JPS5844131B2 - Heat treatment method for steel pipes - Google Patents

Heat treatment method for steel pipes

Info

Publication number
JPS5844131B2
JPS5844131B2 JP1720578A JP1720578A JPS5844131B2 JP S5844131 B2 JPS5844131 B2 JP S5844131B2 JP 1720578 A JP1720578 A JP 1720578A JP 1720578 A JP1720578 A JP 1720578A JP S5844131 B2 JPS5844131 B2 JP S5844131B2
Authority
JP
Japan
Prior art keywords
temperature
heating
coil
steel pipe
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1720578A
Other languages
Japanese (ja)
Other versions
JPS54110113A (en
Inventor
時芳 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1720578A priority Critical patent/JPS5844131B2/en
Publication of JPS54110113A publication Critical patent/JPS54110113A/en
Publication of JPS5844131B2 publication Critical patent/JPS5844131B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 この発明は、鋼管を移送しながら加熱し、焼入れを行う
鋼管の熱処理方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for heat treatment of steel pipes, in which the steel pipes are heated and quenched while being transferred.

一般に大直径鋼管において、その直径dwと肉厚twと
の比tw/dwが小さく、特に焼入、規準等のAC3点
以上に加熱する熱処理を行う場合、断面の偏平あるいは
長さ方向の曲り等の変形が発生しやすいことに既知の事
実である。
In general, in large diameter steel pipes, the ratio tw/dw of the diameter dw and wall thickness tw is small, and in particular, when heat treatment is performed to heat to AC 3 points or more such as quenching or standard, the cross section may be flattened or bent in the length direction. It is a known fact that deformation is likely to occur.

これらの変形を温度域別に分類すると第1図a。These deformations are classified by temperature range as shown in Figure 1a.

bに示すように自重による変形域の領域A、不均一加熱
による変形域の領域B及び不均一冷却による変形域の領
域Cがある。
As shown in b, there are a region A of deformation due to its own weight, a region B of deformation due to non-uniform heating, and a region C of deformation due to non-uniform cooling.

領域Aは、いわゆる材料の高温軟化による変形域で、金
属材料は材質によって決まる所定の温度を超えると、二
次再結晶による結晶粒の急速な成長等が原因で急速に軟
化することが知られている。
Region A is the so-called deformation region due to high-temperature softening of the material, and it is known that metallic materials rapidly soften when a predetermined temperature determined by the material is exceeded due to rapid growth of crystal grains due to secondary recrystallization. ing.

領域Bは、鋼管の円周上の加熱温度に温度差、いわゆる
温度ムラがあると熱膨張の差により変形が発生する。
In region B, if there is a temperature difference, so-called temperature unevenness, in the heating temperature on the circumference of the steel pipe, deformation occurs due to a difference in thermal expansion.

領域Cは、加熱後の急速な冷却により、まづ金属は収縮
し、さらに300〜400℃附近でのマルテンサイト変
態により逆に膨張するが、冷却が不均一となって温度ム
ラが生じると円周上において各点の収縮・膨張が異なり
変形が発生する。
In region C, the metal first contracts due to rapid cooling after heating, and then expands due to martensitic transformation at around 300-400℃, but if cooling becomes uneven and temperature unevenness occurs, the metal will shrink. Each point on the circumference contracts and expands differently, causing deformation.

これらの各領域に対する対策としては下記のようなこと
が考えられる。
The following measures can be considered for each of these areas.

領域Bに対してはできるだけ均一加熱を得るようにする
The area B is heated as uniformly as possible.

すなわち、誘導加熱用の加熱コイル2と鋼管3の偏心、
いわゆるずれが発生しないように、例えば、鋼管3を回
転せずに移送する場合は、加熱コイル2と鋼管3との偏
心度を検出して、中心軸を自動調心する機構が必要Σな
る。
That is, the eccentricity of the heating coil 2 for induction heating and the steel pipe 3,
If, for example, the steel pipe 3 is to be transferred without rotating in order to prevent so-called misalignment, a mechanism that detects the eccentricity between the heating coil 2 and the steel pipe 3 and automatically aligns the central axis is required.

