JPS584445B2 - Hentatsuki - Google Patents

Hentatsuki

Info

Publication number
JPS584445B2
JPS584445B2 JP7534875A JP7534875A JPS584445B2 JP S584445 B2 JPS584445 B2 JP S584445B2 JP 7534875 A JP7534875 A JP 7534875A JP 7534875 A JP7534875 A JP 7534875A JP S584445 B2 JPS584445 B2 JP S584445B2
Authority
JP
Japan
Prior art keywords
winding
tap
transformer
voltage
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7534875A
Other languages
Japanese (ja)
Other versions
JPS51150628A (en
Inventor
寺西常冶
小島剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7534875A priority Critical patent/JPS584445B2/en
Publication of JPS51150628A publication Critical patent/JPS51150628A/en
Publication of JPS584445B2 publication Critical patent/JPS584445B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は負荷時タップ切換器を備えかつ直列巻線、分
路巻線および3次巻線の3巻線を備えた変圧器の改良こ
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a transformer with an on-load tap changer and having three windings: a series winding, a shunt winding and a tertiary winding.

従来負荷時タップ切換器付の3巻線変圧器においてはタ
ップ巻線は1つの巻線このみ接続され第2または第3の
巻線の電圧も調整しなければならないということは少な
かった。
Conventionally, in a three-winding transformer with an on-load tap changer, the tap winding is connected to only one winding, and it is rare that the voltage of the second or third winding must also be adjusted.

ところが最近500KVの単相単巻変圧器においては、
本体を組立てたままで輸送しうる容量を増すなどの目的
でタップ巻線を中性点側に設ける例が多い。
However, recently in 500KV single-phase autotransformers,
In many cases, a tap winding is provided on the neutral point side for the purpose of increasing the transport capacity of the main body while it is assembled.

第1図はその一例を示す結線図であり、Uは高圧線路端
子、Uは中圧線路端子で単巻変圧器の巻線の途中から引
出されている。
FIG. 1 is a wiring diagram showing an example of this, where U is a high-voltage line terminal and U is a medium-voltage line terminal, which are drawn out from the middle of the winding of an autotransformer.

巻線1の部分は直列巻線、巻線2の部分は分路巻線であ
る。
The portion of winding 1 is a series winding, and the portion of winding 2 is a shunt winding.

巻線3の部分は3次巻線であって端子a,bは外部で三
角結線される。
The winding 3 is a tertiary winding, and terminals a and b are triangularly connected externally.

4が分路巻線の中硅点側つまり他の2台の単相変圧器と
三和星形接峠されるとき中性点側端子となるV端子側に
設けられたタップ巻線で、例えば中圧線路端電圧を一定
こ保ち高圧線路端電圧を調整する。
4 is a tap winding installed on the middle point side of the shunt winding, that is, on the V terminal side which becomes the neutral point side terminal when connected to two other single-phase transformers in a three-way star shape. For example, the medium voltage line end voltage is kept constant and the high voltage line end voltage is adjusted.

5はタップ巻線4の励磁巻線である。このようなものに
おいて変圧器容量が大きくなると直列巻線1、分路巻線
2、ヨ次巻線3からなる主巻線部分は2〜3個の鉄心脚
に並列に巻き、タップ巻線4は主巻線部分の並列回路数
こ対応させて他脚または別鉄心に2〜3個の並列回路で
巻きそれぞれ主巻線こ対応接続することが多い。
5 is an excitation winding of the tap winding 4. In such a transformer, when the capacity of the transformer increases, the main winding section consisting of the series winding 1, shunt winding 2, and horizontal winding 3 is wound in parallel around two or three iron core legs, and the tap winding 4 is wound in parallel around two or three iron core legs. In most cases, two to three parallel circuits are connected to the other leg or a separate iron core in correspondence with the number of parallel circuits in the main winding.

これはそのようこすれば各並列回路のインピーダンスは
主巻線部分のインピーダンスとタップ巻線部分のインピ
ーダンスの和となり、タップ切換器のしゃ断時間ずれこ
よるタップ切換器部分も含めたタップ巻線4部分の各並
列回路の抵抗アンバランスも主巻線部分のインピーダン
スが大きいため、全体のインピーダンスとしてはアンバ
ランスも生じることなく電流は均等こ分流され、タップ
切換器のしゃ断電流も1/2〜1/3とできるので、小
形のタップ切換器を利用できる。
This means that if you do this, the impedance of each parallel circuit will be the sum of the impedance of the main winding section and the impedance of the tap winding section, and the 4 sections of the tap winding, including the tap changer section, will cause the cut-off time of the tap changer to vary. Since the impedance of the main winding part is large, the current is divided equally without causing any unbalance in the overall impedance, and the cut-off current of the tap changer is also reduced by 1/2 to 1/2. 3, so a small tap changer can be used.

