JPS5843520B2 - Glass sensor icon - Google Patents

Glass sensor icon

Info

Publication number
JPS5843520B2
JPS5843520B2 JP2625575A JP2625575A JPS5843520B2 JP S5843520 B2 JPS5843520 B2 JP S5843520B2 JP 2625575 A JP2625575 A JP 2625575A JP 2625575 A JP2625575 A JP 2625575A JP S5843520 B2 JPS5843520 B2 JP S5843520B2
Authority
JP
Japan
Prior art keywords
glass fibers
glass
fiber
fibers
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2625575A
Other languages
Japanese (ja)
Other versions
JPS51102107A (en
Inventor
政宏 山名
繁春 草間
善和 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2625575A priority Critical patent/JPS5843520B2/en
Publication of JPS51102107A publication Critical patent/JPS51102107A/en
Publication of JPS5843520B2 publication Critical patent/JPS5843520B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はガラス繊維混抄紙の製造法に関するものであり
、更に詳しく述べるならば、ガラス繊維が均一に分散し
ていて極めて寸法安定性の高いガラス繊維混抄紙の製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing glass fiber mixed paper, and more specifically, a method for manufacturing glass fiber mixed paper that has glass fibers uniformly dispersed and has extremely high dimensional stability. It is related to.

紙の寸法安定性を改善する目的で、ガラス繊維をパルプ
に混抄することは公知である。
It is known to incorporate glass fibers into pulp for the purpose of improving the dimensional stability of paper.

このような混抄紙を製造するために、一般に市販されて
いるFRP用ガラス繊維のチョツプドストランドを用い
ると、混抄操作上および製品の品質上程々の問題点が生
じる。
If a generally commercially available chopped strand of glass fiber for FRP is used to manufacture such a mixed paper, there will be some problems in terms of the mixing operation and the quality of the product.

即ち、FRP用ガラス繊維のチョツプドストランドは、
その紡糸工程において紡糸助剤が施与されており、従っ
て、主として集束剤(酢酸ビニル、デンプン等)及びカ
ップリング剤(ボラン系またはシラン系)より成る、0
,5%前後の有機物が繊維表面に付着している。
In other words, chopped strands of glass fiber for FRP are
During the spinning process, a spinning aid is applied, and therefore, the 0
, approximately 5% of organic matter is attached to the fiber surface.

このような表面付着物によって生ずる問題点の第一は、
ガラス繊維のチョツプドストランドを水中またはパルプ
液中に投入し、攪拌してこれを単繊維に解離する時、繊
維束の解離性が悪く分散操作に長時間を要したり、未解
離の繊維束が残ったりすることである。
The first problem caused by such surface deposits is
When chopped strands of glass fiber are put into water or pulp solution and stirred to dissociate them into single fibers, the dissociation of the fiber bundle is poor and the dispersion operation takes a long time, or undissociated fibers This means that some bundles remain.

問題点の第二は、ガラス繊維表面の付着物が疎水性を有
するため、水中でガラス繊維同志が集合する傾向を呈し
、そのために得られた混抄紙中のガラス繊維の分散状態
が不良であって、ルーズな束状繊維が網目状に分布する
ことである。
The second problem is that since the deposits on the glass fiber surface are hydrophobic, the glass fibers tend to aggregate together in water, resulting in poor dispersion of the glass fibers in the resulting mixed paper. In other words, loose bundled fibers are distributed in a network pattern.

このため、得られた混抄紙の寸法安定性が不良であるば
かりでなく、紙表面の平滑度も不良であって、用途によ
っては使用上、性能上の支障を来すことがある。
For this reason, the resulting mixed paper not only has poor dimensional stability but also poor paper surface smoothness, which may cause problems in use and performance depending on the application.

本発明の目的は、上述のような従来方法の問題点を解消
し、抄紙液中におけるガラス繊維の分散性を改善し、寸
法安定性と平滑性のすぐれたガラス繊維混抄紙を製造す
る方法を提供することにある。
The purpose of the present invention is to solve the problems of the conventional methods as described above, improve the dispersibility of glass fibers in the papermaking liquid, and provide a method for manufacturing glass fiber-mixed paper with excellent dimensional stability and smoothness. It is about providing.