しかし、これは、鋼管3を回転しながら移送すれ°ばか
なり改善される。
However, this can be considerably improved by transferring the steel pipe 3 while rotating.

また鋼管3に偏肉等がある場合は、加熱電源周波数を適
切に選ぶ等が考えられる。
Furthermore, if the steel pipe 3 has uneven thickness, etc., it is possible to appropriately select the frequency of the heating power source.

領域Cに対しては、鋼管3が回転しているか回転してい
ないかで異なる。
For region C, it differs depending on whether the steel pipe 3 is rotating or not.

回転がある場合は、(a)加熱コイル2との偏心に起因
する加熱ムラがなくなる。
When there is rotation, (a) uneven heating due to eccentricity with respect to the heating coil 2 is eliminated.

(b)自重による変形が小さくなる等種々の点で好まし
い。
(b) It is preferable in various respects, such as less deformation due to its own weight.

一方、回転のない場合は、鋼管3と環状冷却装置15と
の芯ずれをなくす自動調心機構及び冷却開始点を揃える
ための冷却水噴射ノズルの精度よく加工すること等、冷
却装置15に対する工夫が必要となる。
On the other hand, in the case of no rotation, improvements to the cooling device 15 may be made, such as a self-aligning mechanism to eliminate misalignment between the steel pipe 3 and the annular cooling device 15, and precision machining of the cooling water injection nozzle to align the cooling start points. Is required.

領域Aに対しては、Ac3点以上に加熱された域の長さ
loに依存する。
For region A, it depends on the length lo of the region heated to the Ac3 point or higher.

もちろん、正確にはこれより多少長く、冷却開始後も若
干は変形域に入るゾーンがある。
Of course, to be exact, there is a zone that is somewhat longer than this, and even after cooling begins, it still enters the deformation region.

したがって、この長さloは、できるだけ短いことが望
ましいが、この長さloは、下記の条件により制限され
る。
Therefore, it is desirable that this length lo be as short as possible, but this length lo is limited by the following conditions.

すなわち、(イ)加熱コイル2の製作上、加熱コイル2
0単位大きさに投入し得る電力に制限ある。
That is, (a) in manufacturing the heating coil 2, the heating coil 2
There is a limit to the power that can be input to 0 unit size.

したがって、必要な処理トン数、すなわち処理速度が決
まれば最低必要なコイル長さ及び台数が決まることにな
る。
Therefore, once the required processing tonnage, that is, the processing speed is determined, the minimum required coil length and number of coils will be determined.

(ロ)鋼管3の肉厚が厚い場合は、管内外の温度差をで
きるだけ小さくするために加熱時間を比較的長くとる必
要がある。
(b) When the wall thickness of the steel pipe 3 is thick, it is necessary to take a relatively long heating time in order to minimize the temperature difference between the inside and outside of the pipe.

(イ)の条件に対しては、加熱コイル2の製作技術との
関連があるのでやむを得ない点がある。
Condition (a) is unavoidable because it is related to the manufacturing technology of the heating coil 2.

(ロ)の条件に対しては、加熱電源の周波数の選択等で
対処して来たのが従来の対処法であった。
The conventional solution to the condition (b) has been to select the frequency of the heating power source.

このためA c 3変態点での昇温速度が遅いので金属
の結晶粒が阻大化し、品質向上が困難であるという欠点
があった。
For this reason, since the rate of temperature increase at the A c 3 transformation point is slow, the crystal grains of the metal become enlarged, making it difficult to improve quality.

この発明は上記欠点を解消するためになされたもので、
鋼材の強度が急激に低下する第1の温度まで所定の電力
密度で加熱した後、第1の温度まで加熱したときの電力
密度より大きい電力密度でAc3変態点を超える第2の
温度まで加熱することによって、金属の結晶粒子の微細
化を図り品質を向上させることができる鋼管の熱処理方
法を提供することを目的とするものである。
This invention was made to eliminate the above drawbacks.
After heating at a predetermined power density to a first temperature at which the strength of the steel material rapidly decreases, it is heated to a second temperature exceeding the Ac3 transformation point at a power density higher than the power density when heated to the first temperature. It is an object of the present invention to provide a method for heat treatment of steel pipes, which can refine metal crystal grains and improve quality.

