JPS5843983Y2 - Solar thermal water production equipment - Google Patents

Solar thermal water production equipment

Info

Publication number
JPS5843983Y2
JPS5843983Y2 JP1979169399U JP16939979U JPS5843983Y2 JP S5843983 Y2 JPS5843983 Y2 JP S5843983Y2 JP 1979169399 U JP1979169399 U JP 1979169399U JP 16939979 U JP16939979 U JP 16939979U JP S5843983 Y2 JPS5843983 Y2 JP S5843983Y2
Authority
JP
Japan
Prior art keywords
cooler
evaporation chamber
water
production equipment
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979169399U
Other languages
Japanese (ja)
Other versions
JPS5687188U (en
Inventor
晤郎 山中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP1979169399U priority Critical patent/JPS5843983Y2/en
Publication of JPS5687188U publication Critical patent/JPS5687188U/ja
Application granted granted Critical
Publication of JPS5843983Y2 publication Critical patent/JPS5843983Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Description

【考案の詳細な説明】 この考案は太陽熱により海水或いは不純物を含んだ水か
ら主として水分だけを取出すことのできる遣水装置に関
するものである。
[Detailed Description of the Invention] This invention relates to a water dispensing device that can mainly extract only water from seawater or water containing impurities using solar heat.

従来この種の装置として第1図に示すものがあった。A conventional device of this type is shown in FIG.

図において、1は海水或いは不純物を含んだ水で、ガラ
スなどの可透板2を通して入射した太陽熱3によって加
熱され、水面より蒸発4し、比較的温度の低い可透板2
の内面に結露する。
In the figure, 1 is seawater or water containing impurities. It is heated by solar heat 3 that enters through a transparent plate 2 such as glass, and evaporates from the water surface 4, and the transparent plate 2 has a relatively low temperature.
Condensation forms on the inner surface of the

結露した水5は可透板2の傾斜に沿って流下し、集水器
6に集合し、蒸発室7の外に取出される。
The condensed water 5 flows down along the slope of the transparent plate 2, collects in a water collector 6, and is taken out of the evaporation chamber 7.

このようなもので水分蒸発量Le (kg/ h )は
次式によって与えられることがよく知られている。
It is well known that the amount of water evaporation Le (kg/h) in such a device is given by the following equation.

Le= (0,0152V +0.0178) CP
s(θW)−φaPs(θa))A・・・・・・(1) ここで、■は水面の風速(m/s)、Psは温度θのも
とての飽和水蒸気圧mmHg、θWは水温℃、θaは蒸
発室内の空気温度℃、φaは蒸発室の相対湿度である。
Le= (0,0152V +0.0178) CP
s(θW)-φaPs(θa))A...(1) Here, ■ is the wind speed at the water surface (m/s), Ps is the saturated water vapor pressure mmHg at temperature θ, and θW is Water temperature in °C, θa is air temperature in the evaporation chamber in °C, and φa is relative humidity in the evaporation chamber.

第1図の従来形の遣水装置では、水面風速■=0であり
、φall、また可透板2の熱抵抗が高いため、θW〉
θaではあるが、その差(θW−θa)はかなり小さい
値となる。
In the conventional water spraying device shown in Fig. 1, the water surface wind speed ■=0, φall, and the thermal resistance of the transparent plate 2 are high, so θW〉
Although it is θa, the difference (θW−θa) is a considerably small value.

このような状態下での蒸発量Le’は(1)式のLeに
比べてかなり小さく、従って効率的な遣水(水分蒸発)
が得られないことになる。
Under such conditions, the amount of evaporation Le' is considerably smaller than Le in equation (1), so efficient water supply (water evaporation) is possible.
will not be obtained.

因みに、第】図のような装置を用いた実験では、θW=
67℃、青a−63℃となり、Le’= 0 、6 k
g/h−m2が得られることがわがった。
Incidentally, in an experiment using the apparatus shown in Figure 1, θW=
67℃, blue a-63℃, Le' = 0, 6k
It was found that g/h-m2 was obtained.

′(1)式によれば、この温度条件下でLe = 0.
65’kg/h−m2となる。
'According to equation (1), under this temperature condition Le = 0.
It becomes 65'kg/h-m2.

この考案は効率的な遣水を可能にするため、(1)式の
関係によって与えられる水面蒸発量Leを極力増加させ
ることを目的とするものである。
This idea aims to increase the water surface evaporation amount Le given by the relationship of equation (1) as much as possible in order to enable efficient watering.

以下この考案の一実施例を図について説明する。An embodiment of this invention will be described below with reference to the drawings.