上記目的は本発明方法によって達成され、本発明方法は
、70−95重量%のパルプと5−30重量%の紡糸助
剤により処理されているガラス繊維とを混抄してガラス
混抄紙を製造するに際し、前記ガラス繊維に400℃以
上でかつ、その融点以下の温度に加熱してその表面付着
物を焼却し、次に急速に冷却水と接触させて急冷する前
処理を施すことを特徴とするものである。
The above object is achieved by the method of the present invention, which comprises mixing 70-95% by weight of pulp with 5-30% by weight of glass fibers treated with a spinning aid to produce glass-mixed paper. At this time, the glass fiber is heated to a temperature of 400°C or higher and lower than its melting point to incinerate the surface deposits, and then is rapidly brought into contact with cooling water to be rapidly cooled. It is something.

前述のように、ガラス繊維に対しその繊維製造工程にお
いて、酢酸ビニールまたはデンプンなどの溶液を集束剤
として、また、ボランまたはシラン系化合物の溶液をカ
ップリング剤として施与しているが、本発明方法におい
て、ガラス繊維を400℃以上かつガラス繊維の融点以
下の温度に加熱するとこれらの紡糸助剤は熱分解され、
30分以内にはV完全に焼却される。
As mentioned above, in the fiber manufacturing process, a solution of vinyl acetate or starch is applied to glass fibers as a sizing agent, and a solution of borane or a silane compound is applied as a coupling agent. In the method, when the glass fibers are heated to a temperature above 400°C and below the melting point of the glass fibers, these spinning aids are thermally decomposed;
V will be completely incinerated within 30 minutes.

この加熱温度が400℃より低い場合は、実用時間内に
紡糸助剤を完全に焼却することが困難である。
If this heating temperature is lower than 400°C, it is difficult to completely incinerate the spinning aid within a practical time.

また、加熱温度がガラス繊維の融点より高いときはガラ
ス繊維が溶融するので、このような温度は当然使用でき
ない。
Moreover, since the glass fibers will melt when the heating temperature is higher than the melting point of the glass fibers, such temperatures naturally cannot be used.

特に紡糸助剤の焼却が不完全であると、繊維表面の疎水
性を却って増大させ、抄紙液中でのガラス繊維の解離分
散を阻害することがある。
In particular, if the spinning aid is not completely burnt out, the hydrophobicity of the fiber surface may be increased, which may inhibit the dissociation and dispersion of the glass fibers in the papermaking liquid.

本発明方法において、ガラス繊維の加熱工程は従来の加
熱装置、例えば電気炉、赤外線加熱装置、熱風加熱炉な
どを用いることができる。
In the method of the present invention, a conventional heating device such as an electric furnace, an infrared heating device, a hot air heating furnace, etc. can be used for the heating step of the glass fiber.

ガラス繊維はチョツプドストランドの形態で、加熱装置
中に連続的に、或はバッチ式に供給される。
The glass fibers are fed in the form of chopped strands into the heating device either continuously or batchwise.

この加熱処理によってガラス繊維の水中分散性が著しく
向上し、緩徐な、或いは短時間の攪拌によりガラス繊維
を単繊維の形態で均一に水中分散することができる。
This heat treatment significantly improves the dispersibility of the glass fibers in water, and by slow or short stirring, the glass fibers can be uniformly dispersed in the form of single fibers in water.

このため、攪拌操作によるガラス単繊維の破断が少なく
、従ってガラス繊維の長さを保持することができる。
Therefore, the glass single fibers are less likely to break due to the stirring operation, and therefore the length of the glass fibers can be maintained.

また、加熱処理を経たガラス繊維を混抄した混抄紙は、
加熱処理を施さないガラス繊維を用いた混抄糸にくらべ
て、著しく改善された寸法安定性を有している。
In addition, mixed paper made with heat-treated glass fibers,
It has significantly improved dimensional stability compared to mixed yarn using glass fiber that is not heat treated.

この向上の理由は明らかではないが、加熱処理を施され
たガラス繊維の表面が、パルプ繊維に対し改善された接
着性を有しているためと思われる。
Although the reason for this improvement is not clear, it is believed that the surface of the heat-treated glass fiber has improved adhesion to the pulp fiber.

本発明方法において、高温熱処理されたガラス繊維は次
に急速に冷却水と接触して急冷される。
In the method of the present invention, the high temperature heat treated glass fibers are then brought into rapid contact with cooling water and quenched.