第2図は主巻線を3回路並列6こ接続し、この各主回路
にタップ巻線を接続した場合の結線図である。
FIG. 2 is a wiring diagram in which six main windings are connected in three circuits in parallel, and a tap winding is connected to each main circuit.

図中11〜13は直列巻線、21〜23は分路巻線、3
1〜33は3次巻線、41〜43はタップ巻線である。
In the figure, 11 to 13 are series windings, 21 to 23 are shunt windings, and 3
1 to 33 are tertiary windings, and 41 to 43 are tap windings.

このようにタップ巻線41〜43を中性点側こ設ける中
性点タップ切換方式の単巻変圧器の場合、タップ切換を
行なうことにより巻線の一巻回あたりの誘起電圧が変化
し、三次巻線31〜33の電圧も変動する。
In this way, in the case of an autotransformer with a neutral point tap switching system in which the tap windings 41 to 43 are provided on the neutral point side, the induced voltage per turn of the winding changes by changing the taps. The voltage of the tertiary windings 31 to 33 also fluctuates.

これは中犀線路端の電圧を一定こ保ち、高圧線路端の電
圧を可変する場合を考えれば、直列巻線に誘起する電圧
が変化することから明らかである。
This is clear from the fact that if we consider the case where the voltage at the end of the high-voltage line is kept constant and the voltage at the end of the high-voltage line is varied, the voltage induced in the series winding changes.

この一巻回あたりの誘起電圧の変動幅はタツプこよる電
圧調整幅によって決まるが、これが大きいと三次電圧の
変動も大きくなり三次巻線31〜33こ接続される電気
機器にとって好ましくない。
The fluctuation range of the induced voltage per turn is determined by the voltage adjustment range of the tap, and if this is large, the fluctuation of the tertiary voltage will also be large, which is not preferable for electrical equipment to which the tertiary windings 31 to 33 are connected.

そこで三次電圧の変動を補償する方法として第3図のよ
うに端子b,b’間こ直列に直列変圧器6を端子a,b
’間こ電圧調整変圧器7を挿入する方法が考えられる。
Therefore, as a method of compensating for fluctuations in the tertiary voltage, a series transformer 6 is connected between terminals b and b' in series as shown in Figure 3.
'A method of inserting a voltage adjustment transformer 7 is considered.

なお図中61は主巻線、62は励磁巻線である。In the figure, 61 is a main winding, and 62 is an excitation winding.

さらに電圧調整変圧器7の代りこタツプ巻線4を用いて
電圧調整変圧器7を省略してもよい。
Furthermore, the voltage regulating transformer 7 may be omitted by using the tap winding 4 instead of the voltage regulating transformer 7.

その結線図は第4図のようこなるが、第2図のよう6こ
タツプ巻線41〜43を3回路並列構造として各並列回
路に電流を均等こ分流させる必要がある場合には、第5
図で示すように直列変圧器6の励磁巻線62もすべて3
回路並列構成としなければならない。
The connection diagram is as shown in Figure 4. However, if the six-tap windings 41 to 43 are structured in parallel with three circuits as shown in Figure 2, and it is necessary to divide the current equally into each parallel circuit,
As shown in the figure, the excitation winding 62 of the series transformer 6 is also all 3
The circuit must be configured in parallel.

なぜならば励磁巻線62が1回路構成のときは各分路巻
線21〜23とタップ巻線41〜43との接続点pol
,PO21Poaが互いこ接続されることになる。
This is because when the excitation winding 62 has one circuit configuration, the connection point pol between each shunt winding 21 to 23 and the tap winding 41 to 43
, PO21Poa are connected to each other.

従ってこの接続点から中性点側の回路即ちタップ巻線部
分を流れる電流は、タップ巻線部分のインピーダンスだ
けこよって決まるので、タップ巻線部分の各並列回路こ
抵抗アンバランスがあると均等に分流されないからであ
る。
Therefore, the current flowing through the circuit on the neutral point side from this connection point, that is, the tap winding part, is determined only by the impedance of the tap winding part, so if there is a resistance imbalance in each parallel circuit of the tap winding part, the current flows evenly. This is because it is not diverted.