以下、この発明の一実施例を従来の方法と比較しながら
説明する。
Hereinafter, an embodiment of the present invention will be described while comparing it with a conventional method.

第2図は従来の大径管の誘導加熱による焼入工程をコイ
ル構成図として図示したものである。
FIG. 2 is a diagram illustrating a conventional quenching process by induction heating for large diameter pipes as a coil configuration diagram.

まづ、コイル1で室温から750℃まで加熱し、次いで
コイル2で最終加熱温度の950℃まで加熱するものと
する。
First, coil 1 heats from room temperature to 750°C, and then coil 2 heats to the final heating temperature of 950°C.

なお加熱電源周波数は一般には50または60Hzが多
い。
Note that the frequency of the heating power source is generally 50 or 60 Hz.

この場合、鋼管3のサイズは1016mmφX12.7
mm厚さとし、根管はC:020%、Mn:0.75%
程度の炭素鋼管とすると、加熱速度が2〜b Ac3点は860〜870℃程度となる。
In this case, the size of the steel pipe 3 is 1016mmφX12.7
mm thickness, root canal: C: 020%, Mn: 0.75%
If the carbon steel pipe is made of carbon steel pipe of about

そして加熱に必要な電力は、加熱コイル1,2の効率等
を除き、鋼管3の加熱に必要な電力と、輻射による損失
分に相当する電力とを加えたものをPwl及びP w2
(KW )とすると、鋼管3の移送速度が6mm/se
cの時、コイル1とコイル2の電力はそれぞれ1092
にW、853にWとなり、Ac3点を相当するコイル2
の平均加熱速度は2.2℃/seeとなる。
The power required for heating is the sum of the power required for heating the steel pipe 3 and the power equivalent to the loss due to radiation, excluding the efficiency of the heating coils 1 and 2, Pwl and Pw2
(KW ), the transfer speed of the steel pipe 3 is 6 mm/se
When c, the power of coil 1 and coil 2 are each 1092
W to 853, W to 853, and coil 2 corresponding to 3 points of Ac.
The average heating rate is 2.2°C/see.

なお、鋼材の強度が急激に低下する第1の温度までの加
熱を担当するコイル1の平均加熱速度UHは2.00/
sec である。
Note that the average heating rate UH of the coil 1, which is responsible for heating up to the first temperature at which the strength of the steel material rapidly decreases, is 2.00/
sec.

ただし、図示のようにコイル長さは800mm、コイル
間の間隙は1200mmとする。
However, as shown in the figure, the length of the coil is 800 mm, and the gap between the coils is 1200 mm.

なお、4は鋼管3を支持するローラである。Note that 4 is a roller that supports the steel pipe 3.

また、第3図は鋼管3のサイズ、材質、移送速度は第2
図のものと同様として、この発明の思想に基いてコイル
構成を行った焼入工程である。
In addition, Fig. 3 shows that the size, material, and transfer speed of the steel pipe 3 are
Similar to the one shown in the figure, this is a hardening process in which a coil was constructed based on the idea of the present invention.

この構成ではコイル1が室温から450 ’Cまでを、
コイル5が750℃までをそれぞれ加熱範囲としており
、コイル2がA c 3点を含んで最終加熱温度の95
0℃までの加熱を担当することになる。
In this configuration, coil 1 operates from room temperature to 450'C.
Coil 5 has a heating range of up to 750°C, and coil 2 has a heating range of 95°C, which is the final heating temperature, including 3 points A.
He will be in charge of heating the temperature down to 0℃.

この場合は、コイル2の役割は、第2図におけるコイル
2の役割と同様である。
In this case, the role of coil 2 is similar to that of coil 2 in FIG.

