JPS5845660B2 - Trace sulfur analysis method and device - Google Patents

Trace sulfur analysis method and device

Info

Publication number
JPS5845660B2
JPS5845660B2 JP53124080A JP12408078A JPS5845660B2 JP S5845660 B2 JPS5845660 B2 JP S5845660B2 JP 53124080 A JP53124080 A JP 53124080A JP 12408078 A JP12408078 A JP 12408078A JP S5845660 B2 JPS5845660 B2 JP S5845660B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
absorption
sample
pipe
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53124080A
Other languages
Japanese (ja)
Other versions
JPS5551352A (en
Inventor
昭紘 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP53124080A priority Critical patent/JPS5845660B2/en
Publication of JPS5551352A publication Critical patent/JPS5551352A/en
Publication of JPS5845660B2 publication Critical patent/JPS5845660B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、鉄鋼中などに含有される微量の硫黄化合物量
を簡単・迅速に精度よく定量する分析方法及び装置を提
供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an analytical method and apparatus for easily, quickly, and accurately quantifying trace amounts of sulfur compounds contained in steel or the like.

鉄鋼など金属材料は近年更に高品質化が要求されるよう
になり、とくに機械的強度など材質に悪影響を及ぼす硫
黄含有量の低下に力が入れられている。
In recent years, there has been a demand for higher quality metal materials such as steel, and efforts are being made to reduce the sulfur content, which has a negative effect on mechanical strength and other properties of the material.

これに伴なって10pp111以下の微量の硫黄を正確
、迅速に定量する分析法が必要とされている。
Along with this, there is a need for an analytical method that can accurately and quickly quantify trace amounts of sulfur of 10 pp111 or less.

金属材料中の硫黄の分析方法としては、鉄鋼を例に述べ
るならば日本工業規格鉄及び鋼中の硫黄定量方法(JI
S G1215)に記載されているように、0.00
5%以上の硫黄を含有する場合に適用する方法として、
硫酸バリウム重量法、燃焼中和適定法、燃焼よう素適定
法の3方法が定められており、0.02%以下の硫黄を
含有する場合に適用する方法としてパラローズアニリン
吸光光度法が定められている。
As an analysis method for sulfur in metal materials, taking iron and steel as an example, the Japanese Industrial Standards method for determining sulfur in iron and steel (JI
SG1215), 0.00
As a method to be applied when containing 5% or more sulfur,
Three methods have been established: the barium sulfate gravimetric method, the combustion neutralization titration method, and the combustion iodine titration method, and the pararose aniline spectrophotometry method has been stipulated as the method to be applied when sulfur content is 0.02% or less. ing.

この中で微量の硫黄分析に適する方法はパラローズアニ
リン吸光光度法であるがこの分析方法においても試料を
酸素ガス気流中で燃焼させ硫黄を亜硫酸ガスに替えて吸
収液に吸収させる過程での亜硫酸ガスの吸着等による損
失及びパラローズアニリン試薬による発色操作での試薬
の空試験の問題等により、ioppm以下の微量の硫黄
の分析には適用困難である。
Among these, the method suitable for analyzing trace amounts of sulfur is pararose aniline absorption spectrophotometry, but in this analysis method, the sample is burned in an oxygen gas stream and sulfur dioxide gas is converted into sulfur dioxide gas and absorbed into the absorption liquid. It is difficult to apply this method to the analysis of trace amounts of sulfur below ioppm due to loss due to gas adsorption, etc., and the problem of reagent blank testing in coloring operations using pararose aniline reagents.

現在、微量硫黄定量の必要性から試料中の硫黄化合物を
硫化水素として発生させ、これを吸収させたのちにパラ
・アミノジメチルアニリン試薬で発色させる吸光光度分
析法なども検討されているが、操作が煩雑でなかなか正
確な定量値を得るのが困難な現状である。
Currently, due to the need to quantify trace amounts of sulfur, methods such as spectrophotometric analysis are being considered, in which sulfur compounds in a sample are generated as hydrogen sulfide, this is absorbed, and then a color is developed using a para-aminodimethylaniline reagent. Currently, it is difficult to obtain accurate quantitative values due to the complicated process.

以上のように硫黄の分析方法は古くから種々研究され、
多くの分析方法があるにもかかわらず、10pI)In
以下のような微量の硫黄の分析については適当な分析方
法及び装置がなく、これらの開発が強く要請されている
As mentioned above, various methods of analyzing sulfur have been studied for a long time.
Although there are many analytical methods, 10 pI) In
There is no suitable analytical method or apparatus for the analysis of trace amounts of sulfur as described below, and the development of these methods is strongly required.

本発明者はかかる点に鑑み、鉄鋼中の微量硫黄定量に注
目して研究開発を実施し、硫化水素発生−循環吸収−紫
外吸収法を基本原理とし、方法原理及び装置構造が簡単
で、迅速かつ精度の良い微量硫黄分析方法及び装置を新
規に提供するにいたったものである。
In view of this, the present inventor conducted research and development focusing on the determination of trace amounts of sulfur in steel, and based on the basic principle of hydrogen sulfide generation - circulation absorption - ultraviolet absorption method, the method principle and device structure are simple and quick. Moreover, the present invention has led to the provision of a new highly accurate trace sulfur analysis method and device.

