JPH0650234B2 - How to start a thermosiphon for high temperature heat sources - Google Patents

How to start a thermosiphon for high temperature heat sources

Info

Publication number
JPH0650234B2
JPH0650234B2 JP2149380A JP14938090A JPH0650234B2 JP H0650234 B2 JPH0650234 B2 JP H0650234B2 JP 2149380 A JP2149380 A JP 2149380A JP 14938090 A JP14938090 A JP 14938090A JP H0650234 B2 JPH0650234 B2 JP H0650234B2
Authority
JP
Japan
Prior art keywords
working fluid
pipe
thermosiphon
heat
return pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2149380A
Other languages
Japanese (ja)
Other versions
JPH0443289A (en
Inventor
正夫 白石
祐士 斎藤
昭太郎 吉田
正孝 望月
耕一 益子
Original Assignee
工業技術院長
藤倉電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 藤倉電線株式会社 filed Critical 工業技術院長
Priority to JP2149380A priority Critical patent/JPH0650234B2/en
Publication of JPH0443289A publication Critical patent/JPH0443289A/en
Publication of JPH0650234B2 publication Critical patent/JPH0650234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は地熱採取用の大口径のサーモサイホン等の高
温熱源を対象としたサーモサイホンの始動方法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a method for starting a thermosiphon intended for a high temperature heat source such as a large-diameter thermosiphon for collecting geothermal heat.

従来の技術 地熱を採取する手段として、従来、水を地中の高温部に
送り込み、その水が加勢されて生じた蒸気を蒸気井から
取り出して所定の用途に利用することが知られている。
しかしながらこの種の地熱採取設備では、水を循環させ
る装置、蒸気と砂礫等とを分離する装置などが必要とな
るから、設備が大型化する不都合がある。そこで従来、
可動部のない採熱手段としてサーモサイホンを使用する
ことが提案されている。これは真空脱気した密閉管中に
凝縮性の流体を作動流体として封入したヒートパイプの
一種であって、熱の輸送は上方向のみに行い、凝縮部で
凝縮した作動流体は重力によって熱源側に戻すよう構成
されており、そのサーモサイホンの下端部を地中の高温
部に挿入するとともに地上側の上端部に熱交換コイルな
どを設け、作動流体を地熱によって蒸発させ、その蒸気
の有する熱を熱交換コイルから外部に温水などの形で取
り出すものである。そしてこの種の設備では、地熱によ
って加熱される部分すなわち蒸発部が広いから、作動流
体を蒸発部に還流させる手段として、密閉管内に散布管
を挿入し、凝縮部で生じた液相の作動流体をその散布管
によって蒸発部内壁面上に液を均一に分布させ、ドライ
アウト部分が生じないようにしている。
2. Description of the Related Art Conventionally, as a means for collecting geothermal heat, it has been known that water is sent to a high temperature part in the ground and steam generated by energizing the water is taken out from a steam well and used for a predetermined purpose.
However, this type of geothermal extraction facility requires a device that circulates water, a device that separates steam from gravel, and the like, which is a disadvantage in that the facility becomes large. So conventionally,
It has been proposed to use a thermosiphon as a heat collecting means without moving parts. This is a type of heat pipe in which a condensable fluid is enclosed as a working fluid in a vacuum-deaerated closed tube, heat is transported only in the upward direction, and the working fluid condensed in the condensing section is gravitationally applied to the heat source side. The thermosiphon's lower end is inserted into the high temperature part of the ground, and a heat exchange coil etc. is installed at the upper end on the ground side to evaporate the working fluid by the geothermal heat and Is taken out from the heat exchange coil in the form of hot water or the like. And in this kind of equipment, since the part heated by geothermal heat, that is, the evaporation part is wide, a spray pipe is inserted into the closed pipe as a means for returning the working fluid to the evaporation part, and the working fluid in the liquid phase generated in the condensation part. The spray pipe uniformly distributes the liquid on the inner wall surface of the evaporating section so that a dry-out portion does not occur.

このような設備では、サーモサイホンが動力を要するこ
となく熱の輸送を行うから設備を簡素化でき、また制御
が容易になる。
In such equipment, since the thermosiphon transfers heat without requiring power, the equipment can be simplified and the control becomes easy.