この冷却水との接触は、ガラス繊維を冷却水中に投入し
てもよいし、ガラス繊維に冷却水を散布してもよいし、
或いはガラス繊維を冷却水流を通って連続的に走らせて
もよい。
This contact with the cooling water may be achieved by putting the glass fibers into the cooling water, by spraying the glass fibers with cooling water, or by spraying the glass fibers with cooling water.
Alternatively, the glass fibers may be run continuously through the cooling water stream.

一般に、高温熱処置されたガラス繊維を急激に冷却水と
接触させると、その急激かつ不均一な収縮によりガラス
繊維が粉粉に砕けると予想されるが、事実はこのような
予想とは異なり、ガラス繊維の切断や破砕は全く発生し
ないことが確認された。
Generally, when glass fibers that have been heat-treated at high temperatures are brought into sudden contact with cooling water, it is expected that the glass fibers will shatter into powder due to the sudden and uneven contraction, but the reality is contrary to this prediction. It was confirmed that no cutting or crushing of glass fibers occurred.

そればかりが、急冷したガラス繊維を混抄した混抄紙は
、空気中で徐冷したガラス繊維を用いた混抄紙よりも、
その寸法安定性が高いという驚くべき効果が認められた
In fact, mixed paper made with quenched glass fibers is better than mixed paper made with glass fibers slowly cooled in air.
The surprising effect of high dimensional stability was observed.

この原因は明らかではないが、加熱急冷による焼入れ効
果によりガラス繊維のヤング率が向上するためと思われ
る。
Although the reason for this is not clear, it is thought that the Young's modulus of the glass fiber is improved by the quenching effect of heating and quenching.

更に、本発明の急冷法は下記のように長所を有している
Furthermore, the rapid cooling method of the present invention has the following advantages.

(4)冷却設備が簡単で、冷却時間が短い。(4) Cooling equipment is simple and cooling time is short.

若し徐冷を行うとすれば、多量のガラス繊維を収容する
ための大型の徐冷室が必要となる。
If slow cooling is to be performed, a large slow cooling chamber is required to accommodate a large amount of glass fibers.

(B) 高温処理されたガラス繊維の有する熱は、冷
却水によって回収され、この熱量は抄紙工程の白水温度
の上昇に有効に利用され、これにより繊維の分散度を高
め、乾燥時間を短縮することができる。
(B) The heat possessed by high-temperature-treated glass fibers is recovered by cooling water, and this amount of heat is effectively used to raise the white water temperature in the papermaking process, thereby increasing the degree of fiber dispersion and shortening drying time. be able to.

しかし徐冷法ではガラス繊維の有する熱は、大気中に放
出され回収困難である。
However, in the slow cooling method, the heat possessed by the glass fibers is released into the atmosphere and is difficult to recover.

上述のように本発明方法においては、高温加熱処理と急
冷処理とを組合せることによって、ガラス繊維の抄紙液
中での解離分散処理が容易になり、寸法安定性の高い混
抄紙を製造することができる。
As described above, in the method of the present invention, by combining high-temperature heating treatment and rapid cooling treatment, the dissociation and dispersion treatment of glass fibers in the papermaking liquid is facilitated, and a mixed paper with high dimensional stability can be produced. I can do it.

また、本発明方法によって製造された混抄紙は、ガラス
繊維が単繊維の形で均一に分散していて、未解離繊維束
が存在せず、表面の平滑性がすぐれている。
Furthermore, the mixed paper produced by the method of the present invention has glass fibers uniformly dispersed in the form of single fibers, no undissociated fiber bundles, and excellent surface smoothness.

更に、本発明方法により冷却装置が単純化され、熱量の
回収が容易に行うことができる。
Furthermore, the method of the present invention simplifies the cooling device and facilitates the recovery of heat.

以下実施例によって本発明方法の構成および効果を説明
する。
The structure and effects of the method of the present invention will be explained below with reference to Examples.

実施例 旭ファイバーグラス社製の、長さ6mm、太さ9μのチ
ョツプドストランド(商品名:C8−06HA−83O
A)を22♂秤取した。
Example Chopped strand (product name: C8-06HA-83O) with a length of 6 mm and a thickness of 9 μ manufactured by Asahi Fiberglass Co., Ltd.
22 males of A) were weighed.