従ってこのような場合電圧調整変圧器7を省略できる利
点はあるものの直列変圧器6の励磁巻線62の構成が複
雑になり、タップ巻線41〜43と励磁巻線62とを接
続するリード81〜84も多いなどの欠点がある。
Therefore, in such a case, although there is an advantage that the voltage regulating transformer 7 can be omitted, the structure of the excitation winding 62 of the series transformer 6 becomes complicated, and the lead 81 connecting the tap windings 41 to 43 and the excitation winding 62 becomes complicated. There are drawbacks such as the large number of ~84.

この発明はこのような事情にかんがみてなされたもので
、主巻線のインピーダンスこよるタップ巻線の電流分流
効果を損なうことなく、直列変圧器の巻線を簡単化でき
、しかも接続用リードを減すことができる変圧器を提供
することを目的とする。
This invention was made in view of the above circumstances, and it is possible to simplify the winding of a series transformer without impeding the current shunting effect of the tap winding due to the impedance of the main winding, and to reduce the number of connecting leads. The purpose is to provide a transformer that can reduce the power consumption.

以下この発明の実施例こついて図面を参照して,説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第6図はこの発明の一実施例を示すもので、直列巻線1
1〜13、分路巻線21〜23、3次巻線31〜33お
よびタップ巻線41〜43とその励磁巻線5は第5図と
同一であるが、直列変圧器6の構成が異る。
FIG. 6 shows an embodiment of the present invention, in which the series winding 1
1 to 13, shunt windings 21 to 23, tertiary windings 31 to 33, tap windings 41 to 43, and their excitation windings 5 are the same as in FIG. 5, but the configuration of the series transformer 6 is different. Ru.

すなわち、この直列変圧4器6は3次巻線の電圧変動を
補償するためのものであるが、端子b,b’間には主巻
線61が直列こ接続されており、励磁巻線62は3並列
回路からなるタップ巻線41〜43のうちの一つのタッ
プ巻線43に接続されている。
That is, the series transformer 6 is used to compensate for voltage fluctuations in the tertiary winding, but the main winding 61 is connected in series between the terminals b and b', and the excitation winding 62 is connected to one tap winding 43 of tap windings 41 to 43 consisting of three parallel circuits.

このようこ構成された変圧器こおいて分路巻線21〜2
3から各タップ巻線41〜43に流れる電流は等しくこ
れを11とし、一方直列変圧器6の励磁巻線626こ流
れる電流を12とする。
In the transformer configured like this, shunt windings 21 to 2
3, the current flowing through each of the tap windings 41 to 43 is equal to 11, and the current flowing through the excitation winding 626 of the series transformer 6 is 12.

するとこの励磁巻線62と接続されるタップ巻線43に
は11+12の電流が流れる。
Then, a current of 11+12 flows through the tap winding 43 connected to the excitation winding 62.

従って11の電流はタップ切換器の電流容量以下である
から、11+12の電流がタップ切換器の電流容量以下
ならこの結線方式を採用できる。
Therefore, since the current of 11 is less than the current capacity of the tap changer, this wiring system can be adopted if the current of 11+12 is less than the current capacity of the tap changer.

もちろんタップ切換器の電流容量を超える場合は、タッ
プ切換器全体あるいはそのタップ巻線43こ接続される
タップ切換器のみを変更すればよく、この場合でもタッ
プ巻線41〜43こ流れる主変圧器の電流を分流させな
いときよりも少ないしゃ断電流容量のタップ切換器です
むことが多い。
Of course, if the current capacity of the tap changer is exceeded, it is only necessary to change the entire tap changer or only the tap changer to which tap windings 43 are connected. In many cases, a tap changer with a smaller interrupting current capacity is required than when the current is not shunted.

これこ対し、励磁巻線を1回路構成とし、かつ3並列回
路からなるタップ巻線41〜43すべてに接続した場合
は,分路巻線からタップ巻線こ流れる電流11および励
磁巻線62を流れる電流12が3並列回路こ分流されず
、最悪の場合は一つのタップ巻線回路こ311+12が
流れる可能性があるので、311+12のしゃ断電流容
量のタップ切換器を用意しなければならない。
On the other hand, if the excitation winding is configured as one circuit and connected to all tap windings 41 to 43 consisting of three parallel circuits, the current 11 flowing from the shunt winding to the tap winding and the excitation winding 62 are Since the flowing current 12 may not be shunted through the three parallel circuits, and in the worst case may flow through one tap winding circuit 311+12, a tap changer with a cutoff current capacity of 311+12 must be prepared.

