JPS5844412B2 - Functional material protection structure - Google Patents

Functional material protection structure

Info

Publication number
JPS5844412B2
JPS5844412B2 JP56151683A JP15168381A JPS5844412B2 JP S5844412 B2 JPS5844412 B2 JP S5844412B2 JP 56151683 A JP56151683 A JP 56151683A JP 15168381 A JP15168381 A JP 15168381A JP S5844412 B2 JPS5844412 B2 JP S5844412B2
Authority
JP
Japan
Prior art keywords
outer shell
functional
protection structure
functional material
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56151683A
Other languages
Japanese (ja)
Other versions
JPS5794347A (en
Inventor
真 今成
良延 山口
芳久 渡辺
七彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Kenmazai Kogyo Co Ltd
Mitsubishi Petrochemical Co Ltd
Original Assignee
Fujimi Kenmazai Kogyo Co Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Kenmazai Kogyo Co Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Fujimi Kenmazai Kogyo Co Ltd
Priority to JP56151683A priority Critical patent/JPS5844412B2/en
Publication of JPS5794347A publication Critical patent/JPS5794347A/en
Publication of JPS5844412B2 publication Critical patent/JPS5844412B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、触媒、吸着剤等の機能物質を外殻で保護した
新規な機能物質保護構造体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel functional substance protection structure in which a functional substance such as a catalyst or an adsorbent is protected by an outer shell.

従来、気相又は液相中で使用される触媒又は、吸着剤等
の機能物質は、粉体で使用されたり、単独又は適当な結
合剤と混合して粒状に成型して使用されたり、担体に担
持させて使用される。
Conventionally, functional substances such as catalysts or adsorbents that are used in the gas or liquid phase are used in powder form, used alone or mixed with a suitable binder and molded into granules, or used as a carrier. It is used by supporting it.

しかしながら、この種の機能物質を粉体として用いる場
合、特に気相で使用する場合は、粉体を流動化状態で使
用するために高度の技術を要し、また、粉末の微細化に
よる損失が多い欠点が有る。
However, when using this type of functional substance as a powder, especially when using it in the gas phase, advanced technology is required to use the powder in a fluidized state, and losses due to fineness of the powder are high. There are many drawbacks.

また、液相で使用する場合は、液と粉末の沢別に問題が
あり、連続的な操作が困難であるという欠点がある。
Furthermore, when used in a liquid phase, there is a problem in the separation of the liquid and powder, making continuous operation difficult.

触媒、吸着剤の機能物質を粒状に成型して使用すると、
この種の欠点を解決しうるのであるが、粒状に成型する
際に、触媒能、吸着能の機能が大巾に低下したり、破壊
、衝撃、摩耗等の強度が小さかったり、実用上問題があ
る場合が多い。
When functional substances such as catalysts and adsorbents are molded into granules and used,
This type of drawback can be solved, but when molded into granules, the catalytic ability and adsorption ability may be greatly reduced, the strength against breakage, impact, abrasion, etc. may be low, and there may be practical problems. There are many cases.

また、使用初期に充分な強度を有していても、使用によ
り徐々に、または、急激に強度の低下を招き、粉末化等
のために操作の継続を困難とする場合がある。
Further, even if the material has sufficient strength at the initial stage of use, the strength may gradually or suddenly decrease with use, and it may become difficult to continue operation due to powdering or the like.

さらに、担体を用いた場合でも、機能物質の有効成分が
離脱する等の問題があり、強度面から抜本的な解決とな
り得ない場合が多く、しかも強度を維持する必要上担持
量を多(することが困難な場合が多い。
Furthermore, even when a carrier is used, there are problems such as the release of the active ingredients of the functional substance, and it is often not possible to provide a fundamental solution in terms of strength.Moreover, in order to maintain the strength, a large amount of carrier is required. This is often difficult.

この種の触媒、吸着剤の粒状化物の粉化による欠点を解
決することは、この種の機能物質を使用する工業上、あ
るいは、実用上、著しく重要な課題であり、工業的、実
用的発展上著しく重要なものである。
Solving the drawbacks caused by the pulverization of granulated catalysts and adsorbents is an extremely important issue in industrial and practical applications that use this type of functional materials, and is an extremely important issue for industrial and practical development. This is extremely important.

本発明の目的は、機能物質の粉化または崩壊による工業
的、実用的欠点を解決する、破壊、衝撃、摩耗等の強度
が犬なる機能物質保護構造体を提供するにある。
An object of the present invention is to provide a functional material protection structure that has high resistance to destruction, impact, abrasion, etc., and solves the industrial and practical drawbacks caused by powdering or disintegration of functional materials.

本発明の他の目的は、使用中機能物質が熱、反応等によ
り体積変化しても破壊しない機能物質保護構造体を提供
するにある。
Another object of the present invention is to provide a functional material protection structure that does not break down even if the functional material changes in volume due to heat, reaction, etc. during use.

本発明の他の目的は、機能物質として、マンガン酸化物
を用いて、フェノール類とメタノールよりアルキルフェ
ノール類を合成する触媒で、破壊、衝撃、摩耗等の強度
が犬なる機能物質保護構造体を提供するにある。
Another object of the present invention is to provide a functional material protection structure that is resistant to breakage, impact, abrasion, etc., and is a catalyst for synthesizing alkylphenols from phenols and methanol using manganese oxide as a functional material. There is something to do.

本発明の他の目的は、吸着剤たる活性炭、活性アルミナ
、シリカゲル、モレキュラーシーブ等が飛散することな
く、かつ、所望の吸着能が得られる機能物質保護構造体
を提供するにある。
Another object of the present invention is to provide a functional substance protection structure in which adsorbents such as activated carbon, activated alumina, silica gel, molecular sieve, etc. are not scattered and a desired adsorption capacity can be obtained.

本発明の機能物質保護構造体を東機能物質を連通細孔を
有する強靭な多孔性外殻で被覆した粒状構造を有するも
のである。
The functional material protection structure of the present invention has a granular structure in which a functional material is covered with a strong porous shell having communicating pores.

ここに機能物質とは、触媒、吸着剤等の活性物質、これ
と不活性Wの混合物、及びこれを不活性物質に担持させ
たものである。
The functional substances herein include active substances such as catalysts and adsorbents, mixtures of these and inert W, and substances supported on inert substances.

本発明の機能物質保護構造体は、触媒、吸着剤の如き機
能物質を粒状化し、この粒状物に、外殻用骨材等を被覆
し、焼結等によって、連通細孔を有する強靭な外孔性外
殻を形成せしめることによって製造する。
The functional substance protection structure of the present invention is produced by granulating functional substances such as catalysts and adsorbents, coating the granules with aggregate for an outer shell, etc., and forming a tough outer shell with continuous pores by sintering or the like. It is manufactured by forming a porous shell.

この際、機能物質に可燃性有機粉体な混じてから外殻用
骨材等を被覆し、焼結の際に可燃性有機物質を燃焼させ
ることにより、表面積の犬なる機能物質を内核とする機
能物質保護構造体とすることができる。
At this time, the functional material is mixed with flammable organic powder, then covered with aggregate for the outer shell, etc., and the flammable organic material is burned during sintering, so that the functional material that covers the surface area becomes the inner core. It can be a functional material protection structure.

また、粒状化した機能物質に可燃性有機粉体を被覆して
から外殻用骨材等を被覆し、焼結の際に可燃性有機粉体
を燃焼させることによって、内核と外殻との間に空間を
形成させることができる。
In addition, by coating the granulated functional material with combustible organic powder and then covering it with aggregate for the outer shell, and burning the combustible organic powder during sintering, the inner core and outer shell can be separated. A space can be formed in between.

機能物質としては、各種の粉体、または、粒状化した触
媒、吸着剤を用いることができる。
As the functional substance, various powders or granulated catalysts and adsorbents can be used.

特に、フェノール類とメタノールよりアルキルフェノー
ル類を合成する際に使用するマンガン酸化物の如き、使
用中、あるいは触媒を空気で再生する際に、物理的、化
学的に崩壊しやすい機能物質、活性炭の如きそれ自体飛
散しやすい機能物質等、モレキュラーシーブ、シリカゲ
ル粉末等単独では成型強度が得られにくい機能物質をも
安定な状態で効果的に使用しうる。
In particular, functional substances such as manganese oxide, which is used to synthesize alkylphenols from phenols and methanol, and activated carbon, which easily disintegrate physically and chemically during use or when the catalyst is regenerated with air. Functional substances that are easily scattered by themselves, such as molecular sieves, silica gel powder, etc., and which have difficulty in forming molding strength by themselves, can be used effectively in a stable state.

