JPS5845527B2 - Expansion piling method - Google Patents

Expansion piling method

Info

Publication number
JPS5845527B2
JPS5845527B2 JP4230379A JP4230379A JPS5845527B2 JP S5845527 B2 JPS5845527 B2 JP S5845527B2 JP 4230379 A JP4230379 A JP 4230379A JP 4230379 A JP4230379 A JP 4230379A JP S5845527 B2 JPS5845527 B2 JP S5845527B2
Authority
JP
Japan
Prior art keywords
ground
pile
hole
grout
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4230379A
Other languages
Japanese (ja)
Other versions
JPS55136322A (en
Inventor
香折 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4230379A priority Critical patent/JPS5845527B2/en
Publication of JPS55136322A publication Critical patent/JPS55136322A/en
Publication of JPS5845527B2 publication Critical patent/JPS5845527B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、不等沈下や地震時液状化の懸念がある軟弱地
盤の市街地において、無騒音、無振動、無衝撃で地中に
基礎杭を形成しつつ、静的に杭周辺地盤を改良する工法
で、無振動建てこみ杭工法の改良に関する。
[Detailed Description of the Invention] The present invention is designed to form foundation piles in the ground without noise, vibration, or impact in urban areas with soft ground where there are concerns about uneven settlement or liquefaction during earthquakes. This is a construction method for improving the ground around piles, and relates to improvements to vibration-free built-in pile construction methods.

従来の無振動建てこみ杭工法では、削孔後に注入するグ
ラウトまたはモルタルは非膨張性で、般に水セメント比
が大きく硬化状縮度が大きいため、削孔に伴って乱され
た杭周辺地盤から硬化に伴って杭表面が求離し、杭周辺
地盤の弛緩を惹起している。
In the conventional vibration-free built-in pile construction method, the grout or mortar injected after drilling is non-expanding and generally has a high water-cement ratio and a high degree of hardening, so the ground around the pile disturbed by drilling As the pile hardens, the surface of the pile separates, causing loosening of the ground around the pile.

このため、杭の周面抵抗は著るしく低下し、その極限支
持力は振動、衝撃によって施工された打ち込み杭には遠
く及ばないのが普通である。
For this reason, the circumferential resistance of the pile is significantly reduced, and its ultimate bearing capacity is usually far inferior to that of a driven pile constructed by vibration or impact.

又コンクリート、モルタル、グラウト等に於て、使用す
るセメントの一部に膨張セメントやアルミニューム粉末
等の膨張添加剤を使用する事によって、硬化時にその体
積を膨張させ、空隙充填材としての役割を充分に発揮さ
せ、あるいは適当な膨張拘束処置を施すことによって、
セルフプレスストレッシング効果を生じさせる等の方法
は一般に知られている。
In addition, in concrete, mortar, grout, etc., by using an expansion additive such as expanded cement or aluminum powder in a part of the cement used, the volume expands when it hardens, and it acts as a void filler. By fully exerting it or by applying appropriate expansion restraint measures,
Methods such as creating a self-press stressing effect are generally known.

しかし、これらの膨張モルタル、膨張グラウト等は従来
の建てこみ杭工法には活用されていない。
However, these expanding mortar, expanding grout, etc. are not utilized in the conventional built-in pile construction method.

また、地下水位が高く、シかもルーズな中粒砂層等の地
震動に伴う液状化を防止するため、サンドコンパクショ
ン、バイブロフローティジョン等の動的な加圧力によっ
て、地層を締め固め改良する事も広く一般に行われてい
る。
In addition, in order to prevent liquefaction caused by seismic motion in medium-grained sand layers with high groundwater levels and loose soil, it is widely used to compact and improve the strata using dynamic pressure such as sand compaction and vibroflotation. This is commonly done.

しかし、これらの工法は振動、衝撃を伴うため、建造物
が密集した市街地での使用は許容されない。
However, these construction methods involve vibration and shock, and therefore cannot be used in urban areas where buildings are densely packed.

従来の膨張性グラウト、又はモルタルを使用する杭打設
工法として特開昭53−58105号、特開昭52−5
6706号、特開昭54−407号公報に記載の発明が
知られているがいずれも膨張性グラウト、又はモルタル
は杭先端部のみ直し込まれ根固めとしてその杭支持力を
増大させんとするものでありこれでは支持地盤が深い沖
積砂層等の地盤では採用できないという問題点があった
As a conventional pile driving method using expandable grout or mortar, JP-A-53-58105 and JP-A-52-5
Inventions described in No. 6706 and Japanese Unexamined Patent Publication No. 54-407 are known, but in both cases, expandable grout or mortar is applied to the tip of the pile and used as foot protection to increase the pile supporting capacity. However, this method had the problem that it could not be used in ground where the supporting ground was deep, such as an alluvial sand layer.