本発明は、試料中の硫黄化合物を還元溶液で加熱分解し
て発生させた硫化水素ガスをアルカリ性溶液中に吸収さ
せて硫化物イオン(S )として解離させ、この硫
化物イオンが232nmの紫外領域において吸収極大波
長を有することを応用して、この吸収を連続的に測定し
て試料中の硫黄含有率を求める方法を基本とするもので
ある。
In the present invention, hydrogen sulfide gas generated by thermally decomposing sulfur compounds in a sample with a reducing solution is absorbed into an alkaline solution and dissociated as sulfide ions (S). The basic method is to continuously measure this absorption to determine the sulfur content in the sample, taking advantage of the fact that the sulfur content has a maximum absorption wavelength in the sample.

第1図及び第2図に示す本発明の実施例装置の説明図に
よって以下に本発明の詳細な説明をする。
The present invention will be described in detail below with reference to explanatory diagrams of an embodiment of the present invention shown in FIGS. 1 and 2.

本発明装置は図示するように分析試料を加熱溶解して硫
化水素を発生させ、これを吸収させる硫化水素発生・吸
収部W、吸収液を硫化水素吸収管1bから光度計の流通
セル6に循環させながら吸光度を測定する吸収液循環・
紫外吸収測定部X、硫化水素発生時に不活性ガスを送り
込み、分析終了時に試料残液を排出する不活性ガス吹込
み・試料残液排出部Y及び各操作を了め定めたプログラ
ムに従って自動制御する自動制御部Zから構成される。
As shown in the figure, the apparatus of the present invention includes a hydrogen sulfide generation/absorption section W that heats and melts an analysis sample to generate hydrogen sulfide and absorbs it, and circulates the absorption liquid from the hydrogen sulfide absorption tube 1b to the flow cell 6 of the photometer. Absorbent circulation to measure absorbance while
Ultraviolet absorption measuring section It consists of an automatic control section Z.

1は硫化水素発生装置であり、この部分の詳細は第2図
に示した。
1 is a hydrogen sulfide generator, and the details of this part are shown in FIG.

1aは分析試料及び還元溶液を入れ底部より加熱して硫
化水素を発生させるための硫化水素発生容器である。
1a is a hydrogen sulfide generation container in which an analysis sample and a reducing solution are placed and heated from the bottom to generate hydrogen sulfide.

この硫化水素発生容器1aの上部には、アルカリ性溶液
を入れて硫化水素を吸収させるための硫化水素吸収管1
bを取りはずしできるように取りつけである。
At the top of this hydrogen sulfide generating container 1a, there is a hydrogen sulfide absorption pipe 1 for storing an alkaline solution and absorbing hydrogen sulfide.
It is attached so that b can be removed.

硫化水素発生容器1aから発生した硫化水素ガスは硫化
水素発生口1d、吸収液の逆流を防止するための逆止弁
1e、不活性ガスとともに送られてくる硫化水素ガスの
吸収を完全にする目的から気泡を分散させるためのガラ
スフィルター1fを通って吸収管1bの吸収液に吸収さ
れる。
The hydrogen sulfide gas generated from the hydrogen sulfide generation container 1a is transferred to a hydrogen sulfide generation port 1d, a check valve 1e for preventing backflow of the absorption liquid, and a check valve 1e for the purpose of completely absorbing the hydrogen sulfide gas sent together with the inert gas. It passes through a glass filter 1f for dispersing air bubbles and is absorbed into the absorption liquid in the absorption tube 1b.

硫化水素吸収管1bの周囲には吸収液の液温の上昇を防
止するための水流冷却管1cを取りつけである。
A water cooling pipe 1c is attached around the hydrogen sulfide absorption pipe 1b to prevent the temperature of the absorption liquid from rising.

硫化水素吸収管1bの上部には循環する吸収液の入口1
g及び空気抜き管11、下部には吸収液の出口1hが設
けである。
At the top of the hydrogen sulfide absorption pipe 1b is an inlet 1 for the circulating absorption liquid.
g and an air vent pipe 11, and an outlet 1h for the absorption liquid is provided at the bottom.

また、吸収管1bの下方には硫化水素発生容器1aの底
部に接するように不活性ガス吹込み管1jが取りつけで
ある。
Further, an inert gas blowing pipe 1j is attached below the absorption pipe 1b so as to be in contact with the bottom of the hydrogen sulfide generating container 1a.

以上の各部は還元溶液による浸食あるいは加工上の都合
などから石英ガラスで製作することが望ましい。
It is desirable that each of the above parts be made of quartz glass due to corrosion caused by the reducing solution and processing convenience.

また、硫化水素発生装置1は小型のものが適当で、硫化
水素発生容器1aは硫化水素の発生速度を早めるために
内容積は約100m/程度、硫化水素吸収管1bは吸収
液量を少量として定量下限を低下させるために内容積を
約10rIll以下とするのが適当である。
In addition, it is appropriate that the hydrogen sulfide generator 1 be small-sized, with the hydrogen sulfide generation container 1a having an internal volume of about 100m/about 100m to accelerate the generation rate of hydrogen sulfide, and the hydrogen sulfide absorption pipe 1b having a small amount of absorption liquid. In order to lower the lower limit of quantification, it is appropriate that the internal volume be approximately 10 rIll or less.