また機能物質は、2種以上混合して用いることもできる
Moreover, two or more types of functional substances can be used in combination.

機能物質が担体に担持させたものである例としては、白
金、パラジウム等、高価な触媒を機能物質として用いる
ものがある。
An example of a functional substance supported on a carrier is one in which an expensive catalyst such as platinum or palladium is used as the functional substance.

本発明によれば、この際担体として、強度の犬なるもの
を用いなくとも良い利点がある。
According to the present invention, there is an advantage that there is no need to use a strong dog as a carrier.

外殻との間に空隙を与えるために、機能物質に配合し又
は機能物質からなる内核を被覆するために用いる可燃性
有機物質としては、クルミ粉、繊維、オガ屑、セルロー
ズ系物質等の炭化水素系物質、ポリオレフィン、ポリス
チロール等の可燃性高分子物質等が代表例として挙げら
れる。
Combustible organic substances that are mixed with functional substances or used to coat the inner core made of functional substances in order to create voids between them and the outer shell include carbonized walnut powder, fibers, sawdust, cellulose-based substances, etc. Typical examples include hydrogen-based substances, polyolefins, combustible polymeric substances such as polystyrene, and the like.

この種の可燃性有機物質は、外殻形成の際の焼結温度で
焼失しうるものが望ましい。
This type of combustible organic material is preferably one that can be burned off at the sintering temperature during shell formation.

なお、可燃性有機’INに変えて、水、酸、アルカリ等
に可溶性の無機固体を用いても良いし、樟脳等の昇華性
物質を用いても良い。
Note that instead of the flammable organic IN, an inorganic solid soluble in water, acid, alkali, etc. may be used, or a sublimable substance such as camphor may be used.

これ等の空隙形成用物質は、外殻の細孔形成用物質とし
て用いうるものである。
These pore-forming substances can be used as pore-forming substances in the outer shell.

特に微結晶セルローズ、及びその誘導体、小麦粉、コー
ンスターチのごときものが適当である。
Particularly suitable are microcrystalline cellulose and derivatives thereof, such as wheat flour and cornstarch.

外殻用骨材としては、溶融アルミナ、炭化ケイ素、アル
ミナ、けい砂、ジルコン等の無機砥粒、ソーダガラス、
鉛ガラス、はうけい酸ガラス等の無機ガラス粒、鉄、ア
ルミニウム、銅、錫、鉛、亜鉛等の金属粒および砲金、
不銹鋼等の合金粒等の各種金属粉粒、酸化マグネシウム
、ポルトランドセメント、アルミナセメント等が用いら
れる。
As aggregate for the outer shell, fused alumina, silicon carbide, alumina, silica sand, inorganic abrasive grains such as zircon, soda glass,
Inorganic glass particles such as lead glass and silicate glass; metal particles such as iron, aluminum, copper, tin, lead, and zinc; and gun metal;
Various metal powder particles such as alloy particles of stainless steel, magnesium oxide, Portland cement, alumina cement, etc. are used.

なお、外殻用骨材自体が、機能物質としての特性を有す
るものを用いることもできる。
Incidentally, the aggregate for the outer shell itself may have properties as a functional substance.

すなわち、アルキルフェノール類合成用触媒の製造にお
いて外殻として、酸化マグネシウムを主体として用いる
と、これ自体が高温で触媒としての作用をなす。
That is, when magnesium oxide is mainly used as the outer shell in the production of a catalyst for synthesizing alkylphenols, it itself acts as a catalyst at high temperatures.

外殻用骨材だけをその骨材粒子の接触点において焼結、
融着又は、硬化せしめることが可能な骨材もある。
Sintering only the shell aggregate at the contact points of the aggregate particles,
Some aggregates can be fused or hardened.

たとえば、銅粉、ガラス粉、アルミナセメント、ポルト
ランドセメント等はこの一例である。
Examples include copper powder, glass powder, alumina cement, and Portland cement.

多くの無機質外殻用骨材は、それ自体で焼結又は硬化さ
せることは困難である。
Many inorganic shell aggregates are difficult to sinter or harden on their own.

したがって、粘土、陶土、長石、ガラス粉末等、加熱に
より溶融、又は軟化され、骨材粒子を焼結する作用を有
する結合剤を配合することが望ましい。
Therefore, it is desirable to include a binder such as clay, china clay, feldspar, glass powder, etc., which is melted or softened by heating and has the effect of sintering the aggregate particles.

すなわち、多くの場合、この焼結、融着又は硬化のため
の焼成温度は約400〜1400℃の範囲である。
That is, in many cases, the firing temperature for this sintering, fusing or hardening is in the range of about 400-1400°C.

この程度の温度で、外殻部を焼結、融着、又は、硬化さ
せうる結合剤を配合することが望まれる。
It is desirable to include a binder that can sinter, fuse, or harden the outer shell at this temperature.

さらに、骨材と共に、クルミ粉、繊維、オガ屑等の可燃
性有機物質を配合して被覆し、焼結の際に焼失せしめる
ことにより、比較的大きな所望の細孔を外殻に形成させ
ることができる。
Furthermore, combustible organic substances such as walnut flour, fibers, and sawdust are mixed and coated with the aggregate, and the desired relatively large pores are formed in the outer shell by burning it out during sintering. I can do it.

また、同様に、特定の酸、塩基、有機溶媒に選択的に可
溶な有機、又は無機の粒状物、または、繊維状物を外殻
に混入成形後、その溶媒で、その部分を流出せしめる方
法によっても所望の細孔を得ることができる。
Similarly, organic or inorganic granules or fibrous materials that are selectively soluble in specific acids, bases, and organic solvents are mixed into the outer shell and formed, and then the solvent is used to drain that part. Desired pores can also be obtained depending on the method.

この外殻は次の条件を有していることが望まれる。It is desirable that this outer shell meet the following conditions.

(1)実用上必要な、衝撃、摩耗等による破壊を防ぐこ
とができる充分な強度を有していることができる。
(1) It can have sufficient strength to prevent destruction due to impact, abrasion, etc., which is necessary for practical use.

圧縮強度は本屋式硬度計にて被測定物の上部から荷重を
かげて圧縮していった場合に、ひびの入った時の荷重で
示し、本発明の機能物質保護構造体の圧縮強度は使用さ
れる大きさ、用途にもよるが、3kg以上が好ましく、
特に7kg以上のものが好ましい。
Compressive strength is expressed as the load at which a crack appears when a load is applied from the top of the object to be measured using a bookstore type hardness tester, and the compressive strength of the functional material protection structure of the present invention is determined by the It depends on the size and purpose, but preferably 3 kg or more.
Particularly preferred is one weighing 7 kg or more.

しかし、この強度は使用される用途によって必要とされ
る強度がそれぞれ異なり、使用される用途に耐えうる強
度であれば良い。
However, the required strength differs depending on the purpose of use, and it is sufficient that the strength can withstand the purpose of use.

(2)外表面から内核まで連続する多数の連続細孔を有
すること。
(2) Having a large number of continuous pores that extend from the outer surface to the inner core.

多数の連続細孔とは、外殻用骨材等に含まれる可燃性有
材W等を焼成等の手段により得られた細孔が、陶磁器、
その他のようにその細孔が行詰り、または、単独になっ
ているものではなく、交錯して連続し合い、外表面と機
能物質との間を気体もしくは液体分子が充分通過し得る
細孔径であり、すなわち、その細孔径(アミンコ社製ポ
ロシメーターを用いて測定)は0.05μ〜1000μ
、好ましくは0.5μ〜500μ、更に好ましくは1μ
〜100μのものであり、かつ、機能物質が外部に出て
こないように交錯させた細孔である。
A large number of continuous pores refers to pores obtained by firing a combustible material W contained in the aggregate for the outer shell, etc.
The pores are not closed or isolated as in other cases, but are intersected and continuous, and the pore size is such that gas or liquid molecules can sufficiently pass between the outer surface and the functional substance. That is, the pore diameter (measured using an Aminco porosimeter) is 0.05μ to 1000μ.
, preferably 0.5μ to 500μ, more preferably 1μ
The pores have a diameter of ~100μ and are interlaced to prevent the functional substance from coming out.

