JPS5845464B2 - Taikari Yuushi Oyobi Soreimochiitaika Taikari Taikari - Google Patents

Taikari Yuushi Oyobi Soreimochiitaika Taikari Taikari

Info

Publication number
JPS5845464B2
JPS5845464B2 JP50044407A JP4440775A JPS5845464B2 JP S5845464 B2 JPS5845464 B2 JP S5845464B2 JP 50044407 A JP50044407 A JP 50044407A JP 4440775 A JP4440775 A JP 4440775A JP S5845464 B2 JPS5845464 B2 JP S5845464B2
Authority
JP
Japan
Prior art keywords
taikari
foam
inorganic
particles
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50044407A
Other languages
Japanese (ja)
Other versions
JPS51120097A (en
Inventor
尭 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP50044407A priority Critical patent/JPS5845464B2/en
Publication of JPS51120097A publication Critical patent/JPS51120097A/en
Publication of JPS5845464B2 publication Critical patent/JPS5845464B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は耐火、耐熱性にすぐれたポリウレタンフォーム
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyurethane foam with excellent fire resistance and heat resistance.

一般にポリウレタンフォームは軽量で、断熱性に富むが
、発火点が416℃、引火点が310℃であり、しかも
定常状態での使用範囲が100℃であるという欠点があ
った。
Generally, polyurethane foam is lightweight and has excellent heat insulation properties, but has the drawbacks of having an ignition point of 416°C, a flash point of 310°C, and a usage range of 100°C in a steady state.

そこで、従来から、ポリウレタンフォームの難燃化法と
しては種々あるが、例えばポリウレタンフォームにパー
ライト粒、硼砂、ガラス繊維を混入する方法が採られて
いる。
Therefore, there have been various methods for making polyurethane foam flame retardant, such as mixing pearlite grains, borax, or glass fibers into polyurethane foam.

しかしながら、これら無機材をポリウレタンフォーム内
に均一に分布することは技術的に困難であつtもすなわ
ち、ポリウレタンフォーム原料はポリオール、発泡剤(
フレオン11)、整抱剤(シリコン系)、架橋剤、乳化
剤および触媒からなるポリオール成分と、ポリイソシア
ネート成分をワンショット法により混合し、反応→発泡
→硬化するのに約1分〜3分程度であり、しかも液状か
ら個体までに粘度が急激に上昇するため、ポリウレタン
フォーム原料と比重、嵩さ、外形などが異なるこれら物
質をフオームの発泡組織内に均一に分布できるものでな
い。
However, it is technically difficult to uniformly distribute these inorganic materials in polyurethane foam.
A polyol component consisting of Freon 11), a stabilizer (silicon type), a crosslinking agent, an emulsifier, and a catalyst is mixed with a polyisocyanate component using a one-shot method, and it takes approximately 1 to 3 minutes for the reaction, foaming, and curing to occur. Moreover, since the viscosity increases rapidly from a liquid state to a solid state, it is not possible to uniformly distribute these substances, which differ in specific gravity, bulk, external shape, etc. from the polyurethane foam raw material, within the foam structure of the foam.

しかも、この種無機材はポリウレタンフォーム原料と混
合される際に、種々の悪影響を与える欠点があつtも例
えば、パーライト粒は吸油性であるため上記原料を吸油
し、所期の発泡規模のフオームにならず、かつ、フオー
ムの発泡組織もパーライト内部に内蔵されていた空気が
ポリウレタンフォーム原料の発熱反応(120〜180
℃)により熱せられ、膨張し、パーライト粒外に放出さ
れるため発泡組織を荒らす不利があつtラ また、硼砂
は100〜250メツシユであり、同じ重量でも粒径を
パーライト粒のような大きさの表面積と比較した際には
、はるかに大きい表面積となり、しかも硼砂は粉末のた
め結晶水が脱水作用の強力なポリイソシアネートにより
脱水され、フオームの反応系を狂わす不利があった。
Moreover, when mixed with polyurethane foam raw materials, this type of inorganic material has the disadvantage of having various adverse effects.For example, pearlite grains are oil-absorbing, so they absorb oil from the above-mentioned raw materials, making it difficult to form a foam with the desired foam size. In addition, the foam structure is such that the air contained inside the pearlite reacts with the exothermic reaction of the polyurethane foam raw material (120 to 180
℃), expands, and is released outside the pearlite grains, which has the disadvantage of damaging the foam structure.In addition, borax has a mesh size of 100 to 250 mesh, so even with the same weight, the grain size is similar to that of pearlite grains. When compared to the surface area of borax, it has a much larger surface area, and since borax is a powder, the crystallization water is dehydrated by the polyisocyanate, which has a strong dehydrating effect, which has the disadvantage of disrupting the reaction system of the foam.

