JPS5843900A - Control system of orbit of triaxial satellite - Google Patents

Control system of orbit of triaxial satellite

Info

Publication number
JPS5843900A
JPS5843900A JP56141435A JP14143581A JPS5843900A JP S5843900 A JPS5843900 A JP S5843900A JP 56141435 A JP56141435 A JP 56141435A JP 14143581 A JP14143581 A JP 14143581A JP S5843900 A JPS5843900 A JP S5843900A
Authority
JP
Japan
Prior art keywords
control
attitude
orbit
axis
thruster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56141435A
Other languages
Japanese (ja)
Inventor
久保 義興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56141435A priority Critical patent/JPS5843900A/en
Publication of JPS5843900A publication Critical patent/JPS5843900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、三軸衛星−が推力発生器(以下スラスタと
呼ぶ)を使用して軌道変更を行うとき”、スラスタに不
具合があっても、引き続き三輪姿勢を維持できる三輪衛
星の軌道制御方式を提案するものである。
[Detailed Description of the Invention] This invention provides that when a three-axis satellite uses a thrust generator (hereinafter referred to as a thruster) to change its orbit, it can continue to maintain a three-wheeled attitude even if there is a problem with the thruster. This paper proposes an orbit control method for three-wheeled satellites.

三軸衛星の定常姿勢の姿勢制御方式として。As a steady-state attitude control method for three-axis satellites.

第1図に示すものがある。図においてz鉱地球の方向、
Yは軌道面に逆垂直な方向、・xFiy。
There is one shown in Figure 1. In the figure, the direction of the z mineral earth,
Y is the direction perpendicular to the orbital plane, xFiy.

2と右手直交系を構成する軸で9円軌道の場合は衛星(
1)の進行方向に一致する。x、y及び2に関する衛星
の回転角を姿勢誤差と呼び、X/2の姿勢誤差の制御を
ロール/ヨー制御と呼ぶ。定常姿勢にある衛星(1)は
、姿勢誤差を検出する地球センサ倫)、地球磁場を検出
する磁気センナ(3)、姿勢アクチュエータとしてのピ
ッチホイール(4)、リアクシ冒ンホイール(5)、磁
気トルカ(6)及び(71,並びに姿勢制御電子回路(
8) ′によって姿勢制御され三輪姿勢が自−動的に維
持されている。この定常姿勢において、軌道制御を行う
場合、軌道制御のためのスラスタ−射によって−大きな
姿勢誤差が発生することが避けられず、且つ第1図に示
した定常姿勢制御ではりアクシーンホイール(5)の回
転数の制限のため、太き表姿勢誤差からの復帰が困難で
あることが知られている。
2 and axes forming a right-handed orthogonal system, if the orbit is 9 circular, the satellite (
It corresponds to the traveling direction of 1). The rotation angle of the satellite with respect to x, y, and 2 is called an attitude error, and the control of the attitude error of X/2 is called roll/yaw control. The satellite (1) in a steady attitude has an earth sensor (Rin) that detects attitude errors, a magnetic sensor (3) that detects the earth's magnetic field, a pitch wheel (4) as an attitude actuator, a rear wheel (5), and a magnetic sensor. Torca (6) and (71), and attitude control electronic circuit (
8) The three-wheeled attitude is automatically maintained by controlling the attitude by '. When performing orbit control in this steady attitude, it is unavoidable that a large attitude error will occur due to the thruster firing for orbit control. ) is known to make it difficult to recover from a large surface attitude error.

このため、従来は、第2図に示すように一旦ピッチホ′
イール(4)とオフセットスラスタ(9)及びaOとに
よる、制御方式に切換えた。この制御方式は姿勢誤差の
検出に地球センサ(2)を使用し、姿勢誤差を処理して
ピッチホイール(4)とオフセットスラスタ(9)及び
Q(IK制御信号を発生するための制御電子回路Iとに
より構成されてい友。これにより軌道修正9例えば軌道
速度の増速のために噴射するスラスタlIe、によって
生ずる大きな姿勢誤差を小さくした後適当な時期に、第
1品 良の定常姿勢制御へ復帰させていた。これkよると、定
常姿勢制御において使用しないオフセットスラスタ(9
)及びα・、並びに特別な制御電子回路Ql)を搭載す
る必要があるという欠点と、軌道修正中にスラスタの不
具合による姿勢誤差の発生に対してスラスタa2の噴射
を止めたとしても、相変らずスラスタ(9)及び員を使
用して、姿勢制御を継続しなければならないという安全
性に欠けるところがあった。
For this reason, conventionally, as shown in FIG.
The control system was switched to one using the eel (4), offset thruster (9), and aO. This control scheme uses an earth sensor (2) to detect attitude errors, and control electronics I to process the attitude errors and generate pitch wheels (4) and offset thrusters (9) and Q (IK control signals). As a result, after reducing the large attitude error caused by the orbit correction 9, for example, the thruster lIe injected to increase the orbital speed, the system returns to the steady attitude control of the first quality at an appropriate time. According to this document, offset thrusters (9
) and α・, as well as a special control electronic circuit Ql), and even if the injection of thruster a2 is stopped due to an attitude error caused by a malfunction of the thruster during orbit correction, the phase change will not occur. There was a lack of safety in that the attitude control had to be continued using the thrusters (9) and personnel.