上記の基本的条件とともに、細孔が大きくかつ多数存在
する外殻構造とすることが望ましく、見掛気孔率(日本
工業規格JIS−R22051955(1961確認)
の「耐火し/ガの見掛気孔率、吸水率及び比重の測定法
」を適用して測定)が20〜70%、好ましくは30〜
65%である。
In addition to the above basic conditions, it is desirable to have an outer shell structure with large and numerous pores, and the apparent porosity (Japanese Industrial Standard JIS-R22051955 (confirmed in 1961))
(Measurement method for apparent porosity, water absorption and specific gravity of fireproofing/moth) is 20-70%, preferably 30-70%.
It is 65%.

また細孔容積(アミンコ社製ポロシメーターを用いて測
定)においては0.01〜0.7cc/グ、好ましくは
0.02〜9.5cc/グである。
Further, the pore volume (measured using a porosimeter manufactured by Aminco) is 0.01 to 0.7 cc/g, preferably 0.02 to 9.5 cc/g.

また、外殻の厚さ&東必要とされる強度、細孔の大きさ
により異なる。
It also depends on the thickness of the outer shell & the required strength and pore size.

外殻の厚さが増加すれば強度を犬としうるが、厚くする
ことにより、相対的に触媒等の機能物質の含有量が減少
し、また、内部機能物質と接触すべき流体の外殻での流
通抵抗が増大することとなるので、所望の強度が得られ
る程度の厚みであることが望ましい。
If the thickness of the outer shell is increased, the strength can be improved, but by increasing the thickness, the content of functional substances such as catalysts is relatively reduced, and the outer shell is less likely to contain fluids that should come into contact with internal functional substances. Since this will increase the flow resistance, it is desirable that the thickness be such that the desired strength can be obtained.

すなわち、機能物質を収容する内部直径に対して5〜1
00%、好ましくは6〜50%、特に好ましくは8〜2
0%の外殻の厚さが要望される。
i.e. 5 to 1 for the internal diameter accommodating the functional material.
00%, preferably 6-50%, particularly preferably 8-2
A shell thickness of 0% is desired.

本発明の機能物質保護構造体の機能物質は、触媒、吸着
剤等、所望の機能を有する活性物質を選択する。
As the functional substance of the functional substance protection structure of the present invention, an active substance having a desired function, such as a catalyst or an adsorbent, is selected.

この機能物質の種類、量、外殻用骨材の種類、量、結合
剤の種類、量、外殻の厚さ、粒子径、機能物質と外殻部
の割合、外殻の気孔率、細孔径、細孔容積は所望に応じ
て選択することができる。
The type and amount of this functional material, the type and amount of aggregate for the outer shell, the type and amount of binder, the thickness of the outer shell, the particle size, the ratio of the functional material to the outer shell, the porosity of the outer shell, and the fineness of the outer shell. The pore diameter and pore volume can be selected as desired.

機能物質が、活性炭、マンガン酸化物等の如き、比較的
安価なものであって、担体を用いることなしに粒状とな
し5る場合には、機能物質有効成分量を著しく高めるこ
とができる。
When the functional substance is relatively inexpensive, such as activated carbon or manganese oxide, and is formed into granules without using a carrier, the amount of active ingredient of the functional substance can be significantly increased.

一方、機能物質有効成分が高価物質であり、担体に担持
したり、混合したりして用いる場合には、機能物質有効
成分の量は著しく少なくし、担持または混合する担体量
を高めるものである。
On the other hand, if the active ingredient of the functional substance is an expensive substance and is used by being supported on a carrier or mixed, the amount of the active ingredient of the functional substance should be significantly reduced and the amount of the carrier to be supported or mixed should be increased. .

後者の場合、担体が粉末または崩壊性であっても良い。In the latter case, the carrier may be powder or disintegrating.

この機能物質を保護する外殻は前述の様に、連通細孔を
多数有するとともに、衝撃、摩耗等による破壊に対する
強度が犬なるものでなげればならない。
As mentioned above, the outer shell that protects this functional material must have a large number of communicating pores and must have sufficient strength to withstand damage caused by impact, abrasion, and the like.

この外殻の厚さは、所望の強度に応じて定められるもの
であり、この強度は、外殻構造に用いられる外殻用骨材
間の接触点における結合力により影響される。
The thickness of the shell is determined by the desired strength, which is influenced by the bonding forces at the points of contact between the shell aggregates used in the shell structure.

この結合が焼結による場合、特に、結合力の犬なる結合
剤による焼結の場合、気孔率を著しく犬としても、充分
に大きい強度を得ることができる。
When this bonding is performed by sintering, particularly when sintering is performed using a binder that has a high bonding strength, a sufficiently high strength can be obtained even if the porosity is significantly increased.

この外殻の強度が犬なる場合は、外殻の厚さを比較的薄
くし、機能物質の外殻部に対する割合を高めることがで
きる。
If the strength of the outer shell is high enough, the thickness of the outer shell can be made relatively thin and the ratio of the functional substance to the outer shell can be increased.

全体の粒子径は、充填塔共の他触媒、吸着剤等の機能物
質使用条件によって選択するが、ゴ般に1〜25mm程
度として用いる。
The overall particle size is selected depending on the usage conditions of the packed column and other functional substances such as catalysts and adsorbents, but is generally about 1 to 25 mm.

機能物質は、外殻内部で粉末状に崩壊していてもさしつ
かえない。
The functional substance may be disintegrated into powder inside the outer shell.

また、この外殻との間に空隙が存在する構造とすると、
機能物質の体積変化により外殻が破壊されるおそれがな
くなるので特に好ましい。
Also, if the structure is such that there is a void between it and the outer shell,
This is particularly preferable since there is no fear that the outer shell will be destroyed due to a change in the volume of the functional substance.

例えばマンガン酸化物触媒の場合は、空気による再生時
体積変化をおこす。
For example, in the case of a manganese oxide catalyst, a volume change occurs during regeneration with air.

このような場合、外殻内に空隙が存在する構造とすると
、再生繰返使用の寿命が著しく増大する。
In such a case, a structure in which voids exist within the outer shell significantly increases the life of repeated reuse.

一般に、機能物質の熱又は、化学変化による体積変化が
犬なる場合には、外殻内部に空隙を存在せしめることが
望ましい。
Generally, when the volume change due to heat or chemical changes in the functional material is significant, it is desirable to have voids inside the outer shell.

なお、本発明の機能物質保護構造体&東外殻の内部に機
能物質を保つと共に、外殻自体にも同種又は別種の機能
物質を存在せしめうる。
In addition to keeping the functional substance inside the functional substance protection structure & east outer shell of the present invention, the same or different type of functional substance may be present in the outer shell itself.

一般に、外殻部への機能’Mの配合は、外殻形成後に含
浸付着活性化処理することによりおこない、外殻上に付
着した状態で存在せしめるが、外殻用の原料中に配合し
ておいて、外殻自体、或いは、その一部が機能物質とな
るようにしても良い。
Generally, Function 'M' is added to the outer shell by impregnation and adhesion activation treatment after the outer shell is formed, and is present in a state attached to the outer shell. In this case, the outer shell itself or a part thereof may be made to be a functional material.

特に、機能物質として外殻の内部に保護される触媒と、
外殻自体に付着せしめた触媒とが異種の場合、二元機能
を有する触媒とすることができ、従来の触媒に比較して
、使用温度範囲を拡大したり、多段反応をより少ない段
数で実施したり、選択性の向上をはかったりすることが
可能となる。
In particular, a catalyst protected inside the outer shell as a functional substance,
If the catalyst attached to the outer shell itself is of a different type, it can be a dual-functional catalyst, allowing for a wider operating temperature range and a fewer number of stages for multi-stage reactions compared to conventional catalysts. It becomes possible to improve selectivity.

更に、外殻層を複数層とし、各外殻層に存在する触媒の
量、特性等を所望に応じて選択することにより多層構造
触媒とすることができる。
Furthermore, a multilayer structure catalyst can be obtained by forming a plurality of outer shell layers and selecting the amount, characteristics, etc. of the catalyst present in each outer shell layer as desired.