本発明は杭長全長にわたって膨張性グラウト、又はモル
タルを充填させ全長にわたって圧密させることによって
周面摩擦力を高めこれでもって杭支打力を増加させるこ
とによって従来の欠点、問題点を解消させ、更に周面摩
擦力を効果的に発現させる[K改良したという優れたエ
クスパンションバイリング工法を提供せんとするもので
ある。
The present invention solves the conventional drawbacks and problems by filling the entire length of the pile with expandable grout or mortar and consolidating the entire length to increase the circumferential friction force and thereby increase the pile supporting force. Furthermore, we aim to provide an excellent expansion bailing method that effectively develops circumferential surface friction force.

この発明の要旨は、地盤に削孔したあと、グラウトまた
はモルタルを孔内に注入し、この中にプレキャスト抗体
または補強鋼材を挿入硬化させ、地中に杭を形成する工
法において、グラウトまたはモルタルとして硬化膨張性
のものを使用ししかも孔内の抗体または補強鋼材の全長
にわたって充填させるとともに、孔内に挿入するプレキ
ャスト抗体または補強鋼材としてグラウトまたはモルタ
ルの上下方向への膨張を拘束し水平方向へ変換する数段
の突起または鍔部を外周に設けたものを使用し、グラウ
トまたはモルタルの硬化膨張力により杭周辺の地盤に水
平方向の加圧力を与え、周辺地盤を静的に圧密改良しつ
つ地中に杭を形成する事を特徴とするエクスパンション
バイリング工法にある。
The gist of this invention is that after drilling a hole in the ground, grout or mortar is injected into the hole, and a precast antibody or reinforcing steel material is inserted into the hole and hardened to form a pile in the ground. A hardened and expandable material is used to fill the entire length of the antibody or reinforcing steel in the hole, and the precast antibody or reinforcing steel inserted into the hole restrains the vertical expansion of the grout or mortar and converts it to the horizontal direction. Using a pile with several stages of protrusions or flanges on the outer periphery, the hardening expansion force of the grout or mortar applies horizontal pressure to the ground around the pile, statically improving the consolidation of the surrounding ground and improving the ground. It is an expansion building construction method that is characterized by forming piles inside.

以下その実施例をもって具体的に説明する。This will be explained in detail below using examples.

まず第1図に示す様に (1)適当な無騒音、無振動削孔機1を用いて杭を形成
する地盤上所定位置より所要深さの削孔を行い、 (0削孔機1を上昇させながら、孔内下部より逐次膨張
性グラウトまたはモルタル2を注入して孔内に充満し、 (3)グラウトまたはモルタル2の硬化開始前に、第2
図に示すプレキャスト杭体3または補強鋼材を孔内に挿
入し、 (4)グラウトまたはモルタ、/1/2の硬化膨張によ
って、杭周辺地盤を、杭先端下部より地表までの全域に
わたって水平方向に圧縮、圧密し、杭体3の所定位置に
定着する工法である。
First, as shown in Figure 1, (1) Drill a hole to the required depth from a predetermined position on the ground where the pile will be formed using an appropriate noise-free and vibration-free drilling machine 1. While raising the hole, expandable grout or mortar 2 is sequentially injected from the lower part of the hole to fill the hole, and (3) before the grout or mortar 2 starts hardening, a second
Insert the precast pile body 3 or reinforcing steel material shown in the figure into the hole, and (4) harden and expand the grout or mortar at a rate of 1/2 to horizontally spread the ground around the pile over the entire area from the bottom of the pile tip to the ground surface. This is a construction method in which the pile body 3 is compressed, consolidated, and fixed at a predetermined position.