発明が解決しようとする課題 サーモサイホンは、温度差が生じることにより作動流体
が蒸発および流動ならびに凝縮を自動的に行って熱輸送
を行うサーモサイホンを使用した地熱採取設備において
採熱を停止する場合には、上端側で凝縮した作動流体を
適宜の液溜め部に溜めて蒸発部に還流することを阻止し
て蒸発部をドライアウトさせ、また始動する場合は、そ
の液溜め部から前記散布管を介して液相の作動流体を蒸
発部の内壁面に散布する。しかしながら採熱の対象とさ
れる地熱の温度は数百℃の高温であるから、採熱を停止
すべく蒸発部をドライアウトさせると、蒸発部の内壁面
も数百℃の高温になり、その結果、採熱を開始するべく
蒸発部の内壁面に作動液を散布した場合、作動液が内壁
面を濡らすことができず、液滴となってはじき飛ばされ
直接底部に落下してしまう。このような状態では作動流
体の蒸発が充分には生じないばかりか、内壁面の温度も
低下しないので内壁面の高温状態はいつまでも続き、充
分な採熱状態に入ることができない、このため従来で
は、始動時の熱出力の応答に遅れが生じる問題があっ
た。
Problems to be Solved by the Invention In a thermosiphon, when heat collection is stopped in a geothermal extraction facility that uses a thermosiphon that automatically evaporates and flows and condenses a working fluid due to a temperature difference to transfer heat. In order to prevent the working fluid condensed on the upper end side from being collected in an appropriate liquid storage part and be returned to the evaporation part to dry out the evaporation part and to start it again, from the liquid storage part to the spray pipe The working fluid in the liquid phase is sprayed on the inner wall surface of the evaporation portion via the. However, since the temperature of the geothermal heat that is the target of heat collection is high at several hundreds of degrees Celsius, if the evaporation section is dried out to stop heat collection, the inner wall surface of the evaporation section will also become high at several hundred degrees Celsius. As a result, when the working fluid is sprayed on the inner wall surface of the evaporation part to start heat collection, the working fluid cannot wet the inner wall surface, and is repelled as droplets and directly drops to the bottom. In such a state, not only the working fluid does not evaporate sufficiently, but also the temperature of the inner wall surface does not drop, so the high temperature state of the inner wall surface continues forever, and it is not possible to enter a sufficient heat collection state. However, there was a problem in that the response of the heat output at the time of starting was delayed.

この発明は蒸気の事情を背景としてなされたもので、サ
ーモサイホンによって高温部から採熱を行うにあたって
始動時の熱応答性を向上させることのできる方法を提供
することを目的とするものである。
The present invention has been made against the background of steam, and an object thereof is to provide a method capable of improving the thermal response at the time of starting when collecting heat from a high temperature portion by a thermosiphon.

課題を解決するための手段 この発明の方法は、蒸発潜熱として熱輸送する作動流体
を封入した密閉管の下端部を高温の熱源に臨ませて蒸発
部とするとともにその上端部を外部に熱を奪って作動流
体蒸気を凝縮させる凝縮部とし、かつ凝縮部で凝縮した
作動流体を前記蒸発部の内壁面に散布するよう前記密閉
管の中心部に第1液戻り管を設けるとともに凝縮部で凝
縮した作動流体の一部を前記密閉管の内面に沿って流下
させる第2液戻り管を密閉管の内面に開口させて設けた
高温熱源用サーモサイホンを対象とし、始動時には第2
液戻り管から作動液を流出させて密閉管の内面に沿わせ
て作動液を流下させ、しかる後密閉管の内側に設けてあ
る第1液戻り管から作動液を密閉管の内面に散布するこ
とを特徴とする方法である。
Means for Solving the Problems According to the method of the present invention, a closed tube enclosing a working fluid for heat transfer as evaporation latent heat is exposed to a high-temperature heat source to form a vaporization section and its upper end is exposed to the outside. A first liquid return pipe is provided at the center of the closed pipe so that the working fluid condensed by the deprived working fluid vapor can be dispersed on the inner wall surface of the evaporation portion. A high-temperature heat source thermosiphon having a second liquid return pipe that opens a part of the working fluid flowing down along the inner surface of the closed pipe on the inner surface of the closed pipe is used.
The working fluid is caused to flow out from the liquid return pipe to flow along the inner surface of the closed pipe, and then the working liquid is sprayed to the inner surface of the closed pipe from the first liquid return pipe provided inside the closed pipe. It is a method characterized by that.