なお、吸着剤等の他の機能物質を用いる場合においても
、あるいは、吸着剤と触媒の如き異種の機能物質を用い
る場合においても、この種の二元または、多元機能を有
する機能物質保護構造体とすることができる。
Furthermore, even when using other functional substances such as an adsorbent, or when using different functional substances such as an adsorbent and a catalyst, this kind of functional substance protective structure having dual or multifunctional functions can be used. It can be done.

以下、本発明の機能物質保護構造体の製法の代表例を説
明する。
Hereinafter, a typical example of the method for manufacturing the functional substance protection structure of the present invention will be explained.

本発明の機能物質保護構造体は、通常の造粒法で製造す
ることができる。
The functional material protection structure of the present invention can be manufactured by a normal granulation method.

内核となる機能物質の造粒法は色々な方法がとられ、機
能物質と必要に応じて可燃性有機物質、糊剤と水を加え
て混練し、押出機で棒状に押出しながら破断して造粒し
たり、製九機、皿型造粒機、回転円盤型転勤造粒機で造
粒したり、打錠機で打錠して造粒したりして内核となる
機能物質の造粒物を得る。
Various methods are used to granulate the functional substance that forms the inner core.The functional substance is mixed with combustible organic substances as necessary, a sizing agent, and water, then extruded into rods using an extruder and broken. Granules of functional substances as an inner core can be made by granulating, granulating with a nine-mill machine, dish-type granulator, rotating disk-type transfer granulator, or compressing into tablets with a tablet machine. get.

この内核となる機能物質の造粒物を皿型造粒機、回転円
盤型転勤造粒機に投入して転動させ、外殻用に混練した
ものを必要に応じて噴霧状の水をふりかげながら雪ダル
マ式にまぶして被覆させる。
The granulated product of the functional substance serving as the inner core is put into a dish-type granulator or a rotating disk-type transfer granulator and tumbled, and the mixture for the outer shell is sprinkled with atomized water as necessary. Sprinkle it in the snow to coat it while keeping it in the shade.

また圧縮成型法によって外殻用原料を被覆することもで
きる。
The raw material for the outer shell can also be coated by compression molding.

特殊な被覆法としては、前記の内核となる造粒物をスラ
リー中に混じて、噴霧乾燥させる方法があり、造粒法に
限定されるものではない。
A special coating method includes a method in which the granulated material serving as the inner core is mixed into a slurry and spray-dried, but is not limited to the granulation method.

しかしながら、所望の均一の厚さの外殻を構成させるた
めには、皿型造粒機、回転円盤型転勤造粒機による造粒
法を用いることが望ましい。
However, in order to construct an outer shell with a desired uniform thickness, it is desirable to use a granulation method using a dish-type granulator or a rotating disk-type transfer granulator.

なお、この外殻用原料混練物の被覆に先立って、可燃性
有機物質、たとえば、セルローズ系物質、糖、ポリビニ
ールアルコール等の可燃性有機物質の被覆を外殻用原料
の被覆と同様にして行なうと、外殻と機能物質の間に空
隙を形成させうる利点があり、この可燃性有機物質を、
内核となる機能物質に混合して造粒した場合は、内核と
なる機能物質の体積変化による外殻の破損を防止するの
に効果的な空隙を内核内に形成させうると共に、内核機
能物質の表面積を増大せしめる効果もある。
In addition, prior to coating this raw material kneaded material for the outer shell, a combustible organic substance such as a cellulose material, sugar, polyvinyl alcohol, etc. is coated in the same manner as the coating of the raw material for the outer shell. This has the advantage of forming voids between the outer shell and the functional material, and this combustible organic material can be
When granulated by mixing with the functional material that forms the inner core, it is possible to form voids in the inner core that are effective in preventing damage to the outer shell due to changes in the volume of the functional material that forms the inner core. It also has the effect of increasing the surface area.

外殻用原料を被覆した粒子は、加熱によって、外殻骨材
、結合剤が焼結されると共に、可燃性増粘剤、可燃性有
機物質が焼失されて多数の連通細孔を有する強靭な多孔
性外殻からなる構造体となり、機能物質は活性化される
When the particles coated with the raw material for the outer shell are heated, the outer shell aggregate and binder are sintered, and the flammable thickener and combustible organic material are burned out, resulting in a tough structure with many communicating pores. It becomes a structure consisting of a porous outer shell, and the functional substance is activated.

通常、200℃以下の温度で充分乾燥し、次いで匣鉢に
入れて焼成炉にて徐々に加熱し、可燃性有機物質等が焼
成し始める温度から、加熱速度を更におそくし可燃性有
機物質を完全に焼失させうるように加熱し、更に加熱し
て所定の最終温度で数時間保持して焼成する。
Normally, it is sufficiently dried at a temperature of 200°C or less, then placed in a sagger and gradually heated in a firing furnace.From the temperature at which flammable organic substances begin to burn, the heating rate is further slowed down to remove flammable organic substances. It is heated to completely burn it out, heated further and held at a predetermined final temperature for several hours to sinter it.

この焼成条件は、焼成される機能物質保護構造体によっ
て選択されるのは当然の事である。
Naturally, the firing conditions are selected depending on the functional material protection structure to be fired.

なお、機能物質活性化のために外殻形成時、または、外
殻形成後、窒素、水素、其の他、所望の気体中で加熱活
性化処理することが望ましい場合もある。
Note that in order to activate the functional substance, it may be desirable to carry out heat activation treatment in nitrogen, hydrogen, or other desired gas during or after the formation of the outer shell.

また、機能物質が水等の溶媒と接触することを嫌う場合
は、造粒して機能物質を糖衣で被覆し、これに外殻用原
料を被覆して焼結すると共に、糖衣を燃焼させる等の方
法をとりうる。
In addition, if the functional substance does not want to come into contact with a solvent such as water, it is possible to granulate the functional substance and coat it with sugar coating, coat this with the raw material for the outer shell, sinter it, and burn the sugar coating. This method can be used.

その他所望に応じて、適当の粒状化、焼結条件を選択す
ることができる。
In addition, appropriate granulation and sintering conditions can be selected as desired.

また、二酸化マンガンと酸化第二鉄との混合物触媒を造
粒し、これにアルミナ粉体、ガラス結合剤を被覆し、焼
成して外殻を形成せしめた触媒が挙げられる。
Another example is a catalyst in which a mixture catalyst of manganese dioxide and ferric oxide is granulated, coated with alumina powder and a glass binder, and fired to form an outer shell.

この種の触媒は内燃機関排気ガス中の一酸化炭素、炭化
水素等の酸化触媒として有用である。
This type of catalyst is useful as an oxidation catalyst for carbon monoxide, hydrocarbons, etc. in internal combustion engine exhaust gas.

以下本発明の機能物質保護構造体、およびその製法、な
らびにこれを用いたアルキルフェノール類の製法、排気
ガス中の炭化水素(ヘキサン)の酸化に関する実施例を
比較例と共に示す。
Examples of the functional substance protection structure of the present invention, its manufacturing method, a method of manufacturing alkylphenols using the same, and oxidation of hydrocarbons (hexane) in exhaust gas will be shown below along with comparative examples.

参考例 l 電解二酸化マンガンを1000℃で加熱処理したマンガ
ン酸化物ioo部、及び小麦粉5部と少量の水を加えて
混練し、回転円盤型転勤造粒機にこの混線物を入れて噴
霧状の水をふりかげ、粒状物とする。
Reference Example l Electrolytic manganese dioxide is mixed with io parts of manganese oxide heat-treated at 1000°C, 5 parts of wheat flour, and a small amount of water, and the mixture is put into a rotating disk-type transfer granulator to form a spray. Sprinkle water to make granules.

この粒状物に噴霧状の水をふりかげながら同時に混線物
をふりかげ、雪ダルマ式に所定の大きさの球状物にする
Atomized water is sprinkled on the granules, and at the same time a mixed substance is sprinkled on them to form spherical objects of a predetermined size in a snowball-like manner.