このガラス繊維を、以下ガラス繊維Iと呼ぶ。This glass fiber is hereinafter referred to as glass fiber I.

別に、上記と同一のガラス繊維22グを取り、ルツボに
入れ電気炉中で450℃で30分間加熱処理した。
Separately, 22 g of the same glass fiber as above was taken, placed in a crucible, and heat-treated at 450° C. for 30 minutes in an electric furnace.

このガラス繊維を電気炉から取り出して、空気中で約1
時間放冷した。
This glass fiber was taken out of the electric furnace and placed in the air for about 1
It was left to cool for an hour.

得られた繊維を、以下ガラス繊維■と呼ぶ。The obtained fiber is hereinafter referred to as glass fiber (■).

更に上記と同一のガラス繊維221を取り、上記と同一
方法で高温処理した後、直ちに20’Cの水約500r
ILl中に投入して急冷した。
Further, the same glass fiber 221 as above was taken and treated at high temperature in the same manner as above, and then immediately soaked in about 500 r of water at 20'C.
It was put into IL1 and rapidly cooled.

得られた繊維を、以下ガラス繊維■と呼ふ。The obtained fiber is hereinafter referred to as glass fiber (■).

別に広葉樹晒クラフトパルプ(以下LBKPと略す)を
、ビータ−を用いて、そのカナデアン・スタンダード・
フリーネスが450m1になるように叩解し、1重量%
濃度のパルプ液になるように水を加えて稀釈した。
Separately, hardwood bleached kraft pulp (hereinafter abbreviated as LBKP) was processed using a beater to produce its Canadian standard pulp.
Beaten to a freeness of 450ml, 1% by weight
Water was added to dilute the pulp solution to a concentrated pulp solution.

このパルプ液17.81(−t−なわち、絶乾パルプ1
781を含む)を取り、往復動式攪拌器で攪拌しながら
この中にガラス繊維■を投入した。
This pulp liquid 17.81 (-t-, that is, bone dry pulp 1
(containing 781) was taken, and the glass fiber (2) was put into it while stirring with a reciprocating stirrer.

攪拌を続けながら、分散液からその少量を取って青ガラ
ス上で解離分散状況を観察し、その中に束状繊維が全く
見られなくなるまでに要した時間を測定したところ、約
12分であった。
While stirring, a small amount of the dispersion was taken and the state of dissociation and dispersion was observed on a blue glass. The time required until no bundled fibers were observed was measured, and it was approximately 12 minutes. Ta.

別に、ガラス繊維L■についても上記と同様の解離時間
を測定した所、ガラス繊維■の解離時間は1秒であった
が、ガラス繊維■のそれは約30秒であった。
Separately, the dissociation time of the glass fiber L was measured in the same manner as above, and the dissociation time of the glass fiber L was 1 second, but that of the glass fiber L was about 30 seconds.

このようにして作った(ガラス繊維11%、LBKP8
9%)三種類の材料から、丸型手抄シートマシンによっ
て坪量xoo?/lri’のシート(ガラス繊維混抄紙
I、■、■)を作った。
Made in this way (glass fiber 11%, LBKP8
9%) From three types of materials, the basis weight xoo? /lri' sheets (glass fiber mixed paper I, ■, ■) were made.

湿シートはプレスで搾水した後、表面温度105℃のフ
ェロタイプに挿入して乾燥した。
After squeezing the wet sheet with a press, it was inserted into a ferrotype with a surface temperature of 105° C. and dried.

この3種類のシート、及び別にLBKPのみから作った
シート(比較紙)の計4種類について、水中伸度と平均
繊維長さを測定した結果を下表に示す。
The table below shows the results of measuring the underwater elongation and average fiber length of these three types of sheets and a separate sheet (comparison paper) made only from LBKP.

水中伸度とは常温の水に一定時間紙を浸漬した時の紙の
伸び(%)であり、フエンチェル式水中伸度測定装置を
置いた。
Underwater elongation is the elongation (%) of paper when it is immersed in water at room temperature for a certain period of time, and a Fenchel type underwater elongation measurement device was installed.