この発、明け、これらの欠点を解、消するためになされ
たもので、第1図に示した定常姿勢制御に必要な構成機
器と同一のもので軌道制御中の姿勢制御が構成でき、軌
道修正中のスラスタ不具合による姿勢誤差発生時にはそ
の噴射を止めるだけ“で三軸姿勢が継続できる軌道制御
方式を提供するものである。
This was developed in order to eliminate these shortcomings.Attitude control during orbit control can be configured with the same components as those required for steady attitude control shown in Figure 1, and orbit This provides an orbit control system that can maintain a three-axis attitude by simply stopping thruster injection when an attitude error occurs due to a thruster malfunction during correction.

以下第8図及び第゛4jlK示すこの発明の一実施例に
ついて説明する。第8図は従来の軌道制御方式である第
2図に対応するもので定常姿勢制御に使用されている機
器のみを使用して制御系を構成している。ロール/ヨー
制御に係るリアクシ胃ンホイールを使用していないので
、大きな姿勢誤差からの復帰が可能である。第4図にお
いて、(IL(14はそれぞれ磁気制御回路及び磁気ト
ルカ駆動−路、叱a*ばぞ九ぞれピッチ制御回路及びピ
ッ−ホイール駆動回路、aη、a腸はそれぞれローを/
ヨー制御回路及びリアクシ冒ンホイール駆動回路である
。定常姿勢制御においてはこれらの機器で姿勢制御がな
されている。
An embodiment of the present invention shown in FIGS. 8 and 4JlK will be described below. FIG. 8 corresponds to FIG. 2 which is a conventional orbit control system, and a control system is constructed using only equipment used for steady attitude control. Since a rear axle gear for roll/yaw control is not used, it is possible to recover from large posture errors. In FIG. 4, (IL (14 is a magnetic control circuit and a magnetic torquer drive path, respectively, a pitch control circuit and a pitch wheel drive circuit, and aη and a are respectively low/
These are a yaw control circuit and a rear wheel drive circuit. In steady state attitude control, these devices perform attitude control.

0は軌道修正指令回路、anはスラスタ駆動回路である
。ONは軌道修正実行指令に関するものであり、8Wは
ロール/ヨー制御機能の遮断のために入れたスイッチで
ある。今ONが指令されると、SWが開状態に移り、ロ
ール/田−制御機能が断れる。それと時期を同じくして
スラスタ駆動回路(2)によりスラスタtAsの推薬弁
が適当な時間に開かれ、軌道修正のための噴射が実行さ
れる。噴射終了後の残留の姿勢誤差はロール/:i1−
制御機能を外した定常姿勢制御で修正される。その後姿
勢誤差が十分小さくなった段階で、SWを閉状態に戻し
て定常姿勢制御へ復帰させる。ol)は軌道修正中の姿
勢誤差発生を監視するセーフ向、路であり、gaは姿勢
角速度検出器等の監視情報を強化するため・に必要なら
ば付加するものである。セーフ回路なカによって。
0 is a trajectory correction command circuit, and an is a thruster drive circuit. ON is related to the orbit correction execution command, and 8W is a switch turned on to cut off the roll/yaw control function. If ON is now commanded, the SW will move to the open state and the roll/field control function will be turned off. At the same time, the propellant valve of the thruster tAs is opened at an appropriate time by the thruster drive circuit (2), and injection for orbit correction is executed. The residual attitude error after the injection is completed is roll/:i1-
It is corrected by steady posture control with the control function removed. Thereafter, when the attitude error becomes sufficiently small, the SW is returned to the closed state to return to steady attitude control. ol) is a safe direction for monitoring the occurrence of attitude errors during trajectory correction, and ga is added if necessary to strengthen the monitoring information of the attitude angular velocity detector, etc. By means of a safe circuit.