したがって、A c B 点を通過する加熱速度は2.
2℃/seeと、これも第2図と同様であるが、前段に
おいて、鋼材の強度が急激に低下する第1の温度までの
加熱速度UHは第2図での2.0℃/ seeに対して
1.0℃/ secであって1/2となる。
Therefore, the heating rate through the A c B point is 2.
2℃/see, which is also the same as in Figure 2, but in the first stage, the heating rate UH up to the first temperature at which the strength of the steel material rapidly decreases is 2.0℃/see in Figure 2. On the other hand, it is 1.0°C/sec, which is 1/2.

したがって、鋼管3の内外の温度分布も、もちろん各加
熱コイル1,2゜5間の放熱ゾーンにおける均熱作用等
も考慮する必要があるが、大ざっばに云って約1/2に
改善されることになる。
Therefore, it is necessary to consider the temperature distribution inside and outside the steel pipe 3, as well as the heat equalization effect in the heat dissipation zone between the heating coils 1 and 2°5, but roughly speaking, the improvement is approximately 1/2. That will happen.

さらに、第4図はこの発明の一実施例で3台の加熱コイ
ルL2,5からなる焼入工程であるが、鋼材の強度が急
激に低下する第1の温度からAc3変態点を超える最終
加熱温度の第2の温度までを担当するコイル2の長さを
4001nrIlとした場合である。
Furthermore, FIG. 4 shows a quenching process consisting of three heating coils L2 and 5 in an embodiment of the present invention. This is a case where the length of the coil 2 responsible for the temperature up to the second temperature is 4001nrIl.

この場合は、A c 3点を通過する加熱速度UHは4
.3℃/ seeと早くなる。
In this case, the heating rate UH passing through the three points A c is 4
.. The temperature rises as quickly as 3℃/see.

したがって、焼入後の材料の結晶粒度が第2図の場合に
くらべて細かくなり、機械的特性が改善されるという特
長を有する。
Therefore, the crystal grain size of the material after quenching is finer than in the case shown in FIG. 2, and the mechanical properties are improved.

なお第2図〜第4図において矢印6は鋼管3の移送方向
を示す。
Note that in FIGS. 2 to 4, an arrow 6 indicates the direction in which the steel pipe 3 is transferred.

上記の3つの実施例(第2図〜第4図)について、平均
加熱速度UH1加熱コイルの電力密度Pd、第2図の場
合を100とした管内外の温度差等を第1表に示す。
Table 1 shows the average heating rate UH1 power density Pd of the heating coil, the temperature difference inside and outside the tube, etc. with the case of FIG. 2 set as 100 for the above three examples (FIGS. 2 to 4).

ただし、第1表は鋼管の移送速度は6 ynm/ se
e s鋼管サイズは1016φx12.7t、加熱コイ
ルの長さ800mm(第4図におけるコイル2は400
mm)、各コイル間隔は12001m、加熱電源の周波
数は60〜180H2、材質はAl511020相当品
の条件とした場合である。
However, Table 1 shows that the transfer speed of the steel pipe is 6 ynm/se.
The steel pipe size is 1016φ x 12.7t, and the length of the heating coil is 800mm (coil 2 in Fig. 4 is 400mm).
mm), the distance between each coil is 12001 m, the frequency of the heating power source is 60 to 180 H2, and the material is equivalent to Al511020.

第1表かられかるように、従来の方法である第2図の工
程では第1の温度から最終加熱温度の第2の温度までを
担当する加熱コイル2の電力密度が比較的低いが、この
発明の実施例を示す第3図及び第4図についてはその値
が比較的高いのが特長である。
As can be seen from Table 1, in the conventional process shown in Figure 2, the power density of the heating coil 2, which is in charge of heating from the first temperature to the second final heating temperature, is relatively low; The characteristic of FIGS. 3 and 4, which show embodiments of the invention, is that the values are relatively high.

