JPS5845343A - Surface treating material for heat exchanger - Google Patents

Surface treating material for heat exchanger

Info

Publication number
JPS5845343A
JPS5845343A JP14368181A JP14368181A JPS5845343A JP S5845343 A JPS5845343 A JP S5845343A JP 14368181 A JP14368181 A JP 14368181A JP 14368181 A JP14368181 A JP 14368181A JP S5845343 A JPS5845343 A JP S5845343A
Authority
JP
Japan
Prior art keywords
heat exchanger
alloy
corrosion
gas
surface treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14368181A
Other languages
Japanese (ja)
Other versions
JPS61895B2 (en
Inventor
Hideaki Kawachi
河内 秀晃
Kunihiro Tsuruta
邦弘 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14368181A priority Critical patent/JPS5845343A/en
Publication of JPS5845343A publication Critical patent/JPS5845343A/en
Publication of JPS61895B2 publication Critical patent/JPS61895B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To obtain a surface treating material for a heat exchanger with superior corrosion resistance and high heat conductivity by preparing an Sn-Bi alloy contg. a specified amount of Bi. CONSTITUTION:The surface of a heat exchanger utilizing gaseous fuel such as town gas, liquefied gas or kerosene as a heat source is coated with an Sn-Bi alloy contg. 1-40wt% Bi. The Sn-Bi alloy as a surface treating material has heat conductivity about 2-4 times that of a Pb-Sn alloy, and the hot dipping temp. can be reduced by 50-100 deg.C.

Description

【発明の詳細な説明】 本発明は、都市ガス、液化ガス、灯油などの燃料ガスを
熱源として利用する熱交換器に耐食性を付与する表面処
理材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface treatment material that imparts corrosion resistance to a heat exchanger that uses fuel gas such as city gas, liquefied gas, and kerosene as a heat source.

都市ガス、プロパンガスおよび灯油などの燃料による燃
焼ガス中には多量の窒素、酸素、二酸化炭素、水蒸気と
微量の一酸化炭素、二酸化イオウ。
Combustion gas from fuels such as city gas, propane gas, and kerosene contains large amounts of nitrogen, oxygen, carbon dioxide, water vapor, and trace amounts of carbon monoxide and sulfur dioxide.

−酸化窒素、二酸化窒素などが含まれている。熱交換面
の腐食現象は、急激な熱交換によるために、伝熱面上で
燃焼ガス中の成分が溶解することに起因する。燃焼ガス
バーナー消火後、伝熱面に発生した結露水が蒸発するた
め、その結果伝熱面上の結露水に溶解したカス成分であ
る金属の炭酸塩、硝酸塩、硫酸塩などの腐食生成物が析
出する。このサイクルの繰り返しによって熱交換器表面
の腐食は進行する。
-Contains nitrogen oxide, nitrogen dioxide, etc. The corrosion phenomenon of the heat exchange surface is caused by components in the combustion gas being dissolved on the heat transfer surface due to rapid heat exchange. After the combustion gas burner is extinguished, the condensed water generated on the heat transfer surface evaporates, resulting in corrosion products such as metal carbonates, nitrates, and sulfates, which are scum components dissolved in the condensed water on the heat transfer surface. Precipitate. Corrosion on the heat exchanger surface progresses by repeating this cycle.