これで内核部の造粒を終え、次に溶融アルミナ(120
mesh )80部及び結合剤として陶土15部、長石
5部、小麦粉5部と水20部とを同時に混練したものを
外殻用混練物とし、前述の内核部の造粒物を再び回転円
盤型転勤造粒機に入れ、噴霧状の水と、外殻用の混練物
をふりかげながらまぶして被覆させ、所定の厚さに被覆
し終えたならばとり出し、80〜120℃で乾燥させた
後、匣鉢に入れてこれを焼成炉にて、徐々に加熱し、2
50℃から600℃までは特にゆるやかに昇温するよう
に加熱し、1200℃まで昇温しで、1200℃で3時
間保持して焼成し、前に述べたような外殻を強固かつ多
孔質にする。
This completes the granulation of the inner core, and then molten alumina (120
80 parts of mesh), 15 parts of china clay as a binder, 5 parts of feldspar, 5 parts of wheat flour, and 20 parts of water were simultaneously kneaded to form a kneaded material for the outer shell. It was placed in a transfer granulator and sprinkled with atomized water and a kneaded material for the outer shell to coat it, and when it had been coated to a predetermined thickness, it was taken out and dried at 80 to 120°C. After that, put it in a sagger and gradually heat it in a kiln.
The temperature is heated particularly slowly from 50°C to 600°C, and then the temperature is raised to 1200°C, which is then held at 1200°C for 3 hours and fired to form a strong and porous outer shell as described above. Make it.

このようにして得られた機能物質保護構造体は球形で、
内核部の機能物質の粒径は5間のマンガン酸化物で、外
殻の厚さが0.5mmの多孔質のアルミナ質で全体の粒
径は6.0朋である。
The functional material protection structure obtained in this way is spherical,
The particle size of the functional material in the inner core is manganese oxide, and the outer shell is porous alumina with a thickness of 0.5 mm, and the total particle size is 6.0 mm.

この機能物質保護構造体の物理的性質は次の様である。The physical properties of this functional material protection structure are as follows.

但し、外殻の細孔径、細孔容積、見掛気孔率の測定は製
品の抽出サンプルにつき外殻を破壊して内部機能物質l
いたものについて行なった。
However, the pore diameter, pore volume, and apparent porosity of the outer shell are measured by destroying the outer shell of the extracted sample of the product.
I did what was there.

以下の実験例についても同様である。このようにして作
られた機能物質保護構造体を用いて、フェノールのメタ
ノールによるメチル化反応を実施した。
The same applies to the following experimental examples. A methylation reaction of phenol with methanol was carried out using the functional material protection structure thus prepared.

(マンガン酸化物にこの触媒が有効なことは特願昭45
−62682、特公昭51−11101号、ドイツ公開
A2135602号、公開日昭和47年12月7日に述
べられている。
(The effectiveness of this catalyst on manganese oxides was disclosed in a patent application filed in 1973.
-62682, Japanese Patent Publication No. 51-11101, German Publication No. A2135602, publication date December 7, 1972.

)反応条件は、フェノール分圧0.0803atm、メ
タノール分圧0.803 atm、窒素0、1164a
tmで空間速度は442(時間)〜1反反応度400℃
である。
) The reaction conditions were: phenol partial pressure 0.0803 atm, methanol partial pressure 0.803 atm, nitrogen 0, 1164a
At tm, the space velocity is 442 (hours) ~ 1 reaction rate 400°C
It is.

反応開始4時間後でフェノール転化率96.7%、2・
6−キシレノール収率93.4%、O−クレゾール収率
3.3%の結果を得た。
4 hours after the start of the reaction, the phenol conversion rate was 96.7%, 2.
Results were obtained in which the yield of 6-xylenol was 93.4% and the yield of O-cresol was 3.3%.

この機能物質保護構造体の50時間反応後の圧縮強度は
10.0kgであった。
The compressive strength of this functional material protection structure after 50 hours of reaction was 10.0 kg.

それ以上反応しても強度の低下は認められなかった。No decrease in strength was observed even after further reaction.

以上の様に本機能物質保護構造体は実用上、充分な強度
と活性を有していた。
As described above, this functional substance protective structure had sufficient strength and activity for practical use.

また、内核のマンガン酸化物は粉化しているが外に飛散
はしていなかった。
In addition, the manganese oxide in the inner core was powdered, but not scattered to the outside.

比較例 1 外殻をつげずに、マンガン酸化物のみを造粒し、反応に
使用した結果を次に述べる。
Comparative Example 1 The results of granulating only manganese oxide without forming an outer shell and using it in a reaction will be described below.

参考例1と同様の加熱処理をしたマンガン酸化物を、錠
剤成型機により直径5間、高さ51rLTItの円柱状
に成型し、1200℃で3時間焼成した。
Manganese oxide, which had been subjected to the same heat treatment as in Reference Example 1, was molded into a cylinder with a diameter of 5 mm and a height of 51 rLTIt using a tablet molding machine, and fired at 1200° C. for 3 hours.

この触媒を用いて、参考例1と同じ条件で反応を行った
Using this catalyst, a reaction was carried out under the same conditions as in Reference Example 1.

反応開始後5時間でフェノール転化率98.5%、2・
6キシレノール保率86.0%、O−クレゾール収率1
2.5%を得た。
5 hours after the start of the reaction, the phenol conversion rate was 98.5%, 2.
6-xylenol retention rate 86.0%, O-cresol yield 1
2.5% was obtained.

こ0独媒の反応前後の圧縮強度を次に示す。The compressive strength of the zero solvent before and after the reaction is shown below.

すなわち、マンガン酸化物のみでは反応中破環をうけて
粉化してしまい、実用中小都合であるが、外殻をつげた
場合には内核が粉化しても強度は外殻によって保たれ、
かつ、粉の飛散もないので、実用上大いに好都合である
In other words, if manganese oxide alone is used, it undergoes ring breakage during the reaction and becomes powder, which is inconvenient for small to medium-sized practical applications, but when the outer shell is added, even if the inner core becomes powder, the strength is maintained by the outer shell.
In addition, there is no scattering of powder, which is very convenient from a practical standpoint.

参考例 2 溶融アルミナ(100me函のもの) 60部、結合剤としてガラス粉末(400mesh全通
のもの)40部、小麦粉5部及び水15部を同時に混練
し、この混練物を外殻用混練物とし、参考例1の内核造
粒物を回転円盤型転勤造粒機に入れ、噴霧状の水と外殻
用混練物をふりかげながらまぶし、内核造粒物に被覆さ
せる。
Reference Example 2 60 parts of molten alumina (100m box), 40 parts of glass powder (all 400mesh) as a binder, 5 parts of wheat flour and 15 parts of water were kneaded at the same time, and this kneaded product was used as a kneaded product for the outer shell. Then, the inner core granules of Reference Example 1 were placed in a rotating disk-type transfer granulator, and sprinkled with atomized water and the kneaded material for the outer shell to coat the inner core granules.

所定の厚さに被覆したのちとり出し、80〜120℃で
乾燥し、匣鉢に入れて焼成炉にて徐々に加熱して、25
0℃から600℃までは特にゆるやかに加熱して、75
0℃まで昇温し、750℃で3時間保持して焼成し、外
殻を強固、かつ多孔質に焼固する。
After being coated to a predetermined thickness, it is taken out, dried at 80 to 120°C, placed in a sagger pot, and gradually heated in a kiln for 25 minutes.
From 0°C to 600°C, heat slowly to 75°C.
The temperature is raised to 0°C, and the temperature is maintained at 750°C for 3 hours to make the outer shell strong and porous.

このようにして得られた機能物質保護構造体は球形で内
核部の機能物質は粉末状のマンガン酸化物であり、外殻
の厚さは0.711LIILの多孔質のアルミナ・ガラ
ス質で全体の粒径は6.4朋である。
The functional material protection structure obtained in this way is spherical, the functional material in the inner core is powdered manganese oxide, and the outer shell is made of porous alumina glass with a thickness of 0.711 LIIL. The particle size is 6.4 mm.

この機能物質保護構造体を参考例1と同じ反応に使用し
た。
This functional material protection structure was used in the same reaction as in Reference Example 1.

反応開始4時間後、フェノール転化率82.3%、2・
6キシレノール収率75.1%、0−クレゾール収率7
.2%を得た。
4 hours after the start of the reaction, the phenol conversion rate was 82.3%, 2.
6-xylenol yield 75.1%, 0-cresol yield 7
.. Obtained 2%.

反応前後の圧縮強度を次に示す。The compressive strength before and after the reaction is shown below.