作用 この発明の方法では、サーモサイホンの蒸発部の内面
が、始動時にドライアウトして高温になっていても、こ
の時点での作動液の供給は、密閉管の内面に液膜を作る
よう第2液戻り管から行うから、流下液膜によって内壁
面は冷却されると同時に作動流体の蒸発が活発に生じ、
蒸発部の内面の温度の低下が早い。そして蒸発部の内面
温度が下がった時点で第1液戻り管から作動液を散布す
るから、作動液が内壁に均一に散布され、正常な作動状
態に早く達することができる。したがってこの発明の方
法では、作動液の供給を開始した直後でも作動液が活発
に蒸発して熱輸送を行うので、熱応答性が良好になる。
Effect According to the method of the present invention, even if the inner surface of the evaporation portion of the thermosiphon is dry out and has a high temperature at the time of starting, the supply of the working fluid at this point is such that a liquid film is formed on the inner surface of the closed tube. Since it is performed from the two-liquid return pipe, the inner wall surface is cooled by the falling liquid film, and at the same time, the working fluid is actively evaporated,
The temperature of the inner surface of the evaporating part drops quickly. Then, when the temperature of the inner surface of the evaporating section is lowered, the working liquid is sprayed from the first liquid return pipe, so that the working liquid is uniformly sprayed on the inner wall, and the normal operating state can be quickly reached. Therefore, in the method of the present invention, the hydraulic fluid actively evaporates and transfers heat even immediately after the supply of the hydraulic fluid is started, so that the thermal response becomes good.

実施例 つぎにこの発明の方法を実施例に基づいて説明する。Examples Next, the method of the present invention will be described based on Examples.

第1図はこの発明で対象とする地熱採取用サーモサイホ
ン1を示す略解図であって、密閉管2の下端部は地中の
高温域3にまで挿入されて蒸発部4となっており、また
その上端部は熱交換コイル5を内蔵した凝縮部6に連通
され、この凝縮部6はある程度大きい内容積を備えてい
て液溜め部となっている。前記密閉管2の中心部には第
1液戻り管7が軸線方向に沿って配置されており、その
第1液戻り管7の下部の周壁には多数の小孔8が形成さ
れ、かつこの第1液戻り管7の上端部は第1開閉弁9を
介して凝縮部6に接続されている。さらに凝縮部6に
は、第2開閉弁10を介装した第2液戻り管11が接続
されており、この第2液戻り管11は前記密閉管2の内
面のうち蒸発部4より高い位置に開口している。
FIG. 1 is a schematic view showing a thermosiphon 1 for collecting geothermal heat, which is a target of the present invention, in which a lower end portion of a closed pipe 2 is inserted into a high temperature region 3 in the ground to form an evaporation portion 4, Further, its upper end is communicated with a condenser 6 having a built-in heat exchange coil 5, and the condenser 6 has a somewhat large internal volume and serves as a liquid reservoir. A first liquid return pipe 7 is arranged in the central portion of the closed pipe 2 along the axial direction, and a large number of small holes 8 are formed in a lower peripheral wall of the first liquid return pipe 7. The upper end of the first liquid return pipe 7 is connected to the condenser 6 via the first opening / closing valve 9. Further, a second liquid return pipe 11 having a second opening / closing valve 10 interposed is connected to the condensing unit 6, and the second liquid return pipe 11 is located at a position higher than the evaporation unit 4 on the inner surface of the closed pipe 2. It is open to.

そしてこのサーモサイホン1は、内部を真空脱気した状
態で水やフロンなどの目的温度範囲で蒸発および凝縮す
る流体が作動流体12として封入されている。
A fluid that evaporates and condenses in a target temperature range, such as water and chlorofluorocarbon, is enclosed as a working fluid 12 in the thermosiphon 1 in a state where the inside thereof is vacuum deaerated.

