JPS5844850B2 - Internal combustion engine air-fuel ratio adjustment device - Google Patents
Internal combustion engine air-fuel ratio adjustment deviceInfo
- Publication number
- JPS5844850B2 JPS5844850B2 JP5137076A JP5137076A JPS5844850B2 JP S5844850 B2 JPS5844850 B2 JP S5844850B2 JP 5137076 A JP5137076 A JP 5137076A JP 5137076 A JP5137076 A JP 5137076A JP S5844850 B2 JPS5844850 B2 JP S5844850B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- internal combustion
- combustion engine
- sensing port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Control Of The Air-Fuel Ratio Of Carburetors (AREA)
Description
【発明の詳細な説明】 本発明は内燃機関の気化器のパワシステムに関する。[Detailed description of the invention] The present invention relates to a power system for a carburetor of an internal combustion engine.
内燃機関の排気ガス浄化対策システムにおいては、その
効果を高めるために内燃機関への供給空燃比を、排気管
に装備された空燃比検出器の感知信号をフィードバック
して理論空燃比に近づける必要がある。In order to increase the effectiveness of an exhaust gas purification system for an internal combustion engine, it is necessary to bring the air-fuel ratio supplied to the internal combustion engine closer to the stoichiometric air-fuel ratio by feeding back the sensing signal from the air-fuel ratio detector installed in the exhaust pipe. be.
このために従来は、気化器への供給空燃比を理論空燃比
よりも若干濃く(たとえばA/F=12〜14)設定し
、これに対する稀釈空気量を空燃比検出器の感知信号に
よりフィードバック制御していた。For this purpose, conventionally, the air-fuel ratio supplied to the carburetor is set slightly richer than the stoichiometric air-fuel ratio (for example, A/F = 12 to 14), and the amount of diluted air for this is feedback-controlled by the sensing signal of the air-fuel ratio detector. Was.
しかしながらこの場合、冷間始動後のある期間は、排気
温度が低いため空燃比検出器が充分に機能せず稀釈空気
量をフィードバック匍砒することができなかった。However, in this case, for a certain period after the cold start, the air-fuel ratio detector did not function sufficiently due to the low exhaust temperature, making it impossible to feedback the dilution air amount.
またこの場合、使用する触媒は活性温度に達せず、この
期間では酸化窒素NOxの発生も少量であることと併せ
考え、供給空燃比を理論空燃比よりも若干薄く(例えば
A/F=15〜17)設定する必要があった。In addition, in this case, considering that the catalyst used does not reach its activation temperature and that a small amount of nitrogen oxide NOx is generated during this period, the supplied air-fuel ratio is slightly leaner than the stoichiometric air-fuel ratio (for example, A/F = 15 ~ 17) It was necessary to set.
このためには機関の冷却水のある温度(例えば40℃)
で空燃比特性を切換えなければならなかった。For this purpose, a certain temperature of the engine cooling water (e.g. 40°C) is required.
The air-fuel ratio characteristics had to be changed.
一方、暖機後の空燃比制御をさらに精密に行なうために
は供給空燃比は理論的空燃比に近い濃い側にあることが
好ましい。On the other hand, in order to perform more precise air-fuel ratio control after warm-up, it is preferable that the supplied air-fuel ratio be on the rich side close to the stoichiometric air-fuel ratio.
特に低空気量域においては排気ガスの流速が遅いことな
どから供給空燃比の「荒れ」が甚しくなり易く、上記の
ように設定することがフィードバック制御上有利である
。Particularly in a low air amount region, the supply air-fuel ratio tends to become extremely "rough" due to the slow flow rate of exhaust gas, so setting as described above is advantageous in terms of feedback control.
この従来の装置におけるセンシングポートは常にスロッ
トルバルブの下流側となる位置に設けられ、水温40°
以下では気化器のパワピストンとセンシングポートが導
通し、第2図の破線で示すような稀薄な空燃比となり、
40°以上ではパワピストンが大気に開放されて同図の
実線のような濃い空燃比となる。The sensing port in this conventional device is always located downstream of the throttle valve, and the water temperature is 40°.
Below, the power piston of the carburetor and the sensing port are electrically connected, resulting in a lean air-fuel ratio as shown by the broken line in Figure 2.
At 40 degrees or more, the power piston is exposed to the atmosphere, resulting in a rich air-fuel ratio as shown by the solid line in the figure.