また第6図のように直列変圧器6の一つの励磁巻線62
と並列接続されたタップ巻線43の1回路が接続されて
いるだけであるから従来4本必要としていた接続リード
を81と84の2本こ減すことができるとともこ直列変
圧器6の巻線構造を簡単化でき、これにともなって直列
変圧器を小形化できる。
Also, as shown in FIG. 6, one excitation winding 62 of the series transformer 6
Since only one circuit of the tap winding 43 connected in parallel with is connected, the number of connecting leads 81 and 84, which conventionally required four, can be reduced to two. The line structure can be simplified, and the series transformer can be made smaller accordingly.

第7図はこの発明の他の実施例を示すもので、直列変圧
器6の励磁巻線62が2回路並列構成となっており、そ
れぞれ別々にタップ巻線41〜43の3回路並列構成の
うち2回路こ対応接続されている点が第6図と異る。
FIG. 7 shows another embodiment of the present invention, in which the excitation winding 62 of the series transformer 6 has a two-circuit parallel configuration, and each tap winding 41 to 43 has a three-circuit parallel configuration. The difference from FIG. 6 is that two of the circuits are connected correspondingly.

第6図の構成こおいて11+12の電流がタップ切換器
の電流容量を超えるとき6ここのような構成を採用すれ
ば直列変圧器の励磁巻線の2個の並列回路を流れる電流
は12/2となるので励磁巻線と接続されるタップ巻線
に流れる電流をi1+i2/2こ減らし、タップ切換器
の電流容量以下にすることもできる。
In the configuration shown in Figure 6, when the current of 11 + 12 exceeds the current capacity of the tap changer, 6 If such a configuration is adopted, the current flowing through the two parallel circuits of the excitation windings of the series transformer will be 12/ 2, the current flowing through the tap winding connected to the excitation winding can be reduced by i1+i2/2, making it less than the current capacity of the tap changer.

さらに電流11と12は必ずしも加算方向の電流ではな
く、減算方向の電流も多い。
Furthermore, the currents 11 and 12 are not necessarily currents in the addition direction, and many currents are in the subtraction direction.

そのようなときにはタップ巻線の電流は減るととこなる
からタップ切換器の電流容量をこえるおそれはない。
In such a case, the current in the tap winding will decrease, so there is no risk of exceeding the current capacity of the tap changer.

また直列変圧器6の励磁巻線62と接続されるタップ巻
線41〜43の電流が多少タップ切換器の電流容量をこ
える場合は、3次電圧変動の補償の幅を増減することに
より減らすことも可能である。
In addition, if the current in the tap windings 41 to 43 connected to the excitation winding 62 of the series transformer 6 exceeds the current capacity of the tap changer, it can be reduced by increasing or decreasing the compensation range for tertiary voltage fluctuation. is also possible.

第8図はこの発明のさらに異る他の実施例を示すもので
、直列巻線11,12、分路巻線21,22,3次巻線
31、32からなる主巻線およびタップ巻線41.42
が2回路構成となっている場合で、そのタップ巻線のう
ち1回路だけ直列変圧器6の励磁巻線62と電気的こ接
続される。
FIG. 8 shows another embodiment of the present invention, in which a main winding and a tap winding are made up of series windings 11 and 12, shunt windings 21 and 22, and tertiary windings 31 and 32. 41.42
has a two-circuit configuration, and only one of the tap windings is electrically connected to the excitation winding 62 of the series transformer 6.

このように構成されたものにおいても前述のようこ作用
し、また前述のようこ電流ix+12の大きさによって
変形できる。
Even in the structure configured in this way, the above-mentioned inverse effect is exerted, and the structure can be deformed depending on the magnitude of the above-mentioned inverse current ix+12.