鉄鋼などの分析試料中の硫黄化合物を硫化水素ガスとし
て発生させる方法にはいくつかの方法があるが、本発明
では少量の鉄を添加して不活性ガスを吹込みながら白煙
が発生するまで加熱処理したリン酸を還元溶液として用
いる方法が最も適していた。
There are several methods for generating hydrogen sulfide gas from sulfur compounds in analysis samples such as steel, but in the present invention, a small amount of iron is added and an inert gas is blown in until white smoke is generated. The most suitable method was to use heat-treated phosphoric acid as a reducing solution.

すなわち、硫化水素発生容器1aに分析試料を入れ、不
活性ガス吹込み管1jからアルゴンガスあるいは窒素ガ
スを吹込んで容器内の空気を追い出したのち、上述のり
ん酸還元液を添加して加熱器2で加熱し、分析試料を溶
解し、更にりん酸の白煙が発生するまで加熱を続けると
試料中の硫黄化合物は硫化水素となって発生する。
That is, an analysis sample is placed in a hydrogen sulfide generating container 1a, and after blowing argon gas or nitrogen gas through an inert gas blowing pipe 1j to expel the air inside the container, the above-mentioned phosphoric acid reducing solution is added and the heater is heated. 2 to dissolve the analysis sample and continue heating until white smoke of phosphoric acid is generated, the sulfur compounds in the sample are converted into hydrogen sulfide and generated.

この方法による還元力は非常に強く試料中の硫黄が例え
ば硫化鉄のように硫化物を形成している場合はもちろん
、硫酸塩の形で存在している場合でも容易に硫化水素に
還元することができる。
The reducing power of this method is very strong, and even if the sulfur in the sample forms a sulfide, such as iron sulfide, or even if it exists in the form of a sulfate, it can be easily reduced to hydrogen sulfide. I can do it.

ただし、鉄などよりも安定で難溶性の金属試料の場合は
溶解に時間がかかり完全に硫化水素として発生させるの
が困難な場合があるが、このような場合には次のような
方法に従うのが適当である。
However, in the case of metal samples that are more stable and less soluble than iron, etc., it may take a long time to dissolve and it may be difficult to completely generate hydrogen sulfide. is appropriate.

すなわち、まず試料を王水で加熱分解したのち蒸発乾個
し硫黄化合物を硫酸塩に替え数回塩酸を加えて加熱して
硝酸を追出し、金属アルミニウム片を加えて鉄などを還
元する前処理を行ない、この試料溶液を硫化水素発生容
器1aに入れ前述と同様に還元溶液を加え加熱して硫化
水素を発生させる。
That is, first, the sample is heated and decomposed with aqua regia, then evaporated to dryness, the sulfur compound is replaced with sulfate, hydrochloric acid is added several times, heated to drive out the nitric acid, and metal aluminum pieces are added to reduce iron and other substances. Then, this sample solution is placed in the hydrogen sulfide generation container 1a, and a reducing solution is added and heated in the same manner as described above to generate hydrogen sulfide.

ただし、この場合の試料溶液は約10−程度の塩酸溶液
となるので吸収液にはこの塩酸量と当量以上の水酸化ナ
トリウムを含む溶液を用い、硫化水素吸収管1bの容積
も大きいものを用いる必要がある。
However, since the sample solution in this case will be a hydrochloric acid solution of about 10 -, use a solution containing sodium hydroxide in an amount equivalent to or more than this amount of hydrochloric acid as the absorption liquid, and use a hydrogen sulfide absorption tube 1b with a large capacity. There is a need.

また、上記のように予め試料を溶解し、硫黄化合物を硫
酸塩に替える前処理を行なう場合は、還元液としてよう
化水素酸゛と次亜りん酸の混合溶液を用いてもよいが、
この場合はよう素が一部揮散してくるので硫化水素発生
容器1aと硫化水素吸収管1bの中間に硫化水素ガスを
洗浄するための水を入れた歩容量の洗浄管を設ける必要
がある。
In addition, when performing pretreatment to dissolve the sample in advance and replace the sulfur compound with sulfate as described above, a mixed solution of hydroiodic acid and hypophosphorous acid may be used as the reducing solution.
In this case, some of the iodine will volatilize, so it is necessary to provide a cleaning tube with a walking capacity containing water for cleaning the hydrogen sulfide gas between the hydrogen sulfide generation container 1a and the hydrogen sulfide absorption tube 1b.

このようにすれば、硫化水素吸収管1bは第2図に示し
たような歩容量のもので済み、吸収液量も少なくて済む
In this way, the hydrogen sulfide absorption tube 1b can have a walking capacity as shown in FIG. 2, and the amount of absorption liquid can be reduced.

また、発生した硫化水素ガスは管壁などに付着残留しや
すいために、硫化水素発生容器1aと吸収管1bの間の
距離はなるべく短かくするのが適している。
Furthermore, since the generated hydrogen sulfide gas tends to adhere to and remain on tube walls, it is suitable to keep the distance between the hydrogen sulfide generation container 1a and the absorption tube 1b as short as possible.

1aと1b間に導管を設ける場合には、この導管にヒー
ターを巻きつけるなどして加温しておく必要がある。
When a conduit is provided between 1a and 1b, it is necessary to heat the conduit by wrapping a heater around it.