この施工過程1において、削孔に無排土削孔機を用いれ
ば、削孔に伴う初期の水平加圧と膨張加圧力が相俟って
、杭周辺地盤の締め固め効果は更に向上し、2の過程に
於て、未硬化グラウトまたはモルタ/1/2の粘性を適
宜調節することにより、周辺地盤への浸透を容易、tし
、浸透液による周辺地盤改良を可能にし、3の過程にお
いて、第2図中のA、B、C等の形状をそなえた抗体ま
たは補強鋼材を挿入する事によって、グラウトまたはモ
ルタルの上下方向への膨張を拘束してこれを水平方向へ
変換し、水平方向締め固め加圧力を倍増させ、4の過程
においては、膨張添加剤と配合の選択により、膨張率0
.01/1000〜50/1000程度まで、必要に応
じて膨張即ち加圧力を自由に調節する事等がそれぞれ可
能である。
In this construction process 1, if a non-evacuation soil boring machine is used for drilling, the initial horizontal pressure and expansion pressure associated with drilling will combine to further improve the compaction effect of the ground around the pile. In step 2, by appropriately adjusting the viscosity of the uncured grout or mortar/1/2, it is easy to penetrate into the surrounding ground, making it possible to improve the surrounding ground with the infiltrating liquid, and in step 3. By inserting antibodies or reinforcing steel materials with shapes such as A, B, and C in Figure 2, the vertical expansion of grout or mortar is restrained and converted to the horizontal direction. The compaction force is doubled, and in step 4, the expansion rate can be reduced to 0 by selecting the expansion additive and formulation.
.. It is possible to freely adjust the expansion or pressing force from about 01/1000 to about 50/1000 as necessary.

以下、本発明工法の実施例の作用効果を具体的に説明す
る。
Hereinafter, the effects of the embodiments of the construction method of the present invention will be specifically explained.

前記第1表A、Bは、実際に施工した本発明工法用グラ
ウトおよびモルタルの配合例で、第3〜第5図はその施
工図である。
Tables A and B above show examples of the composition of grout and mortar for the construction method of the present invention that were actually constructed, and Figures 3 to 5 are construction drawings thereof.

地盤条件は施工図中に示された通り、地表面下十数メー
タまで標準貫入試験平均N値8〜10、均等係数5前後
の水で飽和した一様にルーズな中破層で、下等沈下や地
震時液状化の危険題が極めて高い地層である。
As shown in the construction drawings, the ground condition is a uniformly loose, medium-broken layer saturated with water, with a standard penetration test average N value of 8 to 10 and a uniformity factor of around 5, up to a dozen meters below the ground surface. This is a geological formation with an extremely high risk of subsidence and liquefaction during earthquakes.

従って、杭を著しく長大化して数十メートル下の支持層
に達せしめた杭基礎構造としても、上層地盤の地震動に
よる液状化の危険はさげ難く、流砂現象のさ中に水平方
向地震動を受けても同倒壊を免れ得る構造とする事は容
易ではない。
Therefore, even with a pile foundation structure in which the piles are significantly longer and reach the supporting layer several tens of meters below, the risk of liquefaction due to seismic motion in the upper ground is difficult to reduce, and the risk of liquefaction caused by horizontal seismic motion during a quicksand phenomenon is very high. It is not easy to create a structure that can avoid the same collapse.

現地は市街地の中心部に位置し、振動、衝撃を伴うサン
ドコンパクション、バイブロ−ティジョン等の族エバ勿
論不可能である。
The site is located in the center of the city, so it is of course impossible to carry out sand compaction, vibrations, etc. that involve vibrations and shocks.

このため、本発明工法を採用することとし、まず、建造
物の外壁に沿ってめぐらされる布基礎下部には1.5メ
ートル1′7“1全長15メートルの異形鋼杭を施工し
、杭施工に伴う本発明工法の地盤改良範囲を互に重複さ
せ、地下15メ一トル余までを完全な封鎖基礎構造とし
、さらにこの内部には全長8メートルの異形プレキャス
トコンクリート杭を第3図に示す間隔で施工する事によ
り、本発明工法の杭施工に伴う地盤改良効果が基礎全面
におよぶ構造とした。
For this reason, we decided to adopt the construction method of the present invention, and first, we constructed deformed steel piles with a total length of 1.5 meters (1'7"1) and 15 meters at the bottom of the cloth foundation that was laid along the outer wall of the building. The area of ground improvement using the method of the present invention overlaps with the ground improvement method of the present invention, and a completely sealed foundation structure is created up to 15 meters underground, and inside this, irregularly shaped precast concrete piles with a total length of 8 meters are installed at the intervals shown in Figure 3. By performing this construction, we created a structure in which the ground improvement effect associated with pile construction using the method of the present invention extends over the entire foundation.