さらに、ガラス繊維、パーライト粒は単に無機材である
というだけであり、ポリウレタンフォームが燃焼すれば
、バラバラの状態で落下するものであり、初期の防火性
の向上に効果があるにすぎないものであった。
Furthermore, glass fibers and perlite particles are simply inorganic materials, and when polyurethane foam burns, they fall in pieces, so they are only effective in improving initial fire protection. there were.

本発明はこのような欠点を除去するため、防火性に有効
な水を無機質多孔粒子の内部空隙に充填し、その表面を
樹脂でコーテングした耐火粒子と、高熱下で結晶水を放
出し、次第に発泡して無機質発泡層を形成する発泡性無
機材を無機質多孔粒の内部空隙に充填した造粒耐火材と
を発泡性ポリウレタン樹脂基材に混入して、基材の耐火
、耐熱性を改善すると共に、均質な発泡組織で、しかも
長期に亘って防火性能に劣化がなく、その上に高熱下で
は無機質多孔粒子を核にして無機質発泡層を形成し、ポ
リウレタンフォームを高熱から護り、さらに、初期的に
は水の消化能力を作用させ、造粒耐人材に水を補給して
より大きな無機質発泡層を形成するようにした耐火、耐
熱性ポリウレタンフォームを提案するものである。
In order to eliminate these drawbacks, the present invention fills the internal voids of inorganic porous particles with water, which is effective for fireproofing, and uses fireproof particles whose surfaces are coated with resin to release crystallized water under high heat. A granulated fireproof material in which the internal voids of inorganic porous particles are filled with a foamable inorganic material that foams to form an inorganic foam layer is mixed into a foamable polyurethane resin base material to improve the fire resistance and heat resistance of the base material. In addition, it has a homogeneous foam structure with no deterioration in fire protection performance over a long period of time, and on top of that, under high heat, an inorganic foam layer is formed with inorganic porous particles as the core, protecting the polyurethane foam from high heat, and furthermore, Specifically, we propose a fire-resistant and heat-resistant polyurethane foam that uses water's digestive ability to replenish water to the granulation resistant material to form a larger inorganic foam layer.

以下に本発明に係る耐火、耐熱性ポリウレタンフォーム
について詳細に説明する。
The fire-resistant and heat-resistant polyurethane foam according to the present invention will be explained in detail below.

すなわち、本発明はポリウレタン樹脂基材中に耐火粒子
と造粒耐火材を混入したポリウレタンフォームである。
That is, the present invention is a polyurethane foam in which refractory particles and granulated refractory material are mixed into a polyurethane resin base material.

本発明において、ポリウレタンフォーム樹脂基材とは、
ポリオール、発泡剤、整泡剤、乳化剤、架橋斉IK触媒
からなるポリオール成分と、ポリイソシアネート成分を
重量比で、約100 : 100の割合で混合し、反応
、発泡させてフオームとするものである。
In the present invention, the polyurethane foam resin base material is
A polyol component consisting of a polyol, a blowing agent, a foam stabilizer, an emulsifier, and a crosslinking IK catalyst is mixed with a polyisocyanate component in a weight ratio of about 100:100, and the mixture is reacted and foamed to form a foam. .

