各磁気検出器の出力から磁界強度最大の方
向を算出して表示する装置とよりなる磁気検出装置。
1. In a type of magnetic detection device in which other magnetic detectors are arranged at each vertex of a polygon centered on one magnetic detector, and the mutual positional relationship of these magnetic detectors is fixed and hangs down from a moving object, means for detecting the inclination of the moving object; a circuit for calculating the amount of horizontal displacement of the group from the detected inclination angle and the drooping distance of the group of magnetic detectors; and an output from each of the magnetic detectors and the displacement. A circuit that calculates the output of each of the above-mentioned magnetic detectors when the inclination of the moving body is O from the amount, and a direction of maximum magnetic field strength is calculated and displayed from the output of each magnetic detector calculated by this circuit. A magnetic detection device consisting of a device.
JP54142677A 1979-11-02 1979-11-02 magnetic detection device Expired JPS5845679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54142677A JPS5845679B2 (en) 1979-11-02 1979-11-02 magnetic detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54142677A JPS5845679B2 (en) 1979-11-02 1979-11-02 magnetic detection device

Publications (2)

Publication Number Publication Date
JPS5666779A JPS5666779A (en) 1981-06-05
JPS5845679B2 true JPS5845679B2 (en) 1983-10-12

Family

ID=15320937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54142677A Expired JPS5845679B2 (en) 1979-11-02 1979-11-02 magnetic detection device

Country Status (1)

Country Link
JP (1) JPS5845679B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69011780T2 (en) * 1989-07-24 1995-05-04 Jacques Clausin Measuring device for the temporal fluctuations of the three components of the local magnetic field and for orienting the measuring device axis with respect to the local vertical.

Also Published As

Publication number Publication date
JPS5666779A (en) 1981-06-05

Similar Documents

Publication Publication Date Title
US4945305A (en) Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US11366245B2 (en) Buried utility locator ground tracking apparatus, systems, and methods
EP0285658B1 (en) A direct current utilization position and orientation measuring device
US4427943A (en) Apparatus and method for locating and tracking magnetic objects or sources
WO2004095076A1 (en) Buried line locator with integral position sensing
JP2003513284A (en) Electromagnetic position and orientation tracking method and apparatus with distortion compensation
US10591890B2 (en) Localization device using magnetic field and positioning method thereof
JP2006226810A (en) Azimuth measuring instrument
JPH0518750A (en) Total-range inclined direction measuring device
JP2500347B2 (en) Positioning device for moving objects using three 1-axis magnetometers
JPS5845679B2 (en) magnetic detection device
WO2021064800A1 (en) Magnetic detection device, detection method, and detection program
JP2000304533A (en) Ship position displacement detector
JPH0778540B2 (en) Magnetic detection device capable of position localization
JP4144851B2 (en) Ship position detection method, position detection apparatus and system
JP3032776B2 (en) Passage position detection method and passage position detection device
WO1998058276A1 (en) Electrical polarisation distribution of a vessel
JP2006064420A (en) Underground installation mapping system
JP2001083224A (en) Method and apparatus for measuring magnetic field
JPH0246913B2 (en)
EP1530023A3 (en) Magnetic north detecting device and magnetic north detecting method
JPH0749960B2 (en) Geomagnetic azimuth measuring device
KR101717745B1 (en) A jig for gathering geomagnetic compensation coefficient
JP3886005B2 (en) Attitude angle detector
JPH0662267B2 (en) Deflection angle detection method for suspended load