第5図は鋼管3の長手方向の位置りと、この位置りの各
点における鋼管3の温度Tを示すものである。
FIG. 5 shows the longitudinal position of the steel pipe 3 and the temperature T of the steel pipe 3 at each point at this position.

7は第2図に示す従来の方法で、第1の温度点8までを
コイル1で加熱し、第2の温度点9までをコイル2で加
熱することを示して(、・る。
7 is a conventional method shown in FIG. 2, in which the coil 1 heats up to a first temperature point 8, and the coil 2 heats up to a second temperature point 9.

10は第8図の方法で、コイル1,5によって第1の温
度点8まで、さらにコイル2によって第2の温度点9で
加熱する。
10 is the method shown in FIG. 8, in which coils 1 and 5 heat to a first temperature point 8, and coil 2 heats to a second temperature point 9.

11はこの発明の他の実施例である第4図の方法であっ
て、第1の温度点8までは第3図の方法と同様にコイル
1,5で加熱し電力密度を低下させることによって、第
1の温度点8までの加熱域を比較的長くして、鋼管3の
内外温度差を小さくする。
11 is another embodiment of the present invention, which is the method shown in FIG. , the heating region up to the first temperature point 8 is made relatively long to reduce the temperature difference between the inside and outside of the steel pipe 3.

さらに、第1の温度点8まで加熱したときの電力密度よ
り大きい電力密度でコイル2によって第2の温度点12
まで加熱する。
Furthermore, the second temperature point 12 is heated by the coil 2 at a power density greater than the power density when heating to the first temperature point 8.
Heat until.

13は第2図及び第3図の方法によるときの鋼管3の自
重による変形域、14は第4図の方法によるときの鋼管
3の自重による変形域であって、従来のものに比較して
領域が狭(なっている。
13 is the deformation area of the steel pipe 3 due to its own weight when using the method shown in FIGS. 2 and 3, and 14 is the deformation area due to its own weight when using the method shown in FIG. The area is narrow.

この発明によると、鋼材の強度が急激に低下する第1の
温度まで所定の電力密度で加熱した後、第1の温度まで
加熱したときの電力密度より大きい電力密度でAc諜態
点を超える第2の温度まで加熱することによって、第1
の温度までは低い電力密度で比較的長い時間加熱して鋼
管の内外の温度差を小さくし、第1の温度から第2の温
度までは高い電力密度で短時間に加熱してA、c3変態
点を超える加熱速度を早め結晶粒子の微細化を図ること
ができる。
According to this invention, after heating the steel at a predetermined power density to a first temperature at which the strength of the steel material rapidly decreases, the second temperature exceeds the AC temperature at a power density higher than the power density at the time of heating to the first temperature. By heating to the temperature of the first
From the first temperature to the second temperature, heat at a low power density for a relatively long time to reduce the temperature difference between the inside and outside of the steel pipe, and from the first temperature to the second temperature, heat at a high power density for a short time to achieve the A, c3 transformation. By increasing the heating rate beyond the point, it is possible to make crystal grains finer.