以上述べたようここの発明こよればタップ巻線が2回路
以上の並列回路を備えたものこおいて、そのタップ巻線
の一部分の回路数だけを直列変圧器の励磁巻線に接続す
るようこしたので、主巻線のインピーダンスこよるタッ
プ巻線の電流分流効果を損なうことなく、直列変圧器の
巻線を簡単化でき、しかも接続用リードを減すことがで
きる変圧器を提供できる。
As described above, the present invention provides a method for connecting only a portion of the number of circuits of the tap winding to the excitation winding of the series transformer in a tap winding having two or more parallel circuits. Therefore, it is possible to provide a transformer in which the winding of a series transformer can be simplified and the number of connecting leads can be reduced without impairing the current shunting effect of the tap winding due to the impedance of the main winding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタップ巻線を中性点側に有する単相単巻変圧器
の結線図、第2図は第1図の主巻線を3回路並列とした
場合の結線図、第3図および第4図は第1図の3次電圧
を補償する方式を示す結線図、第5図は第4図の3回路
並列とした場合の結線図、第6図〜第8図はこの発明の
それぞれ異る変圧器の結線図である。 11〜13・・・・・・直列巻線、21〜23・・・・
・・分路巻線、31〜33・・・・・・3次巻線、41
〜43・・・・・・タップ巻線、6・・・・・・主巻線
61および励磁巻線62を有する直列変圧器。
Figure 1 is a wiring diagram of a single-phase single-winding transformer with the tap winding on the neutral point side, Figure 2 is a wiring diagram when the main winding of Figure 1 is connected to three circuits in parallel, Figure 3 and Fig. 4 is a wiring diagram showing the method of compensating the tertiary voltage shown in Fig. 1, Fig. 5 is a wiring diagram when the three circuits shown in Fig. 4 are connected in parallel, and Figs. 6 to 8 are each of this invention. It is a wiring diagram of different transformers. 11-13...Series winding, 21-23...
...Shunt winding, 31-33...Tertiary winding, 41
~43...Tap winding, 6...Series transformer having main winding 61 and excitation winding 62.

Claims (1)

【特許請求の範囲】[Claims] 1 1次巻線の電圧を調整すべく設けたタップ巻線に生
じる電圧で、2次または3次巻線の端子こ接続された直
列変圧器の励磁巻線を励磁することにより、前記2次ま
たは3次巻線の電圧を調整する変圧器こおいて、前記タ
ップ巻線が2個以上の並列回路数からなるものであって
、そのタップ巻線の一部分の回路数だけを用いて前記直
列変圧器の励磁巻線を励磁するようこした変圧器。
1. By exciting the excitation winding of the series transformer connected to the terminals of the secondary or tertiary winding with the voltage generated in the tap winding provided to adjust the voltage of the primary winding, the voltage of the secondary winding is adjusted. Alternatively, in a transformer that adjusts the voltage of a tertiary winding, the tap winding is composed of two or more parallel circuits, and the series connection is performed using only a part of the number of circuits of the tap winding. A transformer designed to excite the excitation winding of a transformer.
JP7534875A 1975-06-20 1975-06-20 Hentatsuki Expired JPS584445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7534875A JPS584445B2 (en) 1975-06-20 1975-06-20 Hentatsuki

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7534875A JPS584445B2 (en) 1975-06-20 1975-06-20 Hentatsuki

Publications (2)

Publication Number Publication Date
JPS51150628A JPS51150628A (en) 1976-12-24
JPS584445B2 true JPS584445B2 (en) 1983-01-26

Family

ID=13573642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7534875A Expired JPS584445B2 (en) 1975-06-20 1975-06-20 Hentatsuki

Country Status (1)

Country Link
JP (1) JPS584445B2 (en)

Also Published As

Publication number Publication date
JPS51150628A (en) 1976-12-24

Similar Documents

Publication Publication Date Title
US4156174A (en) Phase-angle regulator
US2253053A (en) Conversion of single phase alternating electric currents to polyphase currents
US3513380A (en) Load tap changing transformer arrangement with constant impedance
JPS584445B2 (en) Hentatsuki
US1630363A (en) Transformer-tap-changing device
JP2642825B2 (en) Single phase load tap change transformer
JPS6081811A (en) On-load tap changing autotransformer
EP0254946B1 (en) A single phase auto transformer
US2212399A (en) Protection of alternating current electric systems
US2470661A (en) Phase-sequence voltage network
US2357098A (en) Transformer
US1848936A (en) Transformer winding
JPS59175111A (en) Three-phase on-load tap changing transformer
RU2076366C1 (en) Power transformer
JPS5834740Y2 (en) Three-phase on-load tap-changing transformer
JPH0793213B2 (en) Transformer with tap
JPS586292B2 (en) transformer
JPH0793214B2 (en) Single phase auto transformer
JPS5943083B2 (en) On-load tap-changing transformer
JPH0320891B2 (en)
JPS60106111A (en) Single-phase three-winding transformer
JPH0122971B2 (en)
JPS57178310A (en) Three phase autotransformer
JPS5952819A (en) On-load voltage regulator
JPS62104015A (en) Single-phase auto-transformer