以上のような方法で発生させた硫化水素は吸収管1bで
吸収されるが、吸収液には水酸化ナトリウム、水酸化カ
リウムあるいはアンモニア水のようなアルカリ性溶液が
適当であるが、本発明の実施例では0.2 N程度の水
酸化ナトリウム溶液を使用した。
Hydrogen sulfide generated by the above method is absorbed by the absorption tube 1b, and an alkaline solution such as sodium hydroxide, potassium hydroxide or aqueous ammonia is suitable as the absorption liquid. In the example, a sodium hydroxide solution of about 0.2 N was used.

吸収された硫化水素は硫化物イオンに解離し、この硫化
物イオンは紫外領域の232nm付近に吸収極大波長を
有する。
The absorbed hydrogen sulfide dissociates into sulfide ions, and these sulfide ions have a maximum absorption wavelength near 232 nm in the ultraviolet region.

232nm付近の波長では吸収液として用いる水酸化ナ
トリウムなどの希薄水溶液はほとんど吸収を示さず、硫
化物イオン濃度に比例した吸光度が得られることから吸
収液の232nm付近の吸収を測定することにより試料
中の硫黄化合物の含有率を求めることができる。
At wavelengths around 232 nm, dilute aqueous solutions such as sodium hydroxide used as absorption liquids show almost no absorption, and absorbance is proportional to the sulfide ion concentration. The content of sulfur compounds can be determined.

この場合の測定波長は極大吸収波長の232nmが適し
ているが、この吸収ピークの範囲均で、例えば220〜
252nmの波長でも測定を行なうことができる。
In this case, the measurement wavelength is preferably 232 nm, which is the maximum absorption wavelength, but the range of this absorption peak is average, for example, 220 nm to 232 nm.
Measurements can also be carried out at a wavelength of 252 nm.

しかし、硫化物イオンは空気酸化を受けて変化し易いた
めに、硫化水素吸収管1bで吸収させたのち、この吸収
液を取り出し吸収セルに移して吸光度を測定する方法は
不適切である。
However, since sulfide ions are easily changed by air oxidation, it is inappropriate to absorb the sulfide ions in the hydrogen sulfide absorption tube 1b and then take out the absorption liquid and transfer it to an absorption cell to measure the absorbance.

本発明はこの問題を不活性ガスの吹込み及び吸収管1b
の周囲に冷却器1cの設置以外に更に根本的な解決策と
して吸収液を光度計の流通セルに循環し、吸収液を空気
に触れさせることのない大気遮へい系で迅速に吸光度を
測定する方法を採用した。
The present invention solves this problem by injecting inert gas and absorbing pipe 1b.
In addition to installing a cooler 1c around the photometer, a more fundamental solution is to circulate the absorption liquid through the flow cell of the photometer and quickly measure the absorbance in an atmospheric shielding system that does not allow the absorption liquid to come into contact with the air. It was adopted.

3は吸収液を循環する循環ポンプで、吸収液量は約5−
程度と少量であり、また吸光度を安定に測定する必要か
ら脈流の少ない定流量ポンプが適当である。
3 is a circulation pump that circulates the absorption liquid, and the amount of absorption liquid is approximately 5-
A constant flow pump with little pulsation is suitable because of the small amount and the need to stably measure absorbance.

5は光度計で紫外部の吸収を測定でき、流通セル6を設
置したもので、流通セル6は光路長がなるべく長く、内
容積は約0.17727!程度のように少量のものが望
ましい。
5 is a device that can measure ultraviolet absorption with a photometer and is equipped with a circulation cell 6, which has an optical path length as long as possible and an internal volume of about 0.17727! A small amount is preferable.

9a 、9bは吸収液の注入、現車、排出を順次取り行
なうための流路切替器であり、液体クロマトグラフ等に
用いられている溶媒自動切替器が適当である。
Reference numerals 9a and 9b are flow path switching devices for sequentially injecting, loading, and discharging the absorption liquid, and an automatic solvent switching device used in liquid chromatographs and the like is suitable.

吸収液の循環にかかわる操作について説明する。Operations related to circulation of the absorption liquid will be explained.

まず、流路切替器9aを流路がストップする側に切替え
、流路切替器9bを吸収液タンク4と循環ポンプ3と接
続するように切替え、循環ポンプ3を一定時間作動させ
る。
First, the flow path switch 9a is switched to the side where the flow path is stopped, the flow path switch 9b is switched to connect the absorption liquid tank 4 and the circulation pump 3, and the circulation pump 3 is operated for a certain period of time.

吸収液はポンプ3、流通セル6、硫化水素吸収管1bの
上部の吸収液入口1gを接続する内径0.5〜1mφ程
度のテフロンチューブよりなる吸収液循環管8を通って
吸収管1bに一定量の吸収液が正確に注入される。
The absorption liquid passes through the pump 3, the circulation cell 6, and the absorption liquid circulation pipe 8 made of a Teflon tube with an inner diameter of approximately 0.5 to 1 mφ, which connects the absorption liquid inlet 1g at the upper part of the hydrogen sulfide absorption pipe 1b, and is constantly supplied to the absorption pipe 1b. The correct amount of absorption liquid is injected.