次の例では、本機能物質保護構造体を自動車排気ガス浄
化用触媒として用いた例を示す。
The following example shows an example in which the present functional material protection structure is used as a catalyst for purifying automobile exhaust gas.

自動車排気ガス浄化触媒、特に、排気ガス中の一酸化炭
素および炭化水素を完全燃焼せしめる触媒としては従来
から多くの触媒が知られているが、その多くは、担体と
してシリカアルミナ、ガンマ−アルミナなどの多孔性物
質を使用しており、実際自動車に装填して使用した場合
、振動、摩耗などにより著しく強度が低下する短所があ
る。
Many catalysts have been known for the past as automobile exhaust gas purification catalysts, especially catalysts that completely burn carbon monoxide and hydrocarbons in exhaust gas, but most of them use silica-alumina, gamma-alumina, etc. as a carrier. It uses a porous material, and when used in an automobile, it has the disadvantage that its strength is significantly reduced due to vibrations, abrasion, etc.

本発明の方法を用いれば、外殻を強固な組織となし得る
ために、はとんど強度上の心配をなくすることが可能で
ある。
By using the method of the present invention, the outer shell can be made into a strong structure, so it is possible to eliminate concerns about strength as much as possible.

参考例 3 Mn203として45部、Fe2O3として55部にな
るようにした各々の硝酸塩の混合水溶液に、アンモニア
水を滴下して共沈させ、乾燥後500℃にて焼成した粉
末を100部用い、これにアビセル粉末(旭イ城製)5
部と少量の水を加えて混練し、参考例1と同様な方法で
所定の大きさの球状物にする。
Reference Example 3 Aqueous ammonia was added dropwise to a mixed aqueous solution of nitrates in an amount of 45 parts as Mn203 and 55 parts as Fe2O3, and 100 parts of the powder was prepared by co-precipitation and drying and then calcined at 500°C. Avicel powder (manufactured by Asahi Castle) 5
and a small amount of water, knead and form into spheres of a predetermined size in the same manner as in Reference Example 1.

これを内核部とする。次に溶融アルミナ(120mes
hのもの)60部、結合剤としてホウ酸ナマリ系ガラス
粉末(400mesh全通のもの)40部、小麦粉5部
、および水15部を同時に混練し、この混練物を外殻用
混練物とする。
This is the inner core. Next, fused alumina (120mes
h), 40 parts of boric acid-based glass powder (all 400 mesh) as a binder, 5 parts of wheat flour, and 15 parts of water are simultaneously kneaded, and this kneaded product is used as a kneaded product for the outer shell. .

参考例1と同様にして内核部造粒物を回転円盤型転勤造
粒機に入れ、噴霧状の水をふりかげながら外殻用混線物
をふりかけ内核部に被覆させる。
In the same manner as in Reference Example 1, the inner core granules are placed in a rotating disk-type transfer granulator, and the inner core is coated with the outer shell mixture while sprinkling water in the form of a spray.

所定の厚さに被覆したのちとり出し、80〜120℃で
乾燥し、匣鉢に入れて焼成炉にて徐々に加熱し、200
℃から500℃までの間は特にゆるやかに昇温し500
℃で3時間保持して焼成し、外殻を強固、かつ、多孔質
に焼固する。
After being coated to a predetermined thickness, it was taken out, dried at 80 to 120°C, placed in a sagger pot and gradually heated in a kiln, and heated to 200°C.
From ℃ to 500℃, the temperature should be increased especially slowly to 500℃.
It is held at ℃ for 3 hours and fired to make the outer shell strong and porous.

この様にして得られた機能物質保護構造体は、内核部の
機能物質の粒径は5關の鉄、マンガン酸化物で、外殻は
厚さ0.71部mのアルミナ・ガラス質である。
In the functional material protection structure obtained in this manner, the functional material in the inner core is made of iron and manganese oxides with a particle size of about 5 mm, and the outer shell is made of alumina and glass with a thickness of 0.71 parts m. .

この機能物質保護構造体を内燃機関排気ガス酸化反応の
例として ヘキサンの完全酸化反応に用いた。
This functional material protection structure was used in a complete oxidation reaction of hexane as an example of an internal combustion engine exhaust gas oxidation reaction.

反応条件は次の通りである。The reaction conditions are as follows.

ヘキサン1%、空気99% 5V=5000(時間)−1常圧 触媒床温度155℃で二酸化炭素の生成が始まり、23
0℃にて送入したヘキサンの100%が二酸化炭素に転
化した。
Hexane 1%, air 99% 5V = 5000 (hours) -1 Carbon dioxide generation begins at normal pressure catalyst bed temperature 155℃, 23
At 0° C., 100% of the hexane fed was converted to carbon dioxide.

この触媒の反応前後の圧縮強度は次の通りである。The compressive strength of this catalyst before and after the reaction is as follows.

断続的に500時間反応を行ったが強度の低下は認めら
れなかった。
Although the reaction was conducted intermittently for 500 hours, no decrease in strength was observed.

次にこの機能物質保護構造体を、30日間自動車に装填
しておいた(走行974km)が、圧縮強度は13.0
kgで強度の低下は認められず、また、重量減少も僅か
であった。
Next, this functional material protection structure was loaded into a car for 30 days (driving 974 km), and the compressive strength was 13.0.
kg, no decrease in strength was observed, and there was also a slight decrease in weight.

次の例は、内核と外殻の間に空隙を有するものの例であ
る。
The following example is one that has a void between the inner core and the outer shell.

実施例 l 材料は参考例1と同様であるが、外殻用原料を被覆する
前に、内核表面にクルミ粉(100mesh全通のもの
)50部と小麦粉20部、コーンスターチ10部を水3
0部で練ったもので、外殻用原料を被覆するものと同様
な方法で所定の厚さに被覆させ、これに外殻用原料を被
覆した。
Example 1 The materials are the same as those in Reference Example 1, but before coating the raw material for the outer shell, 50 parts of walnut powder (through 100 mesh), 20 parts of wheat flour, 10 parts of cornstarch, and 3 parts of water were added to the surface of the inner core.
The material was kneaded with 0 parts, and was coated to a predetermined thickness in the same manner as for coating the raw material for the outer shell, and then the raw material for the outer shell was coated on this.

この様にして得た三層からなる構造物を乾燥後匣鉢に入
れ、参考例1と同様な加熱方法、加熱温度で焼成し、内
核の機能物質の粒径5.5朋、空隙間隔0.23 mr
tt、外殻厚さ0.64 mm、全体の粒径7.24朋
の中間に空隙を有する機能物質保護構造体を得た。
After drying, the three-layered structure obtained in this way was placed in a sagger pot, and fired at the same heating method and heating temperature as in Reference Example 1. .23 mr
A functional material protection structure having a void in the middle of tt, an outer shell thickness of 0.64 mm, and a total particle size of 7.24 mm was obtained.

このものを参考例1と同様な反応に用いた結果、反応温
度400℃にてフェノール転化率98.0%、2・6キ
シレノール収率96.0%、O−クレゾール収率2.0
%を得た。
When this product was used in the same reaction as in Reference Example 1, the phenol conversion rate was 98.0%, the 2.6-xylenol yield was 96.0%, and the O-cresol yield was 2.0% at a reaction temperature of 400°C.
I got %.

反応時間が200時間経過したところで活性低下が認め
られたので、温度500℃で、触媒層に空気を空間速度
3000(時間)−1で3時間通し触媒再生を行った。
After 200 hours of reaction time, a decrease in activity was observed, so the catalyst was regenerated by passing air through the catalyst layer at a temperature of 500° C. and a space velocity of 3000 (hour) −1 for 3 hours.

その後参考例1と同様な反応に更に200時間使用し、
再び上記の触媒再生を行うことを7回繰り返した。
Thereafter, it was used for a further 200 hours in the same reaction as in Reference Example 1,
The above catalyst regeneration was repeated seven times.

反応時間の総計が1600時間の触媒を抜き出したとこ
ろ、触媒は全く破壊されておらず元のままの形を保ち、
圧縮強度も初期の14.4kgから12.5kgとなっ
ただけであった。
When the catalyst with a total reaction time of 1,600 hours was extracted, the catalyst was not destroyed at all and remained in its original shape.
The compressive strength also only increased from the initial 14.4 kg to 12.5 kg.