姿勢誤差の異常発生が検知されたときの指令がOFFで
ちゃ、これ(よシスラスタ駆動回路(1)はスラスタ輪
の推薬弁艷閉じることでスラスタを切シ離す。このとき
の残留の姿勢誤差の修正及び定常姿勢制御への復帰につ
いては上で説明した正常軌道修正時の場合と同じである
When the command is turned OFF when an abnormal attitude error is detected, the thruster drive circuit (1) disconnects the thruster by closing the propellant valve of the thruster wheel.At this time, the remaining attitude error Correction and return to steady attitude control are the same as in the normal trajectory correction described above.

以上説明したように、この発明によ′れば、軌道修正実
行指令と連動させたロール/′i!−制御の遮断のため
のスイッチと、セーフ回路による異常姿勢誤差検知時の
スラスタの切シ離しとによシ、従来、必要としていたオ
フセットスラスタや特別な制御電子回路を使用しないで
軌道制御が実行でき、異常姿勢誤差検出時の安全性が確
保できるので、その実用的効果は極めて大きい。
As explained above, according to the present invention, the roll/'i! - A switch for shutting off the control and a safety circuit that disconnects and releases the thruster when an abnormal attitude error is detected, allowing orbit control to be performed without using offset thrusters or special control electronic circuits that were conventionally required. The practical effect is extremely large because safety can be ensured when abnormal posture errors are detected.

なお9以上は、ピッチホイール及びリアクシ冒ンホイー
ルからなるホイール制御、磁気センサを使用した磁気制
御、姿勢誤差検出器に地球セン−サを用いて説明したが
、この発明はこれに限らずバイアス角運動量をもち、且
つホイールでロール/N−を制御する方式のものに使用
してよいことは当然であるし、ロール/ヨー制御機能の
遮断を示すスイッチはその機能を行うどこに挿入しても
よく、ロール/ヨー制御機能の遮断後に、軌道修正用ス
ラスタの噴射が開始されるならば、それらの間の時間経
過については任意に選べることは当然である。また軌道
修正中の姿勢制御においてスラスタによる三軸制御が重
畳されることがあるが、この発明の説明において本質的
でないので省略しである。
In addition, although 9 and above are explained using wheel control consisting of a pitch wheel and a rear wheel, magnetic control using a magnetic sensor, and an earth sensor as an attitude error detector, this invention is not limited to this. It goes without saying that it can be used for devices that have momentum and use wheels to control roll/N-, and the switch that indicates the cutoff of the roll/yaw control function may be inserted wherever that function is performed. If the injection of the orbit correction thrusters is started after the roll/yaw control function is cut off, it is natural that the time elapsed between them can be arbitrarily selected. Additionally, three-axis control by thrusters may be superimposed in attitude control during orbit correction, but this is omitted as it is not essential to the description of this invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は定常姿勢制御の構成を説明する図。 第2図は従来の軌道制御方式を説明する図、第8図及び
第4図はこの発明に係る軌道制御方式を説明するための
図である。 図中、(1)は衛星、(2)は地球センサ、(3)#N
!に気センサ、(4)はピッチホイール、(5)はリア
クシ1ンホイール、(6)及び(7)は磁気トルカ、(
8)は姿勢制御電子回路、(9)及び(lQaオフセッ
トスラスタ、aDは制御電子回路、 aSはスラスタ、
aIは磁気制御回路、a4は磁気トルカ駆動回路、 (
1!Iはピッチ制御回路、a+9はピッチホイール駆動
回路、aηはロール/ヨー制御回路、a・はリアクシ目
ンホイール駆動回路、a優は軌道修正指令回路、(至)
はスラスタ駆動回路、Ql)はセーフ回路、(2)は′
姿勢角速度検出器等である。 なお図中、同一あるいは相当部分は同一符号を付して示
しである。 代理人  葛 野 信 −
FIG. 1 is a diagram explaining the configuration of steady posture control. FIG. 2 is a diagram for explaining a conventional orbit control method, and FIGS. 8 and 4 are diagrams for explaining an orbit control method according to the present invention. In the figure, (1) is a satellite, (2) is an earth sensor, (3) #N
! (4) is a pitch wheel, (5) is a rear axis wheel, (6) and (7) are magnetic torquers, (
8) is the attitude control electronic circuit, (9) and (lQa offset thruster, aD is the control electronic circuit, aS is the thruster,
aI is a magnetic control circuit, a4 is a magnetic torquer drive circuit, (
1! I is the pitch control circuit, a+9 is the pitch wheel drive circuit, aη is the roll/yaw control circuit, a is the rear axis wheel drive circuit, a is the trajectory correction command circuit, (to)
is the thruster drive circuit, Ql) is the safe circuit, and (2) is '
This is an attitude angular velocity detector, etc. In the drawings, the same or corresponding parts are designated by the same reference numerals. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] ピッチ軸(軌道面に垂直な方向)にバイアス角運動量を
有し、且り、ロール軸/ヨー軸(ピッチ軸に垂直な面内
)をホイールによシ姿勢制御する三軸衛星の軌道制御方
式において、軌道制御のための推力発生装置の始動に連
動させて、ロール/:!−ホイール制御系統を分離する
装置を設け、その作用で軌道制御中の推力発生装置の不
具合に対して推力発生装置を切ル離すだけで、軌道制御
のための推力発生装置の駆動が正常に終了した場合と同
じく、引き続き三軸姿勢を継続できるようにしたことを
特徴とする三軸衛星の軌道制御方式。
An orbit control system for a three-axis satellite that has bias angular momentum in the pitch axis (direction perpendicular to the orbital plane) and that uses wheels to control the attitude of the roll and yaw axes (in the plane perpendicular to the pitch axis). In conjunction with the start of the thrust generator for orbit control, roll /:! - A device is installed to separate the wheel control system, and if the thrust generator malfunctions during orbit control, the thrust generator can be simply disconnected and the drive of the thrust generator for orbit control will be completed normally. A three-axis orbit control method for a three-axis satellite, which is characterized by being able to continue in the same three-axis attitude as in the previous case.
JP56141435A 1981-09-08 1981-09-08 Control system of orbit of triaxial satellite Pending JPS5843900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56141435A JPS5843900A (en) 1981-09-08 1981-09-08 Control system of orbit of triaxial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141435A JPS5843900A (en) 1981-09-08 1981-09-08 Control system of orbit of triaxial satellite