第2図において、1は蒸発室7の下部に蓄えられた海水
或いは不純物を含んだ水である。
In FIG. 2, 1 is seawater or water containing impurities stored in the lower part of the evaporation chamber 7.

この水は従来の遣水装置におけると同様に太陽熱により
加温され、温度θWは上昇し、θWよりも低い温度の蒸
発室7の中に蒸発4して行く。
This water is heated by solar heat in the same way as in the conventional water supply device, and the temperature θW rises, and evaporates into the evaporation chamber 7 whose temperature is lower than θW.

この蒸発室7にはファン、ブロワなどの流体移動装置8
に連通ずる循環路11が設けられており、蒸発室7上部
の湿った空気は流体移動装置8によって蒸発室7外に運
び出され、循環路11に設けられた冷却器9で冷却され
て凝縮し、同じく循環路11の一部に設けられた容器1
0に貯められる。
This evaporation chamber 7 has a fluid moving device 8 such as a fan or blower.
A circulation path 11 is provided that communicates with the evaporation chamber 7, and the moist air above the evaporation chamber 7 is carried out of the evaporation chamber 7 by a fluid transfer device 8, cooled by a cooler 9 provided in the circulation path 11, and condensed. , a container 1 also provided in a part of the circulation path 11
Stored at 0.

このように、流体移動装置8によって蒸発室7中の湿っ
た空気を移動させると、蒸発室7内には風速■が発生し
、(1)式の関係により蒸発量Leは大幅に増大させる
ことができる。
As described above, when the humid air in the evaporation chamber 7 is moved by the fluid moving device 8, a wind speed ■ is generated in the evaporation chamber 7, and the amount of evaporation Le can be significantly increased due to the relationship in equation (1). Can be done.

例えば(1)式によリ、Vが2m/s程度の微弱な風の
場合でも、■0の場合に比べて約2.7倍のLeが得ら
れることがわかる。
For example, according to equation (1), it can be seen that even in the case of a weak wind with V of about 2 m/s, approximately 2.7 times Le can be obtained compared to the case of 0.

さらに、蒸発室7内の空気を冷却器9で冷却し、この冷
たい空気を流体移動装置8により蒸発室7に戻すことに
よって、蒸発室7内の温度θa並びに湿度φaは低くな
り、これらの効果は両者とも(1)式のLeを大きくす
ることに効果あるため、従って従来形に比べて相当多量
の水分蒸発即ち造水性能を与えることができる。
Furthermore, by cooling the air in the evaporation chamber 7 with the cooler 9 and returning this cold air to the evaporation chamber 7 with the fluid transfer device 8, the temperature θa and the humidity φa in the evaporation chamber 7 are lowered, and these effects are reduced. Since both of these are effective in increasing Le in equation (1), it is possible to provide considerably greater water evaporation, that is, water production performance, than in the conventional type.

尚本考案では、上記冷却器9として、循環路11の外壁
に冷却フィン13を付してこれにファン12を対設し、
かつこれと直列的に管路の一部をコイル状冷却器14に
構成して、遠心力の作用によす凝縮した水分を分離回収
するようにしたので、さらに水分蒸発能力を有するもの
である。
In the present invention, as the cooler 9, cooling fins 13 are attached to the outer wall of the circulation path 11, and a fan 12 is installed opposite to the cooling fins 13.
In addition, a part of the pipe line is configured as a coil-shaped cooler 14 in series with this, so that water condensed due to the action of centrifugal force is separated and recovered, so that it has further water evaporation ability. .