また、耐火粒子とはパーライト粒のような無機質多孔粒
子の内部空隙に水を充填し、その表面を樹脂でコーテン
グしたものであり、その添加量はポリウレタンフォーム
原料100重量部に対し10〜100重量部位である。
Furthermore, refractory particles are inorganic porous particles such as pearlite particles whose internal voids are filled with water and whose surfaces are coated with resin, and the amount added is 10 to 100 parts by weight per 100 parts by weight of polyurethane foam raw material. It is a part.

さらに説明すると、無機質多孔粒子としては粒径8〜1
0mm程度のパーライト粒であり、その内部空隙に水を
減圧下で充填し、表面の付着水を除去して表面張力によ
り漏洩しない水を冷却して上記空隙内で氷にする。
To explain further, the particle size of the inorganic porous particles is 8 to 1.
They are pearlite grains of about 0 mm, and their internal voids are filled with water under reduced pressure, the water adhering to the surface is removed, and the water that does not leak due to surface tension is cooled and turned into ice within the voids.

次にポリイソシアネート液にこのパーライト粒を添加、
混合し、その表面にポリイソシアネートをコーテングす
る。
Next, add this pearlite grain to the polyisocyanate liquid,
Mix and coat the surface with polyisocyanate.

すなわち、パーライト粒子の表面は氷、水が付着してい
るため、脱水作用の強力なポリイソシアネートとこれら
を反応させ、パーライト粒子表面の多孔の開口を閉塞す
るものである。
That is, since ice and water are attached to the surface of the pearlite particles, these are reacted with polyisocyanate, which has a strong dehydrating effect, to close the pore openings on the surface of the pearlite particles.

その後、パーライト粒子内の氷は溶解し、水に変るもの
である。
Thereafter, the ice within the pearlite particles melts and turns into water.

勿論、水は最初、パーライト粒子の内部空隙に完全に充
填されるわけでな(70〜80%位である。
Of course, water does not initially completely fill the internal voids of the pearlite particles (about 70 to 80%).

また、耐火粒子は消火剤、防火剤および高熱下に水を発
泡性無機材に補給し、無機質発泡層の規模増大に役立つ
ものである。
In addition, the refractory particles replenish extinguishing agents, fire retardants, and water under high heat to the foamable inorganic material, and are useful for increasing the scale of the inorganic foam layer.

、本発明において造粒耐火材とは無機質多孔粒子の内部
空隙に高熱下において結晶水を放出すると共に、次第に
発泡する発泡性無機材、例えば硼砂、メタ硼酸ソーダの
1種または2種を充填したものである。
In the present invention, the granulated refractory material is a material in which the internal voids of inorganic porous particles are filled with one or two foaming inorganic materials such as borax and sodium metaborate, which release crystal water under high heat and gradually foam. It is something.

その添加量は、ポリウレタンフォーム原料100重量部
に対し30〜ioo重量部位である。
The amount added is 30 to 100 parts by weight per 100 parts by weight of the polyurethane foam raw material.

また、造粒耐火材は主にポリウレタンフォームを高熱か
ら無機質発泡層を形成することにより保護するものであ
る。
Furthermore, the granulated fireproof material mainly protects polyurethane foam from high heat by forming an inorganic foam layer.

なお、発泡性無機材を無機質多孔粒子に充填するには、
発泡性無機材を溶解(100℃)し、これに上記多孔粒
子を添加すると共に、攪拌し、それを取り出して外気に
曝して相互に結合しないように分離させたものである。
In addition, in order to fill inorganic porous particles with foamable inorganic material,
The foamable inorganic material is dissolved (100° C.), the porous particles are added thereto, stirred, taken out and exposed to the outside air to separate them so that they do not combine with each other.

次に実施例につき説明する。Next, an example will be explained.