従って鋼管の誘導加熱後の品質を大巾に改善することが
できる。
Therefore, the quality of steel pipes after induction heating can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は誘導加熱をyFIJ用した鋼管の焼入を行う熱
処理装置の構成図、第2図は従来の熱処理装置を示す構
成図、第3図はこの発明の一実施例を示す構成図、第4
図はこの発明の他の実施例を示す構成図、第5図は第2
図〜第4図において、鋼管の長手方向の位置りと、鋼管
の各位置の温度tとの関係を示す昇温特性図である。 図において、3は鋼管、8は第1の温度点、9,12は
第2の温度点である。 なお各図中同一符号は夫々間−又は相当部分を示す。
FIG. 1 is a block diagram of a heat treatment apparatus for quenching steel pipes using yFIJ induction heating, FIG. 2 is a block diagram of a conventional heat treatment apparatus, and FIG. 3 is a block diagram of an embodiment of the present invention. Fourth
The figure is a configuration diagram showing another embodiment of this invention, and FIG.
FIG. 4 is a temperature rise characteristic diagram showing the relationship between the longitudinal position of the steel pipe and the temperature t at each position of the steel pipe. In the figure, 3 is a steel pipe, 8 is a first temperature point, and 9 and 12 are second temperature points. Note that the same reference numerals in each figure indicate gaps or corresponding parts, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼管を長手方向に移送しながら誘導加熱によって順
次所定の温度まで加熱し、焼入れを行う鋼管の熱処理方
法において、鋼材の強度が急激に低下する600℃〜8
00℃まで所定の電力密度で加熱した後、上記電力密度
より大きい電力密度でAC3変態点を超える860℃〜
870℃まで加熱することを特徴とする鋼管の熱処理方
法。
1. In a heat treatment method for steel pipes in which the steel pipes are sequentially heated to a predetermined temperature by induction heating while being transported in the longitudinal direction and quenched, the temperature at which the strength of the steel material rapidly decreases is between 600°C and 8°C.
After heating to 00℃ at a predetermined power density, the temperature exceeds the AC3 transformation point at a power density higher than the above power density at 860℃~
A method for heat treatment of steel pipes, characterized by heating up to 870°C.
JP1720578A 1978-02-16 1978-02-16 Heat treatment method for steel pipes Expired JPS5844131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1720578A JPS5844131B2 (en) 1978-02-16 1978-02-16 Heat treatment method for steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1720578A JPS5844131B2 (en) 1978-02-16 1978-02-16 Heat treatment method for steel pipes

Publications (2)

Publication Number Publication Date
JPS54110113A JPS54110113A (en) 1979-08-29
JPS5844131B2 true JPS5844131B2 (en) 1983-10-01

Family

ID=11937425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1720578A Expired JPS5844131B2 (en) 1978-02-16 1978-02-16 Heat treatment method for steel pipes

Country Status (1)

Country Link
JP (1) JPS5844131B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3003928A1 (en) * 2015-11-11 2017-05-18 Knauf Gips Kg Multilayered layered body comprising a thermal insulation body

Also Published As

Publication number Publication date
JPS54110113A (en) 1979-08-29

Similar Documents

Publication Publication Date Title
JPS5844131B2 (en) Heat treatment method for steel pipes
JPS59143028A (en) Cooler for metallic strip in continuous heat treating furnace
JP2937410B2 (en) Method for producing thin web H-section steel
JPS6187824A (en) Uniform cooling method of high temperature metal pipe
KR102560881B1 (en) Local heat treatment method of work roll
JP2003326302A (en) Method and device for manufacturing thick steel plate
JPS5852428A (en) Heat treatment for improving stress of shaft
SU969495A1 (en) Method for restoring worn inner cylindrical surface, preferably of steel and cast iron parts
JP2776033B2 (en) Method of preventing meandering of steel strip in continuous annealing furnace
JPH06330177A (en) Heat treatment apparatus for round corner part of large diameter square steel tube
JP2003166018A (en) Method for finish annealing grain-oriented electromagnetic steel sheet
JP2852312B2 (en) Heat treatment method for large diameter square steel pipe
JPH09143567A (en) Production of high strength steel tube
EP1123420A1 (en) Process for thermal treatment of steel strip
JPS5485116A (en) Heat treating method for large-sized steel pipe
JPH03294035A (en) Manufacture of high speed tool steel wire rod
SU802384A1 (en) Method of thermal treatment of welded tubes
JP2003226914A (en) Heat treatment method and apparatus for thick steel plate
JPS5830375B2 (en) Method for reducing residual stress in circumferential welds of steel pipes
SU273247A1 (en) HEATED WATER COOLED ROLLER
JP2795873B2 (en) Method for spheroidizing layered carbide in eutectoid or hypoeutectoid steel
JPH0718329A (en) Manufacture of electric resistance welded tube having high collapse resistance
JPS5858224A (en) Rolling method for steel material
JPS60245721A (en) Heat treatment of steel material
JPH01176037A (en) Heat treatment of welded steel pipe