次に不活性ガスを吹込み、加熱して硫化水素の発生を開
始する。
Next, inert gas is blown in and heated to start generating hydrogen sulfide.

発生した硫化水素は吸収液に吸収され、キャリアガスと
しての不活性ガスは吸収管1bの上部の空気抜き管11
より排気される。
The generated hydrogen sulfide is absorbed by the absorption liquid, and the inert gas as a carrier gas is passed through the air vent pipe 11 at the upper part of the absorption pipe 1b.
More exhaust.

硫化水素の発生操作の開始と同時に切替器9aを切替器
9bと接続するように、また切替器9bを切替器9a及
び循環ポンプ3と接続するように切替えポンプ3を作動
させ吸収液を吸収管1bの下端の吸収液出口1h、切替
器9a、切替器9b、循環ポンプ3、流通セル6、吸収
管1b上部の吸収液入口1gを結ぶ循環器8を循環させ
る。
At the same time as the hydrogen sulfide generation operation starts, the switching pump 3 is operated to connect the switching device 9a to the switching device 9b, and to connect the switching device 9b to the switching device 9a and the circulation pump 3, and the absorption liquid is transferred to the absorption pipe. The absorption liquid is circulated through a circulator 8 that connects the absorption liquid outlet 1h at the lower end of the absorbent tube 1b, the switch 9a, the switch 9b, the circulation pump 3, the circulation cell 6, and the absorption liquid inlet 1g at the upper part of the absorption pipe 1b.

時間の経過とともに試料中の硫黄含有率に応じて吸収液
の232nm付近における吸光度は上昇し、一定時間後
に吸光度は上昇しなくなり一定値となる。
As time passes, the absorbance of the absorption liquid at around 232 nm increases depending on the sulfur content in the sample, and after a certain period of time, the absorbance stops increasing and becomes a constant value.

この吸光度の変化の状態は記録計7に記録され、試料中
の硫黄含有率が測定される。
This change in absorbance is recorded by the recorder 7, and the sulfur content in the sample is measured.

次に切替器9bを切替え、ポンプ3を作動させて吸収液
で各経路を洗浄し、吸収液を廃液タンク14aに排出す
る。
Next, the switch 9b is switched, the pump 3 is operated, each path is cleaned with the absorption liquid, and the absorption liquid is discharged into the waste liquid tank 14a.

以上のように吸収液を循環し、硫化水素の発生操作と同
時に吸収液の吸光度を測定する方法は、大気遮へい系で
しかも迅速に吸光度測定を実施するために空気酸化等に
よる硫化物イオンの変化を防止できること、硫化水素の
発生状況及び発生終了時点を明確に把握できること及び
硫化水素発生操作と吸収操作と吸光度測定操作を同時に
併行して行なえるために分析操作の迅速化、簡略化がな
されること等多くの利点がある。
As described above, the method of circulating the absorption liquid and measuring the absorbance of the absorption liquid at the same time as the hydrogen sulfide generation operation is performed in an atmosphere-shielded system and in order to quickly measure the absorbance. Analytical operations can be speeded up and simplified because hydrogen sulfide generation, absorption, and absorbance measurement operations can be performed at the same time. There are many advantages.

吸収液の循環経路としては、ポンプ3、光度計流通セル
6、吸収管1bの方向に循環させるのが、硫化水素の吸
収、吸収管1b内の洗浄、吸収液の全量排出のために有
効であった。
As for the circulation path of the absorption liquid, it is effective to circulate it in the direction of the pump 3, the photometer flow cell 6, and the absorption tube 1b for absorbing hydrogen sulfide, cleaning the inside of the absorption tube 1b, and discharging the entire amount of absorption liquid. there were.

従って吸収液循環管の接続箇所である吸収液入口1gは
吸収管1bの上部に、吸収液出口1hは吸収管1bの下
部に取りつける必要がある。
Therefore, the absorption liquid inlet 1g, which is the connection point of the absorption liquid circulation pipe, needs to be attached to the upper part of the absorption pipe 1b, and the absorption liquid outlet 1h needs to be attached to the lower part of the absorption pipe 1b.

また、空気抜き管11は吸収管1bの上部に取りつける
必要がある。
Further, the air vent pipe 11 needs to be attached to the upper part of the absorption pipe 1b.

不活性ガス吹込み・試料残液排出部Yは、硫化水素発生
装置1において硫化水素を発生させる操作時に不活性ガ
スを一定流量供給する働き及び分析終了時に硫化水素発
生容器1a中の試料残液を収引排出する働きをする部分
である。
The inert gas injection/residual sample discharge section Y serves to supply a constant flow of inert gas during the operation of generating hydrogen sulfide in the hydrogen sulfide generator 1, and to supply the remaining sample liquid in the hydrogen sulfide generation container 1a at the end of analysis. This is the part that works to collect and discharge.

10は不活性ガスボンベでアルゴンや窒素などを用いる
10 is an inert gas cylinder that uses argon, nitrogen, etc.

11は流量計で通常約100 ml/vtirt程度で
不活性ガスを吹込む。
Reference numeral 11 denotes a flow meter that normally blows inert gas at a rate of about 100 ml/vtirt.