実施例 1 配合比 ポリウレタン樹脂(硬質用) 100重量部耐火粒子(
粒径3m/m) 30重量部造粒耐火材
60重量部まず、ポリウレタン樹脂原料と
してはポリオール60にフレオン11.35〜38、整
泡剤(シリコン系)2、乳化剤、架橋剤を添加して総合
で100重量部としたポリオール成分に、ポリイソシア
ネート成分100重量部からなるものである。
Example 1 Blending ratio Polyurethane resin (for hard) 100 parts by weight Fireproof particles (
Particle size 3m/m) 30 parts by weight granulated refractory material
60 parts by weight First, as a polyurethane resin raw material, polyol component 60, Freon 11.35 to 38, foam stabilizer (silicon type) 2, emulsifier, and crosslinking agent were added to make a total of 100 parts by weight, and polyisocyanate was added to the polyol component. It consists of 100 parts by weight of ingredients.

また、耐火粒子はパーライト粒子に水を充填し、その表
面をポリイソシアネートでコーテングしたもの、さらに
造粒耐火材はパーライト粒子にメタ硼酸ソーダを充填し
たものである。
The refractory particles are made by filling pearlite particles with water and coating the surface with polyisocyanate, and the granulated refractory material is made by filling perlite particles with sodium metaborate.

そこで、ポリオールとポリイソシアネート成分とをワン
ショット法により混合し、次に耐火粒子と造粒耐火材と
をミキサーで混合した後、下型に吐出し、その上に上型
を載せ、10分間60°Cでキュアした。
Therefore, the polyol and the polyisocyanate component were mixed by a one-shot method, and then the refractory particles and the granulated refractory material were mixed in a mixer, and then discharged into a lower mold, and an upper mold was placed on top of it. Cure at °C.

そこで、型からこのポリウレタンフォームを取り出し、
900℃の直火炎に5分間さらしたところ、はとんど発
煙、着火もみられなかった。
So, we took out this polyurethane foam from the mold and
When exposed to a direct flame at 900°C for 5 minutes, no smoke or ignition was observed.

そこで板体の断面を観察してみたところ直火炎にさらさ
れたフオーム面のフオームが溶融し、この部分に存在し
た耐火粒子の水は殆んど流出し、周囲を冷却していた。
When we looked at the cross section of the plate, we found that the foam on the surface exposed to the direct flame had melted, and most of the water in the refractory particles that existed in this area had flowed out, cooling the surrounding area.

また、造粒耐火材はパーライト粒子からメタ硼酸ソーダ
が半分位流出し、パーライト粒子を核として無機質発泡
層を2〜3關の厚さで形成していた。
Further, in the granulated refractory material, about half of the sodium metaborate flowed out from the pearlite particles, and an inorganic foam layer with a thickness of 2 to 3 inches was formed using the pearlite particles as cores.

さらに、このポリウレタンフォームを加熱すると、これ
より深層に存在した耐火粒子から水が供給さへしかも無
機質発泡層がより膨張し、より厚い無機質発泡層を形成
した。
Furthermore, when this polyurethane foam was heated, water was supplied from the refractory particles existing in the deeper layer, and the inorganic foam layer expanded further, forming a thicker inorganic foam layer.

上述したように本発明に係る耐火、耐熱性ポリウレタン
フォームは、高熱に曝された際に水が初期消化を行ない
、さらに加熱が続くと造粒耐火材が結晶水を放出し、次
第に無機質発泡層を形成し、この発泡層に水がまた徐々
に補給されるため長時間の加熱に十分に耐える耐火性を
有する特徴がある。
As mentioned above, in the fire-resistant and heat-resistant polyurethane foam of the present invention, water performs initial digestion when exposed to high heat, and as heating continues, the granulated fire-resistant material releases crystal water, gradually forming an inorganic foam layer. Since water is gradually replenished into this foamed layer, it has fire resistance that can withstand long-term heating.

また、耐火粒子、造粒耐人材はポリウレタンフォームの
発泡組織を従前の添加物に比して荒すことが少なく、 均質発泡組織のフオームとするこ とができる特徴がある。
In addition, refractory particles and granulated resistant materials have the characteristic that they do not roughen the foam structure of polyurethane foam more than conventional additives, and can form a foam with a homogeneous foam structure.