この状態で理論空燃比より濃く設定するとき、図から判
るように一100miHg前後が最も薄い空燃比である
からこれに合わせると軽負荷領域ではかなり濃くなる(
例えばA/F=12〜13)。When setting the air-fuel ratio to be richer than the stoichiometric air-fuel ratio in this state, as you can see from the figure, the air-fuel ratio is the leanest around -100 miHg, so if you adjust to this, the air-fuel ratio will become quite rich in the light load range (
For example, A/F=12-13).
本発明は上記の問題点に鑑み提案されたもので、機関運
転の異質な領域においても所期の理論空燃比に近い混合
気を供給することによって機関の正常な作動を確保する
とともに排気ガス対策に効果あらしめる内燃機関空燃比
調整装置を提供することを目的とする。The present invention was proposed in view of the above-mentioned problems, and provides a mixture close to the desired stoichiometric air-fuel ratio even in different regions of engine operation, thereby ensuring normal operation of the engine and taking measures against exhaust gas. An object of the present invention is to provide an air-fuel ratio adjustment device for an internal combustion engine that is effective.
本発明の内燃機関空燃比調整装置は、軽負荷時にはスロ
ットルバルブの下流側に、さらにスロットルバルブが開
いたときにはスロットルバルブの上流側になるような位
置に配置された第1のセンシングポートと、常にスロッ
トルバルブの下流側となる位置に配置された第2のセン
シングポートと、第1、第2のセンシングポートをそれ
ぞれ気化器のパワピストンに連結する管路中に配置され
て、内燃機関の冷却水の温度が設定温度以下の場合には
第2のセンシングポートを、設定温度以上の場合には第
1のセンシングポートをパワピストンの作動部に選択的
に導通させる切換三方弁とからなる。The internal combustion engine air-fuel ratio adjustment device of the present invention includes a first sensing port that is located downstream of the throttle valve when the load is light and further upstream of the throttle valve when the throttle valve is open; A second sensing port is located downstream of the throttle valve, and a second sensing port is located in a pipe connecting each of the first and second sensing ports to the power piston of the carburetor. It consists of a switching three-way valve that selectively connects the second sensing port to the actuating part of the power piston when the temperature is below the set temperature, and the first sensing port when the temperature is above the set temperature.
以下、図面を参照しながら本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は本発明の一実施例の内燃機関空燃比調整装置を
備えた気化器の断面図、第3図は本発明の空燃比調整装
置を備えた気化器における吸気管負圧と空燃比の関係を
示す図である。FIG. 1 is a sectional view of a carburetor equipped with an internal combustion engine air-fuel ratio adjustment device according to an embodiment of the present invention, and FIG. 3 is a graph showing intake pipe negative pressure and air-fuel ratio in a carburetor equipped with an air-fuel ratio adjustment device of the present invention. FIG.
本発明の空燃比調整装置は、パワピストン1、第1のば
ね2、ストッパ3、第2のばね4、パワバルブ5、パワ
ジェット6からなる従来の気化器ヘノ吸気管の、軽負荷
にはスロットルバルブ10の下流側に、さらにスロット
ルバルブ10が開いたときにはスロットルバルブ10の
上流側になるような位置に配置された第1のセンシング
ポート7と、常にスロットルバルブ10の下流側となる
ような位置に配置された第2のセンシングポート8と、
これら両センシングポート7.8をそれぞれ気化器のパ
ワピストン10作動部に連結する管路中に配置されて、
内燃機関の冷却水の所定の温度(本実施例では40℃と
する)に応答して切換り、冷却水が40℃以下の場合に
は第2のセンシングポート8を、40℃以上の場合には
第1のセンシング7を気化器のパワピストン10作動部
に導通させる感温性の切換三方弁9とからなる。The air-fuel ratio adjusting device of the present invention uses a throttle valve for light load of a conventional carburetor intake pipe consisting of a power piston 1, a first spring 2, a stopper 3, a second spring 4, a power valve 5, and a power jet 6. A first sensing port 7 is located on the downstream side of the throttle valve 10, and a first sensing port 7 is located on the upstream side of the throttle valve 10 when the throttle valve 10 is opened, and a first sensing port 7 is located on the downstream side of the throttle valve 10 at all times. a second sensing port 8 arranged;
These sensing ports 7.8 are arranged in a conduit connecting each of them to the actuating part of the power piston 10 of the carburetor,
The switch is made in response to a predetermined temperature of the cooling water of the internal combustion engine (40°C in this embodiment), and the second sensing port 8 is switched when the cooling water is below 40°C, and when it is above 40°C. consists of a temperature-sensitive three-way switching valve 9 that connects the first sensing 7 to the actuating part of the power piston 10 of the carburetor.