上に述べたサーモサイホン1を対象としたこの発明の方
法を説明すると、各開閉弁9,10を閉じた停止状態に
おいては、液相の作動流体(作動液)12は凝縮部6の
内部に溜っており、またこの状態では蒸発部4は作動流
体が存在しないことにより高温になっている。採熱を開
始するには先ず、前記第2開閉弁10を開き、凝縮部6
内の作動液12を第2液戻り管11から密閉管2の内面
に沿って流化させる。その作動液12は液膜となって流
下するから、高温の蒸発部4で作動流体がつぎつぎに蒸
発するので、蒸発部4の壁面温度は作動流体が熱を奪う
ことにより低下する。一方、熱交換コイル5に冷水など
を流しておけば、凝縮部6の温度が低くなるから、蒸発
部4で生じた作動流体蒸気はこの凝縮部6に流れた後に
熱交換コイル5に熱を与えて凝縮し、また熱交換コイル
5からは温水などの形で熱を出力することができる。す
なわち作動流体12が蒸発潜熱として熱を輸送する。
Explaining the method of the present invention for the thermosiphon 1 described above, when the on-off valves 9 and 10 are closed, the working fluid (working fluid) 12 in the liquid phase enters the condensing section 6. In this state, the evaporation section 4 is at a high temperature because there is no working fluid. To start collecting heat, first, the second on-off valve 10 is opened, and the condenser 6
The working liquid 12 therein is fluidized from the second liquid return pipe 11 along the inner surface of the closed pipe 2. Since the working fluid 12 flows down as a liquid film, the working fluid evaporates one after another in the high temperature evaporating section 4, so that the wall temperature of the evaporating section 4 decreases due to the heat being taken by the working fluid. On the other hand, if cold water or the like is allowed to flow through the heat exchange coil 5, the temperature of the condensation section 6 becomes low, so that the working fluid vapor generated in the evaporation section 4 flows to the heat exchange coil 5 after flowing into the condensation section 6. It can be given and condensed, and the heat exchange coil 5 can output heat in the form of hot water or the like. That is, the working fluid 12 transports heat as latent heat of vaporization.

以上のようにして第2液戻り管11から作動液12を供
給することによって蒸発部4の壁面温度がある程度低下
した後は、第1開閉弁9を開くとともに第2開閉弁10
を閉じて、第1液戻り管7の小孔8から蒸発部4の壁面
に作動液12を散布する。この場合、壁面温度が低いか
ら壁面に散布された作動液により均一に濡らすことがで
き、蒸発が生じ易くなる。
After the working fluid 12 is supplied from the second liquid return pipe 11 as described above, and the wall surface temperature of the evaporator 4 is lowered to some extent, the first opening / closing valve 9 is opened and the second opening / closing valve 10 is opened.
Is closed, and the working liquid 12 is sprayed from the small holes 8 of the first liquid return pipe 7 onto the wall surface of the evaporation unit 4. In this case, since the wall surface temperature is low, the wall surface can be uniformly wetted by the working fluid sprayed on the wall surface, and evaporation easily occurs.

したがって上述した手順で始動操作を行えば、作動液1
2の液膜によって蒸発部4の壁面温度を下げるととも
に、その蒸発を活発に行わせ、しかる後に作動液12を
蒸発部4の壁面に散布するから、始動時の蒸気発生量が
多く、熱応答性が良くなる。
Therefore, if the starting operation is performed according to the procedure described above, the hydraulic fluid 1
The liquid film of No. 2 lowers the wall surface temperature of the evaporating section 4 and actively evaporates the same, and then sprays the working liquid 12 on the wall surface of the evaporating section 4, so that a large amount of steam is generated at the time of startup and the thermal response is high. It improves the sex.