Claims (1)

【特許請求の範囲】[Claims] 1 発泡性ポリウレタン樹脂基材に、無機質多孔粒子の
内部空隙に水を充填しその表面をポリイソシアネートで
コーテングした耐火粒子と無機質多孔粒の内部空隙に高
熱下で結晶水を放出すると共に、次第に発泡して無機質
発泡層を形成する発泡性無機材を充填した造粒耐火材と
を混入したことを特徴とする耐火、耐熱性ポリウレタン
フォーム0
1 In a foamable polyurethane resin base material, the internal voids of inorganic porous particles are filled with water, the surface of which is coated with polyisocyanate, and crystallization water is released into the internal voids of the fireproof particles and inorganic porous particles under high heat, and the foam is gradually foamed. A fire-resistant and heat-resistant polyurethane foam 0 characterized by being mixed with a granulated fireproof material filled with a foamable inorganic material to form an inorganic foam layer.
JP50044407A 1975-04-12 1975-04-12 Taikari Yuushi Oyobi Soreimochiitaika Taikari Taikari Expired JPS5845464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50044407A JPS5845464B2 (en) 1975-04-12 1975-04-12 Taikari Yuushi Oyobi Soreimochiitaika Taikari Taikari

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50044407A JPS5845464B2 (en) 1975-04-12 1975-04-12 Taikari Yuushi Oyobi Soreimochiitaika Taikari Taikari

Publications (2)

Publication Number Publication Date
JPS51120097A JPS51120097A (en) 1976-10-21
JPS5845464B2 true JPS5845464B2 (en) 1983-10-11

Family

ID=12690647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50044407A Expired JPS5845464B2 (en) 1975-04-12 1975-04-12 Taikari Yuushi Oyobi Soreimochiitaika Taikari Taikari

Country Status (1)

Country Link
JP (1) JPS5845464B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6730003B2 (en) * 2014-03-27 2020-07-29 積水化学工業株式会社 Flame-retardant urethane resin composition

Also Published As

Publication number Publication date
JPS51120097A (en) 1976-10-21

Similar Documents

Publication Publication Date Title
JPS604235B2 (en) fire retardant
JP3950980B2 (en) Method for producing foam
JP4795632B2 (en) Two-component foaming system and its use to form architectural foam
KR100602205B1 (en) Method for producing non-inflammable pre-expanded polystyrene beads that keeps its shape when it burnt containing expandable graphite
JPS5815577B2 (en) fire protection panel
US5250580A (en) Flame retardant polyurethane foams
JPS5845464B2 (en) Taikari Yuushi Oyobi Soreimochiitaika Taikari Taikari
US4172744A (en) Granulated fire-retardant materials and their applications
JPS603335B2 (en) fire retardant
RU2726212C1 (en) Composition for production of rigid foamed polyurethane with low flammability
JPS5930745B2 (en) Fillers for fire-resistant building materials and compositions for fire-resistant building materials
JPS61113629A (en) Foamable composition and foamed material produced therefrom
JPS585932B2 (en) Kairyosare Tapa Light Tounori Yushitai Oyobi Conopalite Tounori Yushitai Omochiitaika Tainetseigou Seijyushitai
JPS6123233B2 (en)
CN105419141B (en) A kind of manufacture method of the excellent insulation material of fire protecting performance
JP3477554B2 (en) Thermal expansion composition for fire protection and method for producing the same
JPS606413Y2 (en) Fire-resistant, heat-resistant synthetic resin foam
JP2572589B2 (en) Manufacturing method of inorganic foam
JPS59135233A (en) Flame retardant plastic material
JPS60372B2 (en) Method for manufacturing flame retardant foam
JPH0786167B2 (en) Inorganic foam
JPS6113531Y2 (en)
KR800000949B1 (en) Flame retardative resin foam
JPS5910905B2 (en) Fire-resistant and heat-resistant synthetic resin body
JPH0323507B2 (en)