次に、車装?作動について説明する。Next, vehicle equipment? The operation will be explained.
パワピストン1に吸気管負圧が作用すると、負圧が第1
のばね2の力に打勝ってパワピストン1が上昇し、パワ
バルブ5は第2のばね4により押上げられパワジェット
6からの燃料は遮断される。When the intake pipe negative pressure acts on the power piston 1, the negative pressure
The power piston 1 rises by overcoming the force of the spring 2, the power valve 5 is pushed up by the second spring 4, and the fuel from the power jet 6 is cut off.
これとは逆に、負圧が下った場合はパワジェット6から
燃料が流出する。On the contrary, if the negative pressure drops, fuel flows out from the power jet 6.
内燃機関の冷却水の温度が40℃以下の、冷間始動後の
ある時間では第2のセンシングポート8がパワピストン
1と導通スるので、吸気管負圧に対する空燃比特性は従
来(第2図)と同じである。During a certain period of time after a cold start when the temperature of the cooling water of the internal combustion engine is below 40°C, the second sensing port 8 is in communication with the power piston 1, so the air-fuel ratio characteristics with respect to the negative pressure in the intake pipe are similar to those of the conventional one (Fig. 2). ) is the same as
冷却水の温度が40℃以上の場合には第1のセンシング
ポート7がパワピストン1と導通する。When the temperature of the cooling water is 40° C. or higher, the first sensing port 7 is electrically connected to the power piston 1.
そして、内燃機関の軽負荷領域(本実施例では約−32
0mmHg以下)ではスロットルバルブ10の開度は小
さく(図実線)、第1のセンシングポート7はスロット
ルバルブ10に対して吸気管の下流側に位置するので第
3図の実線で示すような空燃比特性となり、従来(第2
図)よりも空燃比は薄くなる。The light load range of the internal combustion engine (approximately -32
0 mmHg or less), the opening degree of the throttle valve 10 is small (solid line in the diagram), and the first sensing port 7 is located downstream of the intake pipe with respect to the throttle valve 10, so the air-fuel ratio is as shown by the solid line in Figure 3. characteristics, and the conventional (second
The air-fuel ratio will be leaner than in Figure).
さらに、スロットルバルブ10が開いて(2点鎖線)第
1のセンシングポート7がスロットルパル7’10の上
流側に位置すると、吸気管の負圧作用が停止してパワピ
ストン1が下降し、パワジェット6が開いて空燃比が従
来と同じように濃くなる。Furthermore, when the throttle valve 10 opens (two-dot chain line) and the first sensing port 7 is located upstream of the throttle pulse 7'10, the negative pressure action of the intake pipe stops, the power piston 1 descends, and the power jet 6 is opened and the air-fuel ratio becomes rich as before.
本発明の実施例による実験結果から切換三方弁9の切換
動作する冷却水の温度は約40℃が好ましく、この温度
以上のときの空燃比のバナツキは従来装置の2〜2.5
に比し1〜1.5以下に制限することができ、フィード
バック制御の精度は大巾に向上した。According to the experimental results according to the embodiment of the present invention, the temperature of the cooling water at which the switching operation of the three-way switching valve 9 is performed is preferably about 40°C, and when the temperature exceeds this temperature, the air-fuel ratio varies from 2 to 2.5 compared to the conventional device.
can be limited to 1 to 1.5 or less, and the accuracy of feedback control has been greatly improved.
以上のように、本発明による内燃機関空燃比調整装置は
機関の低負荷から高負荷まで広範囲の作動領域にわたり
、供給混合気を理論空燃比に近く維持せしめて正常な運
転を確保し、併せて排気ガス対策に著しい効果を示すこ
とができる。As described above, the internal combustion engine air-fuel ratio adjusting device according to the present invention maintains the supplied air-fuel mixture close to the stoichiometric air-fuel ratio over a wide range of operating ranges from low engine loads to high engine loads, thereby ensuring normal operation. It can show remarkable effects on exhaust gas control.
第1図は本発明の一実施例の内燃機関空燃比調整装置を
備えた気化器の断面図、第2図は従来、第3図は本発明
の実施例の空燃比調整装置を備えた内燃機関の吸気管負
圧と空燃比の関係を示す図である。
1・・・・・・パワピストン、2・・・・・・第1のば
ね、3・・・・・・ストツバ、4・・・・・・第2のば
ね、5・・・・・・パワバルブ、6・・・・・・パワジ
ェット、7・・・・・・第1のセンシングポート、8・
・・・・・第2のセンシングポート、9・・・・・・切
換三方弁、10・・・・・・スロットルバルブ。FIG. 1 is a cross-sectional view of a carburetor equipped with an internal combustion engine air-fuel ratio adjustment device according to an embodiment of the present invention, FIG. 2 is a sectional view of a conventional carburetor, and FIG. FIG. 3 is a diagram showing the relationship between the intake pipe negative pressure of the engine and the air-fuel ratio. 1...Power piston, 2...First spring, 3...Stock spring, 4...Second spring, 5...Power valve , 6... power jet, 7... first sensing port, 8...