平均繊維長は紙片中のセルローズ繊維を濃硫酸でとかし
てガラス繊維を残し、これをスライドグラス上に展開し
て投影器にかげ、繊維長を全数測定して算術平均して求
めた。
The average fiber length was determined by melting the cellulose fibers in a piece of paper with concentrated sulfuric acid to leave glass fibers, which were spread out on a slide glass and exposed to a projector, and the lengths of all the fibers were measured and arithmetic averaged.

上記の表から、本発明方法によるガラス繊維混抄紙■が
、水中における寸法安定性が最も高く、またガラス繊維
の平均繊維長も大きいことがわかる。
From the above table, it can be seen that the glass fiber mixed paper (2) produced by the method of the present invention has the highest dimensional stability in water and also has a large average fiber length of the glass fibers.

Claims (1)

【特許請求の範囲】[Claims] 170−95重量%のパルプと、5−30重量%の、紡
糸助剤により処理されているガラス繊維とを混抄するに
際し、前記ガラス繊維に、400℃以上でかつ、その融
点以下の温度に加熱してその表面付着物を焼却し、次に
急速に冷却水と接触させて急冷する前処理を施すことを
特徴とするガラス繊維混抄紙の製造法。
When mixing 170-95% by weight of pulp and 5-30% by weight of glass fibers treated with a spinning aid, the glass fibers are heated to a temperature of 400°C or higher and below their melting point. A method for producing glass fiber mixed paper, which is characterized by performing a pretreatment of incinerating the surface deposits, and then rapidly cooling the paper by bringing it into contact with cooling water.
JP2625575A 1975-03-04 1975-03-04 Glass sensor icon Expired JPS5843520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2625575A JPS5843520B2 (en) 1975-03-04 1975-03-04 Glass sensor icon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2625575A JPS5843520B2 (en) 1975-03-04 1975-03-04 Glass sensor icon

Publications (2)

Publication Number Publication Date
JPS51102107A JPS51102107A (en) 1976-09-09
JPS5843520B2 true JPS5843520B2 (en) 1983-09-27

Family

ID=12188141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2625575A Expired JPS5843520B2 (en) 1975-03-04 1975-03-04 Glass sensor icon

Country Status (1)

Country Link
JP (1) JPS5843520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245689A (en) * 1978-05-02 1981-01-20 Georgia Bonded Fibers, Inc. Dimensionally stable cellulosic backing web
JPS6121240Y2 (en) * 1980-07-10 1986-06-25
JPH05341554A (en) 1992-06-04 1993-12-24 Fuji Xerox Co Ltd Electrophotographic transfer paper

Also Published As

Publication number Publication date
JPS51102107A (en) 1976-09-09

Similar Documents

Publication Publication Date Title
US4284615A (en) Process for the production of carbon fibers
JPS6052208B2 (en) Carbon fiber tow manufacturing method
CN108004798A (en) Preparation method of coating wall cloth
JPS5843520B2 (en) Glass sensor icon
TW312721B (en)
JP2011144482A (en) Flameproof fiber, flameproof textile product and flameproof film, and method for producing the same
JPH0284528A (en) Production of flame-retardant fiber
JPS58109577A (en) Flameproofing agent composition
RU2119986C1 (en) Method of producing microcrystalline cellulose
JP2938268B2 (en) Calendar processing method
CN110528096A (en) A kind of fire prevention filled articles
JPS63248724A (en) Production of fibrous antimony oxide
DE3361014D1 (en) Process for the preparation of filaments or fibres from acrylonitrile polymers
CN109487535A (en) A kind of dacron flame-retardant finishing method
JP5700316B1 (en) Method for producing hygroscopic exothermic short fiber mixed feather cotton
CN101839834B (en) Dulling agent content detection method in dull viscose
JPS62110967A (en) Decorative bleaching of fiber
SU896119A1 (en) Composition for flame-proofing textiles
JPS6312722A (en) Production of highly flame-retardant modacrylic fiber
CN115976831A (en) Molecular sieve flame-retardant silk and preparation method thereof
SU587202A1 (en) Composition used in manufacture of thermally and electrically insulating sheet materials
JPS5837151B2 (en) Manufacturing method of inorganic fiberboard
SU541826A1 (en) Thermal insulation mass
SU734155A1 (en) Method of treatment of glass fiber cuts
SU1435566A1 (en) Method of producing perlite fibre articles