従来、燃焼ガス雰囲気中で使用される熱交換器の防錆を
目的とす7る表面処理材としては、Snn含量1置量 メッキにより熱交換器の表面に被咎するのが一般的であ
った。しかし、Pb−8n系合金より成る表面処理材は
、燃焼ガス中で使用していくに従い、前述の如く結露水
中へのガス成分の溶解、腐食生成物の析出の繰り返しサ
イクルによって白色の腐食生成物が生成する。このよう
にして腐食が徐々に進行し、熱交換器の表面処理材およ
び熱交換器素材生地や熱交換器に巻回したパイプなどに
穴があき、使用不能になったり、あるいは熱交換フィン
上への腐食生成物の堆積により熱交換フィンが目詰し不
完全燃焼を起こすなどの問題があった。
Conventionally, as a surface treatment material for the purpose of rust prevention of heat exchangers used in a combustion gas atmosphere, it is common to coat the surface of the heat exchanger with Snn content 1 positional plating. Ta. However, as the surface treatment material made of Pb-8n alloy is used in combustion gas, white corrosion products are formed due to repeated cycles of dissolving gas components in condensed water and precipitation of corrosion products as described above. is generated. In this way, corrosion gradually progresses, causing holes in the heat exchanger's surface treatment material, heat exchanger material fabric, and pipes wrapped around the heat exchanger, making them unusable, or causing holes in the heat exchanger surface treatment material, heat exchanger material fabric, and pipes wrapped around the heat exchanger, or making them unusable. There were problems such as the heat exchange fins becoming clogged due to the accumulation of corrosion products on the engine and causing incomplete combustion.

本発明は、上記のような欠点をなくし、都市ガス、液化
ガス燃料および灯油などの燃焼ガスに対する耐食性の優
れた表面処理材を提供するものである。
The present invention eliminates the above-mentioned drawbacks and provides a surface-treated material with excellent corrosion resistance against combustion gases such as city gas, liquefied gas fuel, and kerosene.

すなわち、本発明の処理材は、1〜40重i4 %のB
iを含む5n−Bi金合金りなることを特徴とする。
That is, the treated material of the present invention contains 1 to 40% B by weight i4%.
It is characterized by being made of a 5n-Bi gold alloy containing i.

以下、本発明をその実施例により説明する。Hereinafter, the present invention will be explained with reference to examples thereof.

先ず、溶融したSnに種々の割合でBiを添加して母合
金を作製し、これらの母合金を銅板へ溶融メッキしてテ
ストピースを作製した。
First, a mother alloy was prepared by adding Bi in various proportions to molten Sn, and a test piece was prepared by hot-dip plating these mother alloys onto a copper plate.

こJlらのテストピースについて、以下のようにQて腐
食試験を行なった。腐食性ガスとしては、CO25% 
、NO210ppm  および5o20.lppmを含
む空気を用いた。このガス組成は、ガス瞬間湯沸器なと
に用いられる都市ガスの燃焼ガスの分析結果にもとづい
て設定した。また、前述の如く熱交換器の4腐食は、燃
焼ガス中の水蒸気の結露、乾燥サイクルが加わるために
発生するもので、この状態を近似的に再現するために、
腐食試験は前記のガス雰囲気下において、60℃で1時
間結露させた後、25℃において乾燥を3時間行なうと
いうステノブを1サイクルとし、こねらのサイクルを繰
り返すことにより行なった。
Corrosion tests were conducted on the test pieces of Jl et al. as follows. As a corrosive gas, CO25%
, NO210ppm and 5o20. Air containing lppm was used. This gas composition was set based on the analysis results of city gas combustion gas used in gas instantaneous water heaters. In addition, as mentioned above, 4 corrosion of the heat exchanger occurs due to the condensation of water vapor in the combustion gas and the addition of a drying cycle.In order to approximately reproduce this condition,
The corrosion test was carried out in the above-mentioned gas atmosphere by condensing at 60° C. for 1 hour and then drying at 25° C. for 3 hours, one cycle of the steno knob, and repeating the kneading cycle.

件で36時間試験後の腐食量との関係を示す。なお、腐
食量は、腐食による増量で表している。
The relationship between the amount of corrosion and the amount of corrosion after a 36-hour test is shown below. Note that the amount of corrosion is expressed as an increase in amount due to corrosion.

第1図から、通常不純物として含まれている量以上のB
iを含むもの、すなわちBi含量1.0重量以上の5n
−Bi金合金、Bi含量が増すと耐食性が向上すること
がわかる。
From Figure 1, it can be seen that B exceeds the amount normally contained as an impurity.
those containing i, that is, 5n with a Bi content of 1.0 weight or more
-Bi gold alloy, it can be seen that as the Bi content increases, the corrosion resistance improves.