...Second sensing port, 9... Three-way switching valve, 10... Throttle valve.
Claims (1)
時にはスロットルバルブの下流側に、さらにスロットル
バルブカ開いたときにはスロットルバルブの上流側にな
るような位置に配置された第1のセンシングポートと、
常ニスロットルバルブの下流側となる位置に配置された
第2のセンシングポートと、前記第1、第2のセンシン
グポートをそれぞれ気化器のパワピストンに連結する管
路中に配置されて、内燃機関の冷却水の温度が所定温度
以下の場合には前記第2のセンシングポートを、前記所
定温度以上の場合には前記第1のセンシングポートを前
記パワピストンの作動部に選択的に導通させる切換三方
弁とからなることを特徴とする内燃機関空燃比調整装置
。1. In a power system of a carburetor of an internal combustion engine, a first sensing port disposed at a position downstream of a throttle valve when the load is light and further upstream of the throttle valve when the throttle valve is opened;
A second sensing port is located downstream of the throttle valve, and a second sensing port is located in a conduit that connects the first and second sensing ports to the power piston of the carburetor. a three-way switching valve that selectively connects the second sensing port to the operating portion of the power piston when the temperature of the cooling water is below a predetermined temperature, and the first sensing port when the temperature is above the predetermined temperature; An internal combustion engine air-fuel ratio adjustment device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5137076A JPS5844850B2 (en) | 1976-05-07 | 1976-05-07 | Internal combustion engine air-fuel ratio adjustment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5137076A JPS5844850B2 (en) | 1976-05-07 | 1976-05-07 | Internal combustion engine air-fuel ratio adjustment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52134936A JPS52134936A (en) | 1977-11-11 |
JPS5844850B2 true JPS5844850B2 (en) | 1983-10-05 |
Family
ID=12885045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5137076A Expired JPS5844850B2 (en) | 1976-05-07 | 1976-05-07 | Internal combustion engine air-fuel ratio adjustment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5844850B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08133431A (en) * | 1994-11-11 | 1996-05-28 | M & K:Kk | Lever type automatic object lifting device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55112842A (en) * | 1979-02-24 | 1980-09-01 | Fuji Heavy Ind Ltd | Exhaust gas purifier of internal combustion engine |
-
1976
- 1976-05-07 JP JP5137076A patent/JPS5844850B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08133431A (en) * | 1994-11-11 | 1996-05-28 | M & K:Kk | Lever type automatic object lifting device |
Also Published As
Publication number | Publication date |
---|---|
JPS52134936A (en) | 1977-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5821097B2 (en) | Ninen Kikanno Idol Antei Souchi | |
JPS61182429A (en) | Exhaust system of internal combustion engine | |
JPS6120285Y2 (en) | ||
US4437311A (en) | Apparatus for controlling the flow of exhaust gas in an internal combustion engine with a turbocharger and a catalytic converter | |
US3978831A (en) | Control device for a vacuum advancer | |
US4163434A (en) | Air-fuel ratio regulator for internal combustion engine | |
JPS5844850B2 (en) | Internal combustion engine air-fuel ratio adjustment device | |
JPS6256346B2 (en) | ||
JPS624532B2 (en) | ||
JPS6318765Y2 (en) | ||
US3975904A (en) | Controlled exhaust gas recirculation | |
JPS6012945Y2 (en) | Ignition timing control device | |
JPS6221752Y2 (en) | ||
JPS6133260Y2 (en) | ||
JPH04330320A (en) | Air suction system | |
JPS5810579B2 (en) | Koudohoshiyousouchi | |
JPH0346185Y2 (en) | ||
JPS628351Y2 (en) | ||
JPS6354893B2 (en) | ||
JPS5464218A (en) | Secondary air controller for internal combustion engine | |
JPS6120284Y2 (en) | ||
JPH0631137Y2 (en) | Secondary air control device | |
JPS63192946A (en) | Exhaust gas recirculation apparatus in internal combustion engine | |
JPS6321720Y2 (en) | ||
JPS623310B2 (en) |