発明の効果 以上の説明から明らかなようにこの発明の方法によれ
ば、ドライアウト状態の蒸発部に作動流体を供給し始め
た際に壁面温度を効率良く低下させ、散布した作動液が
液滴となって直接底部に落下することを防止しつつ作動
流体の蒸発を活発に行わせることができるので、始動時
の熱輸送量を充分確保し、熱応答性を向上させることが
できる。
EFFECTS OF THE INVENTION As is apparent from the above description, according to the method of the present invention, when the working fluid is started to be supplied to the evaporation portion in the dry-out state, the wall surface temperature is efficiently lowered, and the sprayed working liquid is droplets. Therefore, the working fluid can be actively vaporized while preventing it from directly falling to the bottom portion, so that a sufficient heat transport amount at the time of starting can be secured and the thermal response can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の方法で対象とするサーモサイホンの
一例を示す略解図である。 1……サーモサイホン、2……密閉管、4……蒸発部、
5……熱交換コイル、6……凝縮部、7……第1液戻り
管、9……第1開閉弁、10……第2開閉弁、11……
第2液戻り管、12……作動流体。
FIG. 1 is a schematic diagram showing an example of a thermosiphon targeted by the method of the present invention. 1 ... Thermosiphon, 2 ... Closed tube, 4 ... Evaporator,
5 ... Heat exchange coil, 6 ... Condensing section, 7 ... First liquid return pipe, 9 ... First on-off valve, 10 ... Second on-off valve, 11 ...
Second liquid return pipe, 12 ... Working fluid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 望月 正孝 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 (72)発明者 益子 耕一 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 審査官 熊谷 繁 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masataka Mochizuki 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Electric Wire Co., Ltd. (72) Inventor Koichi Masuko 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Shigeru Kumagai Examiner, Electric Wire Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】蒸発潜熱として熱輸送する作動流体を封入
した密閉管の下端部を高温の熱源に臨ませて蒸発部とす
るとともにその密閉管の上端部を外部に熱を奪って作動
流体蒸気を凝縮させる凝縮部とし、かつ凝縮部で凝縮し
た作動流体を前記蒸発部の内壁面に散布するよう前記密
閉管の中心部に第1液戻り管を設けるとともに凝縮部で
凝縮した作動流体の一部を前記密閉管の内面に沿って流
下させる第2液戻り管を密閉管の内面に開口させて設け
た高温熱源用サーモサイホンを始動するにあたり、 第2液戻り管から密閉管の内面に沿って液相の作動流体
を流下させて蒸発部の内面温度を下げた後に第1液戻り
管から蒸発部の内面に液相の作動流体を散布することを
特徴とする高温熱源用サーモサイホンの始動方法。
1. A working fluid vapor in which a lower end portion of a closed pipe enclosing a working fluid that transfers heat as evaporation latent heat is exposed to a high-temperature heat source to form an evaporation portion and the upper end portion of the closed pipe removes heat to the outside. A first liquid return pipe is provided at the center of the closed pipe so as to disperse the working fluid condensed in the condensing part on the inner wall surface of the evaporating part, and one of the working fluid condensed in the condensing part. When starting the thermosiphon for high temperature heat source provided with the second liquid return pipe, which is made to flow down along the inner surface of the sealed pipe, on the inner surface of the sealed pipe, the second liquid return pipe is moved along the inner surface of the sealed pipe from the second liquid return pipe. Start of the thermosiphon for high temperature heat source, characterized in that the working fluid of liquid phase is made to flow down to lower the temperature of the inner surface of the evaporation section, and then the working fluid of liquid phase is sprayed from the first liquid return pipe to the inner surface of the evaporation section. Method.
JP2149380A 1990-06-07 1990-06-07 How to start a thermosiphon for high temperature heat sources Expired - Lifetime JPH0650234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2149380A JPH0650234B2 (en) 1990-06-07 1990-06-07 How to start a thermosiphon for high temperature heat sources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2149380A JPH0650234B2 (en) 1990-06-07 1990-06-07 How to start a thermosiphon for high temperature heat sources

Publications (2)

Publication Number Publication Date
JPH0443289A JPH0443289A (en) 1992-02-13
JPH0650234B2 true JPH0650234B2 (en) 1994-06-29

Family

ID=15473869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2149380A Expired - Lifetime JPH0650234B2 (en) 1990-06-07 1990-06-07 How to start a thermosiphon for high temperature heat sources

Country Status (1)

Country Link
JP (1) JPH0650234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT10589U1 (en) * 2007-08-13 2009-06-15 Ochsner Karl downhole heat exchanger

Also Published As

Publication number Publication date
JPH0443289A (en) 1992-02-13

Similar Documents

Publication Publication Date Title
DE3276770D1 (en) Two-phase thermosyphon heater
JPS6039958B2 (en) heat transfer device
JPH0650234B2 (en) How to start a thermosiphon for high temperature heat sources
JPS581739Y2 (en) Absorption refrigeration equipment
JPS60122286A (en) Steam pressure pump
JPS59229139A (en) Solar heat-utilizing hot-water supply device
JP2562484Y2 (en) Snow melting system using geothermal
JPS62123291A (en) Large-caliber and long vertical thermo siphon
JP2639581B2 (en) Heat pipe type steam generator
JPS6215733Y2 (en)
US4350015A (en) Machine for converting thermal energy into work
JP2920419B2 (en) Heat storage device and heat storage and evaporator
JPS6017674Y2 (en) Steam drying equipment using organic solvent
SU857658A1 (en) Combined solar unit
JPH0814775A (en) Heat pipe type heat exchanger
JPS5913678B2 (en) heat storage device
JPS5943620B2 (en) Snow melting and antifreeze equipment
JPS6138787B2 (en)
JPH0355741B2 (en)
SU1355844A1 (en) Device for heat and cool supply
JPS6321291Y2 (en)
JPS6112541Y2 (en)
JPH08613Y2 (en) Structure of heat accumulator with conduit for heat pipe
JPS5971985A (en) Heat transporting apparatus
JPH0650233B2 (en) Double loop heat exchanger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term