施工完了後グラウトおよびモルタルの硬化所要期間をお
いて、地盤改良効果を確認するため行った第3図に示す
各位置の標準貫入試験結果は、第2表AおよびBに示す
通りであった。
The results of the standard penetration test at each location shown in Figure 3, which was conducted to confirm the ground improvement effect after the required period of hardening of the grout and mortar after completion of construction, are as shown in Tables A and B of Table 2.

この表から明らかなように、その改良効果は、抗体先端
下方4〜6メートルの深層から地表面近くまで、抗体を
中心に2〜4メートルの半径の円筒状範囲におよんでお
り、改良の程度はいずれもN値15〜19に達し、地震
時液状化の懸念はまず考えられないレベルまで向上して
いた。
As is clear from this table, the improvement effect extends to a cylindrical range with a radius of 2 to 4 meters around the antibody, from a deep layer of 4 to 6 meters below the tip of the antibody to near the ground surface. All of them reached an N value of 15 to 19, indicating that concerns about liquefaction during an earthquake had increased to an almost unthinkable level.

また、同時期に行った実杭の鉛直ならびに水平載荷試験
結果もこの事実を裏書するもので、鉛直方向支持力で通
常の打込杭よりほぼ40〜50係増、水平方向耐力に至
っては通常の打込杭の倍以上に強化されている事が明ら
かになった。
In addition, the results of vertical and horizontal loading tests on actual piles conducted at the same time also support this fact. It was revealed that the strength was more than twice that of the previously driven pile.

例えばN値10、自由膨張率25/1000杭の直径5
0cmでは一平方当り22 tonの加圧力を発生させ
ることができた。
For example, N value 10, free expansion rate 25/1000, pile diameter 5
At 0 cm, it was possible to generate a pressing force of 22 tons per square area.

一般に、地表面より10〜15メートル以上の深層にお
いては、その上層部分が正常である限り地震動による液
状化の懸念はない事が知られており、液状化防止には建
造物外壁下層部に沿って、地表面下10〜15メートル
までを封鎖する形の基礎構造とする事が効果的であると
されている。
In general, it is known that at a depth of 10 to 15 meters or more below the ground surface, there is no concern about liquefaction due to earthquake motion as long as the upper layer is normal. Therefore, it is said that it is effective to construct a foundation structure that seals the area 10 to 15 meters below the ground surface.

日本国内では、支持基礎が地表面下数十メートル−百数
十メートルの深層に及ぶ沖積砂層が多く、地表向近くの
上層の液状化を防止しないで杭を直接基盤で支持させる
事は、いたずらに杭の長大化を招き経済的に問題である
ばかりでなく、地震時の水平方向耐力の面でも問題が残
る。
In Japan, there are many alluvial sand layers where supporting foundations extend from tens of meters to hundreds of meters below the ground surface, and it would be a mischief to support piles directly on the foundation without preventing liquefaction of the upper layer near the ground surface. This not only causes the piles to become longer, which is an economic problem, but also poses problems in terms of horizontal strength during earthquakes.

本発明工法による杭基礎の場合、上述のように基礎の構
造的にも、不等沈下や地震時液状化に対応出来ると共に
、上層地盤の支持力を改善して基礎全体を浮き基礎構造
とする事が可能な事から、その経済効果は非常に大きい
In the case of a pile foundation constructed using the method of the present invention, the structure of the foundation can cope with uneven settlement and liquefaction during an earthquake as described above, and the supporting capacity of the upper ground is improved, making the entire foundation a floating foundation structure. Since it is possible, the economic effect is very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明工法の実施例の施工順序説明図。 第2図は本発明工法に用いる抗体または補強鋼材の種々
の形状を示す説明図。 第3図は本発明工法施工例の施工地を示す平面図。 第4図は同施工地の周壁に挿入した杭を示す縦断面図。 第5図は同施工地の中央に挿入した杭を示す縦断面図。 第6図は同施工地の土質状態を示す土質柱状図である。
FIG. 1 is a construction order explanatory diagram of an embodiment of the construction method of the present invention. FIG. 2 is an explanatory diagram showing various shapes of antibodies or reinforcing steel materials used in the construction method of the present invention. FIG. 3 is a plan view showing a construction site of an example of construction using the construction method of the present invention. Figure 4 is a vertical cross-sectional view showing the piles inserted into the surrounding wall of the same construction site. Figure 5 is a vertical cross-sectional view showing the pile inserted in the center of the construction site. Figure 6 is a soil column diagram showing the soil conditions at the construction site.