次の例では、本発明の機能物質保護構造体にすることに
より生成物の選択率が改良されることについて述べる。
The following example describes the improved product selectivity achieved by the functional substance protection structure of the present invention.

フェノールとメタノールの反応では、最初O−クレゾー
ルが生成し、更にこれが2・6キシレノールとなるので
あるが、この反応に機能物質保護構造体を使用すると、
2・6キシレノールの選択率が向上する。
In the reaction of phenol and methanol, O-cresol is first produced, which then becomes 2.6-xylenol, but when a functional material protection structure is used in this reaction,
The selectivity of 2.6 xylenol is improved.

これはおそらく内核部のマンガン酸化物触媒に到達した
フェノールが反応して、0−クレゾールとなりマンガン
酸化物触媒より気相中に離脱してから、逃げ道が狭いた
めに更に再吸着して反応する割合が多くなるためと思わ
れる。
This is probably due to the rate at which phenol that reaches the manganese oxide catalyst in the inner core reacts, becomes 0-cresol, leaves the manganese oxide catalyst and leaves the gas phase, and then re-adsorbs and reacts because the escape route is narrow. This seems to be because there are more.

外殻の細孔径も小さくしたり、厚さを増したりするとこ
の傾向は更に助長される。
This tendency is further exacerbated when the pore diameter of the outer shell is reduced or the thickness is increased.

このことは、機能物質保護構造体と普通の成型触媒を用
いた場合の、同一フェノール転化率時の2・6キシレノ
ール収率の大小で示されるが、特に低転化率時、この効
果は顕著である。
This is shown by the magnitude of the 2.6-xylenol yield at the same phenol conversion rate when using a functional material protection structure and a regular shaped catalyst, and this effect is particularly noticeable at low conversion rates. be.

参考例2に於いて用いられた機能物質保護構造体は、フ
ェノール転化率82.3%時、2・6キシレノール収率
75.1%、O−クレゾール収率7.2%であるが、比
較例に示したマンガン酸化物の成型品では、反応温度4
00℃、LH8V=2.61゜MeOH/PhOH=1
0(モル比)の条件で、フェノール転化率82.0%時
、2・6−キシレノール収率50%、0−クレゾール収
率32%である。
The functional material protection structure used in Reference Example 2 had a phenol conversion rate of 82.3%, a 2.6-xylenol yield of 75.1%, and an O-cresol yield of 7.2%. In the molded product of manganese oxide shown in the example, the reaction temperature was 4
00℃, LH8V=2.61゜MeOH/PhOH=1
Under conditions of 0 (molar ratio), when the phenol conversion rate is 82.0%, the yield of 2,6-xylenol is 50% and the yield of 0-cresol is 32%.

次にアルミナセメントを外殻用原料として用いた例を示
す。
Next, we will show an example in which alumina cement is used as the raw material for the outer shell.

参考例 4 参考例1と同様にしてマンガン酸化物の内核部を作り、
アルミナセメント100部に対して、水13部を充分に
混練し、参考例1の様に内核部に被覆する。
Reference example 4 Create an inner core of manganese oxide in the same manner as in reference example 1,
13 parts of water are sufficiently kneaded with 100 parts of alumina cement, and the mixture is coated on the inner core as in Reference Example 1.

これを日陰に2昼夜放置し、外殻部のアルミナセメント
が充分硬化したのを確めて、匣鉢に入れ焼成炉にて、約
り00℃/時の昇温速度で620°Cとし、620℃で
3時間保持した後、炉内で冷却させる。
This was left in the shade for two days and nights, and after making sure that the alumina cement in the outer shell was sufficiently hardened, it was placed in a sagger and heated to 620°C in a firing furnace at a rate of about 00°C/hour. After being held at 620° C. for 3 hours, it is cooled in the furnace.

こうしてできた機能物質保護構造体は球形で内核部の酸
化マンガンは粉末状で外殻の厚さが0.8關の多孔質の
アルミナセメント質で全体の粒径は6.6関であった。
The functional material protection structure thus created was spherical, the manganese oxide in the inner core was in the form of powder, and the outer shell was porous alumina cement with a thickness of 0.8 cm, and the overall particle size was 6.6 cm. .

この機能物質保護構造体の物理的性質は次の様である。The physical properties of this functional material protection structure are as follows.

この機能物質保護構造体を参考例1と同様な反応に使用
した場合、次の様な結果であつfも反応温度410℃で
フェノール転化率31%、2・6キシレノ一ル収率27
%、O−クレゾール収率4%であった。
When this functional substance protection structure was used in the same reaction as in Reference Example 1, the following results were obtained, and f was 31% in phenol conversion at a reaction temperature of 410°C, and a yield of 2.6-xylenol of 27%.
%, and the O-cresol yield was 4%.

次に珪藻土を外殻にしたものの実例を示す。Next, we will show an example of one with an outer shell made of diatomaceous earth.

参考例 5 参考例1と同様にしてマンガン酸化物の内核部を作り、
珪藻土100部に水70部を加えて充分混練し、参考例
1と同様に内核部に被覆する。
Reference example 5 Create an inner core of manganese oxide in the same manner as in reference example 1,
70 parts of water are added to 100 parts of diatomaceous earth, thoroughly kneaded, and coated on the inner core in the same manner as in Reference Example 1.

これを80〜120℃で充分乾燥させ、匣鉢に入れて焼
成炉にて、約り00℃/時の昇温速度で1ooo℃とし
、1000℃で3時間保持し、炉内で冷却する。
This is sufficiently dried at 80 to 120°C, placed in a sagger, placed in a firing furnace, raised to 100°C at a rate of about 00°C/hour, held at 1000°C for 3 hours, and cooled in the furnace.

こうしてできた機能物質保護構造体は、球形で、内核部
の粒径が5mmのマンガン酸化物で、外殻は厚さが0.
6mmの多孔質の珪藻土質である。
The functional material protection structure thus created is spherical, with an inner core made of manganese oxide with a particle size of 5 mm, and an outer shell with a thickness of 0.5 mm.
It is made of diatomaceous earth with 6mm pores.

この機能物質保護構造体の物理的性質は次の様である。The physical properties of this functional material protection structure are as follows.

この機能物質保護構造体を参考例1と同様な反応に使用
した場合、次の様であった。
When this functional material protection structure was used in the same reaction as in Reference Example 1, the reaction was as follows.

反応温度410℃で、フェノール転化率90%、2・6
−キシレノール収率83.0%、0−クレゾール収率7
%であった。
At a reaction temperature of 410°C, phenol conversion rate was 90%, 2.6
-Xylenol yield 83.0%, 0-cresol yield 7
%Met.

次に外殻の連通細孔の細孔径が大きなものの例を示す。Next, an example will be shown in which the communicating pores in the outer shell have a large pore diameter.

参考例 6 参考例1と同様にして、マンガン酸化物の内核部を作り
、溶融アルミナ(80meshのもの)85部、陶土1
2部、長石6部、クルミ粉(60〜100meshOも
の)5部、小麦粉5部、アビセル粉末(旭化成製)3部
、水10部を充分混練し、参考例1のように被覆する。
Reference Example 6 In the same manner as Reference Example 1, an inner core of manganese oxide was made, and 85 parts of molten alumina (80 mesh) and 1 part of china clay were added.
2 parts of feldspar, 6 parts of walnut powder (60 to 100 meshO), 5 parts of wheat flour, 3 parts of Avicel powder (manufactured by Asahi Kasei), and 10 parts of water were sufficiently kneaded and coated as in Reference Example 1.

これを80〜120℃で充分乾燥させ、匣鉢に入れて焼
成炉にて、100℃/時の昇温速度で1200℃とし、
1200°Cで3時間保持して、炉内で冷却する。
This was sufficiently dried at 80 to 120°C, placed in a sagger and heated to 1200°C at a heating rate of 100°C/hour in a firing furnace.
Hold at 1200°C for 3 hours and cool in the oven.

こうしてできた機能物質保護構造体は球形で、内核部の
機能物質の粒径が51rLrILのマンガン酸化物で、
外殻は厚さ1.01r111Lの多孔質のアルミナ質で
ある。
The functional material protection structure thus created is spherical, and the functional material in the inner core is manganese oxide with a particle size of 51rLrIL.
The outer shell is made of porous alumina and has a thickness of 1.01r111L.

この機能物質保護構造体の物理的性質は次の様である。The physical properties of this functional material protection structure are as follows.