第2図は、6重量%のBi と残部Snよりなる合金A
と、従来の表面処理材であるS−n含量1重量%のPb
−8n合金B[ついて、前記と同様にして試験した場合
の腐食量を比較、したものである。
Figure 2 shows alloy A consisting of 6% by weight Bi and the balance Sn.
and Pb with a S-n content of 1% by weight, which is a conventional surface treatment material.
-8n alloy B [This figure shows a comparison of the amount of corrosion when tested in the same manner as above.

第2図から、本発明の合金Aは従来品Bに比べて著しく
耐食性が優れていることがわかる。
From FIG. 2, it can be seen that alloy A of the present invention has significantly better corrosion resistance than conventional product B.

次に、6重量%のBiと残部Snよりなる5n−Bi 
 合金Aと、従来のPb−8n系合金Bとをそれぞれ銅
素地の熱交換器に溶融した後、この熱交換器をガス瞬間
湯沸器に組み込んで通常の使用状態で動作させた。その
結果を第3図に示す。第3く耐食性を有していることが
わかる。
Next, 5n-Bi consisting of 6% by weight of Bi and the balance Sn
After alloy A and conventional Pb-8n alloy B were each melted into a copper base heat exchanger, this heat exchanger was installed in a gas instantaneous water heater and operated under normal usage conditions. The results are shown in FIG. Thirdly, it can be seen that it has corrosion resistance.

また、第4図は5n−Bi二元系合金中におけるB1含
楚と融点の関係を示す。図から、Biの金星を増加する
と融点が下降することがわかる1、一般に、熱交換器の
素地として銅を用いるが、銅表面II(表面処理材を溶
融メッキした場合、表面処理材は耐熱性のあることが要
求されるが、通常熱交換器表面温度は160℃前後であ
り、安全性を考慮する融点175℃以上の表面処理材を
用いることが望ましい。この点を考慮、すれば、第4図
から、合金のBi含量は4n重量以下にする必要がある
Moreover, FIG. 4 shows the relationship between B1 content and melting point in a 5n-Bi binary alloy. From the figure, it can be seen that as the Venus of Bi increases, the melting point decreases. 1. Generally, copper is used as the base material for heat exchangers, but copper surface II (when the surface treatment material is hot-dipped, the surface treatment material is However, the surface temperature of the heat exchanger is usually around 160°C, and it is desirable to use a surface treatment material with a melting point of 175°C or higher considering safety. From Figure 4, the Bi content of the alloy needs to be 4n weight or less.

このようなことから、1〜40%重量のBi と残部S
nよりなる材料が熱交換器用の表面処理材として適して
いる。
From this, 1 to 40% of the weight of Bi and the balance of S
A material consisting of n is suitable as a surface treatment material for a heat exchanger.

熱交換器用表面処理材の具備すべき条件として耐食性が
良いこと、熱伝導率が良いこと、融点が適当なもので溶
融ディップ温度があまり高くないことなどが9求さJす
る。
Conditions that a surface treatment material for a heat exchanger should have include good corrosion resistance, good thermal conductivity, a suitable melting point, and a not too high melting dip temperature.

本発明の表面処理材の熱伝導率と従来の表面処理材の熱
伝導率を比較すると、本発明品は従来品より2〜4倍程
度大きい。
Comparing the thermal conductivity of the surface-treated material of the present invention with that of conventional surface-treated materials, the product of the present invention is about 2 to 4 times higher than the conventional product.