Claims (1)

【特許請求の範囲】[Claims] 1 地盤に削孔したあと、グラウトまたはモルタルを孔
内に注入し、この中にプレキャスト抗体または補強鋼材
を挿入硬化させ、地中に杭を形成する工法において、グ
ラウトまたはモルタルとして硬化膨張性のものを使用し
しかも孔内の抗体または補強鋼材の全長にわたって充填
させるとともに、孔内に挿入するプレキャスト抗体また
は補強鋼材としてグラウトまたはモルタルの上下方向へ
の膨張を拘束し水平方向へ変換する数段の突起または鍔
部を外周に設けたものを使用し、グラウトまたはモルタ
ルの硬化膨張力により杭周辺の地盤に水平方向の加圧力
を与え、周辺地盤を静的に圧密改良しつつ地中に杭を形
成する事を特徴とするエクスパンションパイリンク工法
1. After drilling a hole in the ground, grout or mortar is injected into the hole, and a precast antibody or reinforcing steel material is inserted into the hole and hardened to form a pile in the ground. Moreover, in addition to filling the entire length of the antibody or reinforcing steel in the hole, several steps of protrusions are used to restrain the vertical expansion of the grout or mortar and convert it to the horizontal direction as a precast antibody or reinforcing steel inserted into the hole. Alternatively, by using a flange on the outer periphery, the hardening expansion force of the grout or mortar applies horizontal pressure to the ground around the pile, statically improving the consolidation of the surrounding ground and forming the pile in the ground. The expansion pie link construction method is characterized by
JP4230379A 1979-04-06 1979-04-06 Expansion piling method Expired JPS5845527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4230379A JPS5845527B2 (en) 1979-04-06 1979-04-06 Expansion piling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4230379A JPS5845527B2 (en) 1979-04-06 1979-04-06 Expansion piling method

Publications (2)

Publication Number Publication Date
JPS55136322A JPS55136322A (en) 1980-10-24
JPS5845527B2 true JPS5845527B2 (en) 1983-10-11

Family

ID=12632248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4230379A Expired JPS5845527B2 (en) 1979-04-06 1979-04-06 Expansion piling method

Country Status (1)

Country Link
JP (1) JPS5845527B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154037U (en) * 1984-09-12 1986-04-11
DE102017121037A1 (en) 2017-09-12 2019-03-28 Technische Universität Hamburg-Harburg Method for improving the sustainability of profiles set in the ground and profile for it

Also Published As

Publication number Publication date
JPS55136322A (en) 1980-10-24

Similar Documents

Publication Publication Date Title
US6354766B1 (en) Methods for forming a short aggregate pier and a product formed from said methods
US20060088388A1 (en) Method and apparatus for providing a rammed aggregate pier
JP5243669B1 (en) Method of tilting structure and improving ground
US20140056651A1 (en) Method of providing a support column
JPS60156818A (en) Compacted deep layer foundation construction and its construction method and apparatus
US2381014A (en) Foundation and method of forming the same
US4150910A (en) Construction of underground galleries
US3555833A (en) Piles suitable for subsidence conditions
US3559412A (en) Method of forming enlarged base encased concrete piles
RU2286424C1 (en) Bored cast-in-place stepped foundation and erection method
JPS5845527B2 (en) Expansion piling method
Maithili A discussion of liquefaction mitigation methods
JP5301059B1 (en) Method of tilting structure and improving ground
JP2000045260A (en) Aseismatic natural ground reinforcing earth engineering method
JP3760343B2 (en) Drilling bottom stabilization method and construction method of underground building
JP4189078B2 (en) Construction method of underground structure in liquefied ground
JP2884268B2 (en) Construction method of cast-in-place concrete pile
Lutenegger Uplift tests on shallow cast-in-place enlarged base pedestal foundations in clay
Ghosh et al. Urban Below-Grade Engineering: Excavation Support and Foundations for Expanding the American Museum of Natural History
JPH04336115A (en) Executing method for cast-in-place concrete pile
RU2014394C1 (en) Method for constructing foundation for buildings on subsiding ground
JPH04336116A (en) Executing method for cast-in-place concrete pile
Payal Behaviour of Ground Treated With Minigrouted Piles
Mangushev et al. Experience of construction of deep ditches for underground constructions in weak soils Saint-Petersburg
JPS611717A (en) Ground improvement work by chemical stress