この機能物質保護構造体を参考例1と同様な反応に使用
した場合、次の様な結果であった。
When this functional substance protection structure was used in the same reaction as in Reference Example 1, the following results were obtained.

反応温度410℃でフェノール転化率84.5%、2・
6キシレノール収率73.5%、0−クレゾール11%
であった。
Phenol conversion rate 84.5% at reaction temperature 410°C, 2.
6-xylenol yield 73.5%, 0-cresol 11%
Met.

比較例 2 参考例6に使用した触媒を実施例1と同様に、反応に2
00時間使用して触媒再生する操作を繰り返し反応時間
の総計が1600時間の触媒を取り出したところ、触媒
全体の16.3%が外殻が破壊されていた。
Comparative Example 2 The catalyst used in Reference Example 6 was used in the reaction in the same manner as in Example 1.
When the catalyst was taken out after a total reaction time of 1,600 hours after repeated use for 1,600 hours, it was found that the outer shell of 16.3% of the entire catalyst had been destroyed.

実施例 2 実施例1と同様にしてマンガン酸化物の内核部を作り、
この内核表面にクルミ粉(100mesh全通のもの)
50部と小麦粉20部、コーンスターチ10部を水30
部で練ったもので、外殻用原料を被覆するのと同様な方
法で所定の厚さに被覆させ、これに参考例6と同じ外殻
材料を参考例6と同様に被覆し、焼成した。
Example 2 An inner core of manganese oxide was made in the same manner as in Example 1,
Walnut powder (through 100 mesh) on the surface of this inner core
50 parts, 20 parts of wheat flour, 10 parts of cornstarch, 30 parts of water.
The material was kneaded in the same manner as in Reference Example 6, and was coated to a predetermined thickness in the same manner as the raw material for the outer shell was coated, and then the same outer shell material as in Reference Example 6 was coated in the same manner as in Reference Example 6, and fired. .

こうして得られた機能物質保護構造体は、内核部の粒径
が5間のマンガン酸化物で、空隙が0.2mm、外殻の
厚さが1.0mmの多孔質のアルミナである。
The functional substance protection structure thus obtained is porous alumina, which is made of manganese oxide with a particle size of 5 mm in the inner core, has a void of 0.2 mm, and has an outer shell thickness of 1.0 mm.

この触媒を用い、実施例1と同様な反応に用い、実施例
1と同様に反応、触媒再生を繰り返し、反応時間の総計
が1600時間の触媒を取り出したところ、外殻の破壊
は全くみられず、触媒の破壊強度も初期の11.7kg
から10.2kgとなっただけであった。
This catalyst was used in the same reaction as in Example 1, and the reaction and catalyst regeneration were repeated in the same manner as in Example 1. When the catalyst was taken out after a total reaction time of 1600 hours, no destruction of the outer shell was observed. The breaking strength of the catalyst was also the same as the initial 11.7 kg.
The weight was only 10.2 kg.

次に金属銅を外殻に使用した例を示す。Next, we will show an example where metallic copper is used for the outer shell.

参考例 7 参考例1と同様にしてマンガン酸化物の内核部を作り、
銅粉(80−150meshのもの)100部、アビセ
ル粉末3部、水10部で充分混練し、参考例1の様に被
覆させる。
Reference example 7 Create an inner core of manganese oxide in the same manner as in reference example 1,
100 parts of copper powder (80-150 mesh), 3 parts of Avicel powder, and 10 parts of water were thoroughly kneaded and coated as in Reference Example 1.

その後80〜120℃で充分乾燥し、通気性のない磁製
ルツボ(内径800mm、深さ150 mm、肉厚5
mm )の中に入れフタをして、フタとルツボのすき間
を粘土で密封し、その粘土が充分乾燥した後、電気炉に
て、100℃/時の昇温速度で1000℃とし、100
0℃にて3時間保持して炉内に冷却する。
After that, it is sufficiently dried at 80 to 120°C and placed in a non-porous porcelain crucible (inner diameter 800 mm, depth 150 mm, wall thickness 5
mm), put the lid on, and seal the gap between the lid and the crucible with clay. After the clay has dried sufficiently, heat it in an electric furnace at a heating rate of 100°C/hour to 1000°C.
Hold at 0° C. for 3 hours and cool in the furnace.

冷却後、粘土をはずしてフタをとって、とり出し、水洗
して表面に付着したものを洗い取る。
After cooling, remove the clay, remove the lid, take it out, and wash it with water to remove anything stuck to the surface.

その後80〜120℃で充分乾燥させる。After that, it is sufficiently dried at 80 to 120°C.

こうして出来た機能物質保護構造体は球形で、内核部の
機能物質の粒径は51n11Lのマンガン酸化物で、外
殻は厚さが0.8闘の多孔質の銅である。
The functional material protection structure thus created is spherical, the functional material in the inner core is manganese oxide with a particle size of 51n11L, and the outer shell is porous copper with a thickness of 0.8mm.

この機能物質保護構造体の物理的性質は次の様である。The physical properties of this functional material protection structure are as follows.

この機能物質保護構造体を参考例1と同様な反応に使用
した場合、次の様であった。
When this functional material protection structure was used in the same reaction as in Reference Example 1, the reaction was as follows.

反応温度450℃でフェノール転化率39%、2・6キ
シレノ一ル収率16%、O−クレゾール収率23%であ
った。
At a reaction temperature of 450°C, the phenol conversion rate was 39%, the 2.6-xylenol yield was 16%, and the O-cresol yield was 23%.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒又は吸着剤の機能物質の内核と、連通細孔を有
する多孔性外殻との間に空隙を形成せしめた機能物質保
護構造体。
1. A functional material protection structure in which voids are formed between an inner core of a functional material of a catalyst or adsorbent and a porous outer shell having communicating pores.
JP56151683A 1981-09-25 1981-09-25 Functional material protection structure Expired JPS5844412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56151683A JPS5844412B2 (en) 1981-09-25 1981-09-25 Functional material protection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151683A JPS5844412B2 (en) 1981-09-25 1981-09-25 Functional material protection structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP47080252A Division JPS5831978B2 (en) 1972-08-10 1972-08-10 Kinobutsutsushihogokouzotai

Publications (2)

Publication Number Publication Date
JPS5794347A JPS5794347A (en) 1982-06-11
JPS5844412B2 true JPS5844412B2 (en) 1983-10-03

Family

ID=15523966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151683A Expired JPS5844412B2 (en) 1981-09-25 1981-09-25 Functional material protection structure

Country Status (1)

Country Link
JP (1) JPS5844412B2 (en)

Also Published As

Publication number Publication date
JPS5794347A (en) 1982-06-11

Similar Documents

Publication Publication Date Title
US4039480A (en) Hollow ceramic balls as automotive catalysts supports
US4059544A (en) Active material compositions with porous protective sheath and method for preparing
KR930005311B1 (en) Preparation of monolithic support structure containing high surface area agglomerates
US4871693A (en) Porous cordierite ceramics
US4870045A (en) High-temperature resistant molded catalysts and process for their production
CN102712539B (en) Method for producing hollow bodies having enclosed freely displaceable particles
US4894189A (en) Process for the production of spherical particles
JPH029446A (en) Shaped catalyst and method therefor
JPS61212331A (en) Preparation of monolithic catalyst carrier having integratedhigh surface area phase
JP2004536757A (en) Molded activated carbon
JPS5831978B2 (en) Kinobutsutsushihogokouzotai
JP2716587B2 (en) Catalyst carrier and method for producing the same
US2423686A (en) Siliceous contact material and process of manufacture
JPS5833017B2 (en) Functional material protection structure
US6616873B1 (en) Process for making macro porous ceramic spheres
JPS5844412B2 (en) Functional material protection structure
CA1052366A (en) Production of material consisting of solid hollow spheroids
JP3092477B2 (en) Granular activated carbon and method for producing the same
JPS6217082A (en) Manufacture of porous sintered body
JPS642423B2 (en)
JPS60260417A (en) Manufacture of silica-containing porous formed body
JPH11349319A (en) Production of activated carbon
JPH11349318A (en) Production of activated carbon
JPH03208870A (en) Production of porous ceramic body
JP3329393B2 (en) Zirconia molded carrier for chlorofluorocarbon gas decomposition catalyst and method for producing the same