9cは流路切替器で不活性ガスの吹込み及び試料残液の
排出の経路を切替えるものである。
Reference numeral 9c is a flow path switching device that switches the path for inert gas injection and sample residual liquid discharge.

12は試料残液排出時に試料残液の温度をある程度低下
させるための水流冷却器である。
Reference numeral 12 denotes a water flow cooler for lowering the temperature of the remaining sample liquid to some extent when discharging the remaining sample liquid.

13は吸引ポンプ、14bは廃液タンクである。13 is a suction pump, and 14b is a waste liquid tank.

硫化水素発生における不活性ガスの吹込みは還元溶液の
空気酸化を防止して硫化水素の発生効率を高めるため、
硫化水素を吸収管1bへ送り出すキャリアガスとして、
また、還元溶液の攪拌を行ない試料の溶解及び硫化水素
の発生を促進するなど重要な役割を持っている。
Injecting inert gas during hydrogen sulfide generation prevents air oxidation of the reducing solution and increases the efficiency of hydrogen sulfide generation.
As a carrier gas to send hydrogen sulfide to the absorption tube 1b,
It also plays an important role in stirring the reducing solution to promote dissolution of the sample and generation of hydrogen sulfide.

自動制御部Zは自動制御器15を主体に構成しており、
試料及び還元溶液の硫化水素発生容器への投入操作以外
のすべての操作を自動的に操作する働きをする。
The automatic control section Z is mainly composed of an automatic controller 15,
It functions to automatically perform all operations except for charging the sample and reducing solution into the hydrogen sulfide generating container.

加熱器2、循環ポンプ3、光度計5、流路切替器9a
、9b + 9c s吸引ポンプ13等制御箇所は、一
般に市販されているシーケンスプログラマ−などを用い
た自動制御器15の端子15a 、15b l 15c
・・・と接続してあり、予め定めた操作プログラムに従
って順次各操作を自動的に制御する。
Heater 2, circulation pump 3, photometer 5, flow path switch 9a
, 9b + 9c s The suction pump 13 and other control points are terminals 15a, 15b l 15c of an automatic controller 15 using a generally commercially available sequence programmer.
... and automatically controls each operation in sequence according to a predetermined operation program.

すなわち試料及び還元溶液を硫化水素発生容器1aに入
れたあと、流路切替器9Cを切替えて不活性ガスをボン
ベ10、流量計11、切替器9c、冷却器12及び不活
性ガス吹込み管1」を経て硫化水素発生容器1aに送り
込む。
That is, after putting the sample and reducing solution into the hydrogen sulfide generation container 1a, the flow path switch 9C is switched to transfer the inert gas to the cylinder 10, the flow meter 11, the switch 9c, the cooler 12, and the inert gas blowing pipe 1. ” and sent to the hydrogen sulfide generating container 1a.

次に流路切替器9a 、9b循環ポンプ3を作動させ、
吸収液を硫化水素吸収管1bに送り込む。
Next, operate the flow path switching devices 9a and 9b circulation pump 3,
The absorption liquid is sent into the hydrogen sulfide absorption tube 1b.

次に加熱器2、光度計5、記録計7を作動させ、切替器
9bを切替えて循環ポンプを作動させ吸収液を光度計の
流通セル6を通るように循環させ、吸収液の吸光度の変
化を測定記録する。
Next, the heater 2, photometer 5, and recorder 7 are operated, and the switch 9b is switched to operate the circulation pump to circulate the absorption liquid through the circulation cell 6 of the photometer, thereby changing the absorbance of the absorption liquid. Measure and record.

分析終了後は切替器9bを切替えて循環ポンプ3を働か
せ、吸収液の排出及び吸収液の循環経路を洗浄する。
After the analysis is completed, the switch 9b is switched to operate the circulation pump 3 to discharge the absorption liquid and clean the absorption liquid circulation path.

また、吸引ポンプ13を働かせ、切替器9cを切替えて
硫化水素発生容器1a中の試料残液を廃液タンク14b
に排出させる。
In addition, the suction pump 13 is operated and the switch 9c is switched to drain the remaining sample liquid in the hydrogen sulfide generating container 1a to the waste liquid tank 14b.
be discharged.

本発明実施例装置においては硫化水素発生容器1aへの
分析試料の投入あるいは分析試料溶液の注入、及び還元
溶液の注入操作の自動化は行なわなかったが、分析試料
投入装置あるいは試薬溶液注入装置を接続するなどによ
ってこれらの自動操作化は現在の一般的技術で十分可能
である。
In the apparatus according to the embodiment of the present invention, the injection of an analytical sample into the hydrogen sulfide generating container 1a, the injection of an analytical sample solution, and the injection of a reducing solution were not automated, but an analytical sample loading device or a reagent solution pouring device was connected. These automatic operations are fully possible with current general technology.

試料中の硫黄化合物を硫化水素として発生させ、吸収液
の紫外吸収を連続測定する本発明によれば、硫化水素を
吸収させた溶液中の硫化物イオンを有機試薬等を加えて
発色させて可視部の吸光度を測定するなどの分析操作の
煩雑さを回避でき、操作はいたって簡単迅速である。
According to the present invention, which generates sulfur compounds in a sample as hydrogen sulfide and continuously measures the ultraviolet absorption of the absorption liquid, the sulfide ions in the solution that has absorbed hydrogen sulfide are colored by adding an organic reagent or the like to make them visible. It is possible to avoid the complexity of analysis operations such as measuring the absorbance of a sample, and the operations are very simple and quick.