以上のように、この考案によれば蒸発室の空気を循環さ
せる循環路を設け、この循環路に、ファン及びフィン付
冷却器と、遠心力利用のコイル状冷却器とを併用してな
る高効率の冷却器と液溜め容器とを設け、湿った空気を
ファンまたはブロワにより循環させるものであるから、
蒸発室内の温度、湿度が低くなり、また同時に蒸発室水
面上に風速が与えられるため、水分蒸発量を増して効率
的な遣水を行ないうるものである。
As described above, according to this invention, a circulation path is provided to circulate the air in the evaporation chamber, and this circulation path is equipped with a fan and fin cooler and a coiled cooler using centrifugal force. It is equipped with an efficient cooler and a liquid reservoir, and circulates moist air using a fan or blower.
The temperature and humidity inside the evaporation chamber are lowered, and at the same time, wind speed is applied to the water surface of the evaporation chamber, which increases the amount of water evaporation and enables efficient watering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の太陽熱利用造水装置を示す路線断面図、
第2図はこの考案の一実施例を示す路線断面図、第3図
はこの考案において使用される冷却器の路線断面図であ
る。 図中、1は海水或いは不純物を含む水、4は蒸発、7は
蒸発室、8は流体移動装置、9は冷却器、10は容器、
11は循環路、12はファン、13はフィン、14はコ
イル状冷却器である。 尚図中同一符号は同一または相当する部分を示す。
Figure 1 is a cross-sectional view of a conventional solar water production system;
FIG. 2 is a cross-sectional view showing an embodiment of this invention, and FIG. 3 is a cross-sectional view of a cooler used in this invention. In the figure, 1 is seawater or water containing impurities, 4 is evaporation, 7 is evaporation chamber, 8 is fluid transfer device, 9 is cooler, 10 is container,
11 is a circulation path, 12 is a fan, 13 is a fin, and 14 is a coiled cooler. Note that the same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内部に収容した海水或いは不純物を含んだ水が太陽熱に
より熱せられるようなされた蒸発室、この蒸発室の空気
をファン、ブロワ等により室外に導き出して循環させる
ように設けられた循環路、この循環路の途中に設けられ
た冷却器及び液溜め容器を備え、上記冷却器として、フ
ァンを有するフィン付冷却器と遠心力利用のコイル状冷
却器を直列に接続して併用したことを特徴とする太陽熱
利用造水装置。
An evaporation chamber in which seawater or impurity-containing water stored inside is heated by solar heat; a circulation path provided to lead and circulate the air in the evaporation chamber outside using a fan, blower, etc.; and this circulation path. A solar heating system comprising a cooler and a liquid storage container installed in the middle of the solar heat sink, and as the cooler, a finned cooler with a fan and a coiled cooler using centrifugal force are connected in series and used in combination. Water production equipment used.
JP1979169399U 1979-12-04 1979-12-04 Solar thermal water production equipment Expired JPS5843983Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979169399U JPS5843983Y2 (en) 1979-12-04 1979-12-04 Solar thermal water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979169399U JPS5843983Y2 (en) 1979-12-04 1979-12-04 Solar thermal water production equipment

Publications (2)

Publication Number Publication Date
JPS5687188U JPS5687188U (en) 1981-07-13
JPS5843983Y2 true JPS5843983Y2 (en) 1983-10-05

Family

ID=29680234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979169399U Expired JPS5843983Y2 (en) 1979-12-04 1979-12-04 Solar thermal water production equipment

Country Status (1)

Country Link
JP (1) JPS5843983Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368760A (en) * 1976-10-12 1978-06-19 Nii Rezuinofuuku I Ratetsukunu Method for production of 2 * 4 * 66tri*3 * 55ditert * butyll44 hydroxybenzyl*mesitylene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368760A (en) * 1976-10-12 1978-06-19 Nii Rezuinofuuku I Ratetsukunu Method for production of 2 * 4 * 66tri*3 * 55ditert * butyll44 hydroxybenzyl*mesitylene

Also Published As

Publication number Publication date
JPS5687188U (en) 1981-07-13

Similar Documents

Publication Publication Date Title
JP3037414B2 (en) Heat pipe equipment
US4860548A (en) Air conditioning process and apparatus therefor
RU94030375A (en) Method of regenerative heat exchange
JPS5843983Y2 (en) Solar thermal water production equipment
JPS581739Y2 (en) Absorption refrigeration equipment
CN210802113U (en) Shell-and-tube heat pipe cooling tower
JPS5448350A (en) Cooling device for pillow and others
JPS5765525A (en) Air conditioner
CN110779350B (en) Shell-and-tube heat pipe cooling tower
JPS5812953A (en) Cool air, hot air and hot water supply equipment utilizing solar heat
JP3729876B2 (en) Air conditioner low temperature regenerator
JPS6228774Y2 (en)
JPS6210619Y2 (en)
FI85822B (en) Method for removal of steam from gas
JPS5943620B2 (en) Snow melting and antifreeze equipment
JPS5627891A (en) Radiator
JO1085B1 (en) Energy efficient process and apparatus for desalinizing water
SU914924A1 (en) Vehicle radiator heat pipe
JPS5812054Y2 (en) long heat pipe
SU800527A1 (en) Absorption-type solar cooling plant
JPH0650234B2 (en) How to start a thermosiphon for high temperature heat sources
KR0184203B1 (en) Rectifier of ammonia absorptive refrigerator
RU1806323C (en) Air heater
JPS5922151B2 (en) Condenser
JPS5649885A (en) Radiator