Publications (1)

Publication Number Publication Date
JPS5843900A true JPS5843900A (en) 1983-03-14

Family

ID=15291889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141435A Pending JPS5843900A (en) 1981-09-08 1981-09-08 Control system of orbit of triaxial satellite

Country Status (1)

Country Link
JP (1) JPS5843900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195735U (en) * 1987-12-17 1989-06-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195735U (en) * 1987-12-17 1989-06-26

Similar Documents

Publication Publication Date Title
US9108749B2 (en) Spacecraft momentum management
US6296207B1 (en) Combined stationkeeping and momentum management
US5279483A (en) Attitude control system for a three-axis stabilized satellite especially a remote sensing satellite
US6260805B1 (en) Method of controlling attitude of a momentum biased spacecraft during long-duration thruster firings
CA1100605A (en) Momentum biased active three-axis satellite attitude control system
US7546983B2 (en) Spacecraft power acquisition method for wing-stowed configuration
US7410130B2 (en) Star-tracker-based attitude determination for spinning spacecraft
US5080307A (en) Spacecraft earth-pointing attitude acquisition method
CN106660641A (en) Method for controlling the orbit of a satellite in earth orbit, satellite and system for controlling the orbit of such a satellite
US6292722B1 (en) Magnetic torquer control with thruster augmentation
JPH0624397A (en) Control of spaceship position using ginbal and adjustably drawn thruster and momentum unloading method and device
JP2567098B2 (en) Attitude control system
US6089508A (en) Autonomous spacecraft safing with reaction wheels
Oda ETS-VII: achievements, troubles and future
US6076774A (en) Fuel and thermal optimal spiral earth acquisition
JPS5843900A (en) Control system of orbit of triaxial satellite
US5193766A (en) Retry/recovery method in rendezvous maneuver
JPS58183393A (en) Control system of attitude of artificial satellite
Karami et al. Spacecraft momentum dumping using fewer than three external control torques
Shankar et al. Anik-E 2 ground-based attitude control
Olson et al. Postflight evaluation of the Shuttle guidance, navigation, and control during powered-ascent flight phase
Olson et al. Evaluation of the Shuttle GN&C during powered ascent flight phase
JPH0218198A (en) Attitude controlling method of space flying object by wheel
JPH0141560B2 (en)
MARKLEY et al. A Zero-Gyro safemode controller for HST