また、有機試薬等による発色吸光光度法では一般に硫化
水素発生時に付随して揮散してくる塩化水素やりん酸等
の妨害が大きいが、これらは紫外吸収をほとんど示さな
いために本発明では影響しないなど硫化水素発生操作も
厳密な操作条件で行なう必要もない。
In addition, in color absorption spectrophotometry using organic reagents, there is generally a large interference with hydrogen chloride, phosphoric acid, etc. that evaporate accompanying the generation of hydrogen sulfide, but these do not affect the present invention because they exhibit almost no ultraviolet absorption. There is no need to perform hydrogen sulfide generation operations under strict operating conditions.

更に定量感度も非常に高く、試料を0.5〜1g程度用
いれば、通常的0.5 ppI+@度までの微量の硫黄
を精度よく定量でき、■試料の分析に要する時間は約2
0分と迅速である。
Furthermore, the quantitative sensitivity is extremely high, and by using approximately 0.5 to 1 g of sample, trace amounts of sulfur, typically up to 0.5 ppI+@ degree, can be determined with high accuracy, and the time required for sample analysis is approximately 2.
It is quick and takes 0 minutes.

試薬の硫酸カリウムを水に溶解して調製した溶液の一定
量を硫化水素発生容器1aに入れて加熱して水分を蒸発
させたのち、本発明実施例操作に従ってこの溶液中の硫
黄を分析した。
A certain amount of a solution prepared by dissolving the reagent potassium sulfate in water was placed in a hydrogen sulfide generating container 1a and heated to evaporate water, and then the sulfur in this solution was analyzed according to the procedure of the embodiment of the present invention.

5回繰り返して分析した結果を第1表に示したが、精度
よく分析することができた。
The results of repeated analysis five times are shown in Table 1, and the analysis was able to be performed with high accuracy.

以上のように本発明は方法原理及び装置構造が簡単で実
用的な新規発明である。
As described above, the present invention is a new invention with a simple method principle and a simple and practical device structure.

本発明は鉄鋼など金属材料中の微量硫黄分析による品質
管理に大きく寄与するものである。
The present invention greatly contributes to quality control by analyzing trace amounts of sulfur in metal materials such as steel.

また、鉱物、植物等の分析あるいは環境対策分析の分野
に於ても活用されるものである。
It is also used in the fields of analysis of minerals, plants, etc., and analysis of environmental measures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例装置の説明図である
。 第1図は本発明装置の全体の構成を、第2図は硫化水素
発生装置の詳細を示したものである。 1・・・硫化水素発生装置、1a・・・硫化水素発生容
器、1b・・・硫化水素吸収管、1c・・・冷却管、1
d・・・硫化水素発生口、1e・・・逆止弁、1f・・
・ガラスフィルター、1g・・・吸収液入口、1h・・
・吸収液出口、1i・・・空気抜き管、1j・・・不活
性ガス吹込み管、2・・・加熱器、3・・・循環ポンプ
、4・・・吸収液タンク、5・・・光度計、6・・・流
通セル、7・・・記録計、8・・・吸収液循環管、9a
、 9b 、 9c・・・流路切換器、10・・−不
活性ガスボンベ、11・・・流量計、12・・・冷却器
、13・・・吸引ポンプ、14a 、 14b・・・廃
液タンク、15−1M動制御器、15a、15b。 15C・・・自動制御用端子、W・・・硫化水素発生・
吸収部、X・・・吸収液循環・紫外吸収測定部、Y・・
・不活性ガス吹込み・試料残液排出音115Z・・・自
動制御部。
FIGS. 1 and 2 are explanatory diagrams of an embodiment of the present invention. FIG. 1 shows the overall structure of the apparatus of the present invention, and FIG. 2 shows details of the hydrogen sulfide generating apparatus. 1...Hydrogen sulfide generator, 1a...Hydrogen sulfide generation container, 1b...Hydrogen sulfide absorption pipe, 1c...Cooling pipe, 1
d...Hydrogen sulfide generation port, 1e...Check valve, 1f...
・Glass filter, 1g...Absorption liquid inlet, 1h...
・Absorption liquid outlet, 1i...Air vent pipe, 1j...Inert gas blowing pipe, 2...Heater, 3...Circulation pump, 4...Absorption liquid tank, 5...Light intensity Total, 6... Distribution cell, 7... Recorder, 8... Absorbent circulation pipe, 9a
, 9b, 9c...flow path switching device, 10...-inert gas cylinder, 11...flow meter, 12...cooler, 13...suction pump, 14a, 14b...waste tank, 15-1M dynamic controller, 15a, 15b. 15C...Automatic control terminal, W...Hydrogen sulfide generation/
Absorption section, X...absorption liquid circulation/ultraviolet absorption measurement section, Y...
・Inert gas blowing・Sample residual liquid discharge sound 115Z...Automatic control unit.