また、本発明の表面処理材の作業温度と従来の表面処理
材の作業温度を比較すると、本発明品は従来品に比べて
50〜100℃低い温度で溶融デ以上述べたように、本
発明の表面処理材は、従来の表面処理材に比べ、耐食性
に優れるとともに熱伝導率が大きく、熱交換器用表面処
理材としてすぐれた特徴を持つものである。
Furthermore, when the working temperature of the surface-treated material of the present invention is compared with that of the conventional surface-treated material, the product of the present invention melts at a temperature 50 to 100°C lower than that of the conventional product. This surface-treated material has superior corrosion resistance and higher thermal conductivity than conventional surface-treated materials, making it an excellent surface-treated material for heat exchangers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は5n−Bi金合金Bi含量と腐食量との関係を
示す図、第2図および第3図は本発明の表面処理材と従
来品の腐食量を比較した図、第4図は5n−Bi金合金
Bi含量と融点の関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 B4合量(重量t/l、) 第2図 試馬令サイクル(1サイクル4Hr) 0  211)  #  6θ θρ 100  /2
θ 14ρ 16ρイ丈列帽冨57@  (#と) 第4図 β44t(豐量り
Figure 1 is a diagram showing the relationship between the Bi content of the 5n-Bi gold alloy and the amount of corrosion, Figures 2 and 3 are diagrams comparing the amount of corrosion between the surface treated material of the present invention and the conventional product, and Figure 4 is 5 is a diagram showing the relationship between Bi content and melting point of a 5n-Bi gold alloy. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure B4 Total weight (weight t/l,) Figure 2 Trial cycle (1 cycle 4 hours) 0 211) # 6θ θρ 100 /2
θ 14ρ 16ρI length cap depth 57 @ (# and) Fig. 4 β44t (Fushimi weight)

Claims (1)

【特許請求の範囲】[Claims] ゛1〜40重奈多のBiを含む5n−Bi金合金らなる
熱交換器用表面処理材。
゛A surface treatment material for a heat exchanger made of a 5n-Bi gold alloy containing 1 to 40 layers of Bi.
JP14368181A 1981-09-10 1981-09-10 Surface treating material for heat exchanger Granted JPS5845343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14368181A JPS5845343A (en) 1981-09-10 1981-09-10 Surface treating material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14368181A JPS5845343A (en) 1981-09-10 1981-09-10 Surface treating material for heat exchanger

Publications (2)

Publication Number Publication Date
JPS5845343A true JPS5845343A (en) 1983-03-16
JPS61895B2 JPS61895B2 (en) 1986-01-11

Family

ID=15344465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14368181A Granted JPS5845343A (en) 1981-09-10 1981-09-10 Surface treating material for heat exchanger

Country Status (1)

Country Link
JP (1) JPS5845343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225512U (en) * 1985-04-15 1987-02-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225512U (en) * 1985-04-15 1987-02-17
JPH0446896Y2 (en) * 1985-04-15 1992-11-05

Also Published As

Publication number Publication date
JPS61895B2 (en) 1986-01-11

Similar Documents

Publication Publication Date Title
KR900003397A (en) Hot-dip aluminum coated chrome alloy steel
JP3584636B2 (en) Sulfuric acid / hydrochloric acid dew-point corrosion resistant steel with excellent hot workability
JP3285893B2 (en) Method of coating aluminum on steel strip by high temperature quenching method
JP2000017382A (en) Steel excellent in sulfuric acid corrosion resistance
JPH0925536A (en) Acid dew point corrosion resistant steel
JPS5845343A (en) Surface treating material for heat exchanger
JPS5864498A (en) Surface treating material for use in manufacturing heat exchanger
EP0048083B1 (en) Surface treatment method of heat-resistant alloy
JPS5922777B2 (en) Surface treatment material for heat exchangers
JPS6050858B2 (en) Surface treatment material for heat exchangers
JPS5816045A (en) Surface treating material for heat exchanger
JPS58177459A (en) Cementation method of nickel-chromium alloy
JPS6037198B2 (en) Heat exchanger for water heater
JPH0555595B2 (en)
JPS60164167A (en) Heat exchanger
SE502043C2 (en) Aluminum coated steel sheet with excellent resistance to corrosion through exhaust gases
JPH0460393A (en) Heat transfer tube for lng vaporizer
KR910000407B1 (en) Aluminum coated steel sheet having excellent resistance to corrosion by exhaust gas
JPS6328983B2 (en)
JP3760534B2 (en) Usage of austenitic stainless steel components in sulfuric acid dew point environment
JPS5582773A (en) Heat resistant alloy coating method to provide corrosion resistance
KR100226896B1 (en) Spray coating material for acid resistance
JPS5880500A (en) Surface treating material for heat exchanger
JPS56108865A (en) Surface treating material for heat exchanger
JPS59229200A (en) Heat exchanger