Claims (1)

【特許請求の範囲】 1 分析試料を還元溶液中で不活性ガスを吹き込みなが
ら加熱分解し、硫黄化合物を硫化水素ガスとして発生さ
せ、この硫化水素ガスを吸収管と光度計のフローセル間
を循環するアルカリ性溶液に逐次吸収させながら連続的
に232 nm付近の紫外吸収の変化を連続的に測定す
ることによって試料中の微量の硫黄化合物量を求めるこ
とを特徴とする微量硫黄分析方法。 2 流路切替器、循環用ポンプ、光度計の流通セルを結
んだ吸収液循環管の一端及び空気抜き管を上部に、吸収
液循環管の他端を下部に接続した硫化水素吸収管と、前
記硫化水素吸収管の下部に不活性ガス吹込み管及び加熱
器を設けた硫化水素発生器を接続した構成を特徴とする
微量硫黄分析装置。
[Claims] 1. The analysis sample is thermally decomposed in a reducing solution while blowing inert gas to generate a sulfur compound as hydrogen sulfide gas, and this hydrogen sulfide gas is circulated between an absorption tube and a flow cell of a photometer. A trace amount sulfur analysis method characterized by determining the amount of trace amounts of sulfur compounds in a sample by continuously measuring changes in ultraviolet absorption around 232 nm while sequentially absorbing the sample in an alkaline solution. 2. A hydrogen sulfide absorption pipe with one end of an absorption liquid circulation pipe connecting the flow path switching device, circulation pump, and photometer circulation cell and an air vent pipe connected to the upper part, and the other end of the absorption liquid circulation pipe connected to the lower part; A trace sulfur analyzer characterized by a configuration in which a hydrogen sulfide generator equipped with an inert gas blowing pipe and a heater is connected to the lower part of a hydrogen sulfide absorption pipe.
JP53124080A 1978-10-11 1978-10-11 Trace sulfur analysis method and device Expired JPS5845660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53124080A JPS5845660B2 (en) 1978-10-11 1978-10-11 Trace sulfur analysis method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53124080A JPS5845660B2 (en) 1978-10-11 1978-10-11 Trace sulfur analysis method and device

Publications (2)

Publication Number Publication Date
JPS5551352A JPS5551352A (en) 1980-04-15
JPS5845660B2 true JPS5845660B2 (en) 1983-10-12

Family

ID=14876422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53124080A Expired JPS5845660B2 (en) 1978-10-11 1978-10-11 Trace sulfur analysis method and device

Country Status (1)

Country Link
JP (1) JPS5845660B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150471U (en) * 1985-03-12 1986-09-17
JPH0210937Y2 (en) * 1983-01-07 1990-03-19

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP934799A0 (en) * 1999-03-22 1999-04-15 Bush, Richard Apparatus for anlaysing reduced inorganic sulfur
CN103389279B (en) * 2013-08-06 2015-08-12 山东省科学院海洋仪器仪表研究所 The device and method of sub-methyl blue spectrum analysis on-line checkingi water quality medium sulphide content concentration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210937Y2 (en) * 1983-01-07 1990-03-19
JPS61150471U (en) * 1985-03-12 1986-09-17

Also Published As

Publication number Publication date
JPS5551352A (en) 1980-04-15

Similar Documents

Publication Publication Date Title
DE102009028165B4 (en) Method and apparatus for the automated determination of the chemical oxygen demand of a liquid sample
JP4305438B2 (en) Analytical aqueous solution metering / feeding mechanism and water quality analyzer using the same
JP3772692B2 (en) Analytical aqueous solution metering / feeding mechanism and water quality analyzer using the same
KR100879009B1 (en) A system and method for monitoring metals and metal compounds in air and gases
CN211627359U (en) Detecting system for sulfur trioxide content in flue gas
US3529937A (en) Quantitative analyzer of sulfur contents
CN110057896A (en) The analysis method of content of fluoride in a kind of hazardous waste
JPS5845660B2 (en) Trace sulfur analysis method and device
WO2022099800A1 (en) Online analyzer for water quality permanganate index
JP6665751B2 (en) Water quality analyzer
CN110687062A (en) Detection system and detection method for sulfur trioxide content in flue gas
CN109752358A (en) The measuring method of sulfur content in a kind of water
CN111982610B (en) On-line continuous detection device for ammonia in gas by using chemical spectrophotometry
CA1129499A (en) Device for measuring the emission of gaseous inorganic fluorine or chlorine compounds
CN108827890A (en) A kind of detection method of heavy metal in waste water
US4105508A (en) Method and device for analysis of a mixture of hydrochloric acid and organochlorine compounds contained in gases derived in particular from the incineration of organochlorine compounds
Houde et al. Automatic apparatus for the determination of carbon and hydrogen in organic compounds
CN206020157U (en) A kind of gas cleaning plant
CN206114517U (en) Infrared oil smoke monitoring system
CN113970524B (en) Method and system for measuring manganese content of atmospheric particulates on line
CN113866242B (en) A flow-through cell for iodine-containing liquid return circuit online analysis of quality of water
JPS581381B2 (en) Hydrogen sulfide gas generation, absorption method and equipment
WO2024122082A1 (en) Method and device for preparing solution for quantitative analysis
Hozumi Microdetermination of organic oxygen by means of optical integration of liberated iodine in vapor phase
RU2053507C1 (en) Method of determination of total content of organic substances in water and device for its implementation