JPS5843367A - Magnetic refrigerator - Google Patents

Magnetic refrigerator

Info

Publication number
JPS5843367A
JPS5843367A JP14085381A JP14085381A JPS5843367A JP S5843367 A JPS5843367 A JP S5843367A JP 14085381 A JP14085381 A JP 14085381A JP 14085381 A JP14085381 A JP 14085381A JP S5843367 A JPS5843367 A JP S5843367A
Authority
JP
Japan
Prior art keywords
temperature
magnetic
magnetic material
crystal
easy magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14085381A
Other languages
Japanese (ja)
Other versions
JPH0138229B2 (en
Inventor
佐川 真人
悠一 鈴木
薫 橋本
山岸 亙
堀越 英二
村川 恭平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14085381A priority Critical patent/JPS5843367A/en
Publication of JPS5843367A publication Critical patent/JPS5843367A/en
Publication of JPH0138229B2 publication Critical patent/JPH0138229B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は磁気冷凍機、さらに特定すれば希土類コイルト
系ス♂ン再配列臘化合物単結晶ある−は歩くと41らの
結晶方向が整列した結晶を静−場Φで回転させると−、
磁場が印加され為方向によりてエン)ms’−(D増−
が鉛垂し、ヒれによ)冷却を行う冷凍機に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic refrigerator, and more specifically, to a magnetic refrigerator, more specifically, a single crystal of a rare-earth coiled-spin rearranged phosphorus compound, which is a single crystal with 41 crystal directions aligned, is produced in a static field Φ. When rotated,
When a magnetic field is applied, depending on the direction, ms'-(D increases-
This relates to a refrigerator that performs cooling (by means of lead dripping and fins).

従来、いわゆる磁気消mKよる磁気冷凍は、常員性塩に
数テスラの強−場を加えたり取除いたシするとilK、
放熱または吸熱する原理にもとづくものであうた□。こ
の方法は上記のような強磁場を必要とし一常員性塩はヘ
リウム温度以下で有効であ〕、強磁性体は磁場に出入さ
せるときの密封・断熱に問題があるな′どの欠点を有す
る。
Conventionally, magnetic refrigeration using so-called magnetic quenching mK was performed by adding or removing a strong field of several Tesla to a resident salt.
It is based on the principle of heat radiation or heat absorption. This method requires a strong magnetic field as described above, and mono-resident salts are effective at temperatures below helium temperature], and ferromagnetic materials have drawbacks such as problems with sealing and insulation when entering and exiting the magnetic field. .

本発明の目的は上記欠点を有しな一磁気冷凍機を提供す
るととである。
It is an object of the present invention to provide a magnetic refrigerator which does not have the above-mentioned drawbacks.

本発明の上記目的は、磁性材料を構成する結晶が温−に
応じて磁化容易方向が転向する単結晶あるいは少くとも
1つの結晶方向が整列された結晶から1□如、−性材料
iを密封室2の静磁場中Kが−で回転させ、磁性材料1
の方向が、結晶温度が上昇する方向であるとIK高温側
媒体と接触させ、紬1温−が降下讐る゛□方向であると
@に低温側°媒体と接触させて低−一謀体を冷却するこ
とを反−することを41像とする一気冷凍機によりて達
成することが′C−る= 本発911′〇−気冷凍機において温度に応じて磁化容
易方向が転向する結晶が単結晶あるいは少なくとも1つ
の結晶方向釦配向している多結晶からな)、この配向方
向が単結晶の磁化容易方向である磁性材料は、この磁性
材料全体の磁化容易方向が前記配向方向の1つと一致す
る。この磁性材料を静磁場中に配置したとき、磁性材料
の磁化容易方向が磁場の方向と平行するときは磁場によ
るl1m材料の磁化が最大であって、これが直角なとき
はその磁化が最小である。
The above object of the present invention is to seal a magnetic material i in a manner such that the crystal constituting the magnetic material is a single crystal whose direction of easy magnetization changes depending on the temperature or a crystal in which at least one crystal direction is aligned. In the static magnetic field of chamber 2, the magnetic material 1 is rotated with K at -.
If the direction is the direction in which the crystal temperature increases, the IK is brought into contact with the medium on the high temperature side, and if the direction is the direction in which the crystal temperature decreases, it is brought into contact with the medium on the low temperature side, and the low temperature side is brought into contact with the medium. It is possible to accomplish this by using an all-in-one refrigerating machine with a 41 image. A magnetic material whose orientation direction is the easy magnetization direction of the single crystal (such as a single crystal or a polycrystal with at least one crystal orientation) has a magnetic material in which the easy magnetization direction of the entire magnetic material is one of the orientation directions. Match. When this magnetic material is placed in a static magnetic field, when the direction of easy magnetization of the magnetic material is parallel to the direction of the magnetic field, the magnetization of the l1m material by the magnetic field is maximum, and when this is perpendicular, the magnetization is minimum. .

磁化容易方向が変化する温度を含まない温度範囲におい
て、このような磁性材料を静磁場中で回転させるときは
、エントロピー変化はきわめて小さい。そして磁化容易
方向が変化しつつあるときは、エントロピー変化が大き
く、回転にょp発熱あるいは吸熱が起こる。1:・:、
本発明は上記原理にもとづくものである。  :□・・
・□・ ・本発明で使用する4材料は希土類・・、〜ト臘合金か
らなシ、磁化容易方向が温wtK応じて、第1図に示す
ように2面、cliiがら真方向に転向する□。この入
方向に転向する遷移温度よシ高い温度とも1つの結晶方
向に配向している多結晶からなる磁性材料を得る。希土
類コ/4ルト型合金はRCo 5m、R,C60,fl
iが6択これらの合金の磁化容易方向と温度との関係を
第2および第3図に示す。第2図12)RC・、型合金
において、たとえばDyCo は磁化容易方向が0面か
ら真方向く転向する温度が約370”Kであ〉、これよ
シ高一温度で使用することができる。なおこの合金の8
%Coはそれぞれ一部分を他の元素で置換することがで
きる。
When such a magnetic material is rotated in a static magnetic field in a temperature range that does not include the temperature at which the direction of easy magnetization changes, the entropy change is extremely small. When the direction of easy magnetization is changing, the entropy changes greatly, and heat generation or heat absorption occurs during rotation. 1:・:、
The present invention is based on the above principle. :□・・
・□・ ・The four materials used in the present invention are rare earths... ~ 臘 alloys, and the direction of easy magnetization changes to the true direction from two planes and clii as shown in Figure 1, depending on the temperature wtK. □. A magnetic material made of polycrystals oriented in one crystal direction is obtained even at a temperature higher than the transition temperature at which the magnetic material turns in the incoming direction. Rare earth core/4 rut type alloy is RCo 5m, R, C60, fl
i is 6 choices. The relationship between the easy magnetization direction and temperature for these alloys is shown in FIGS. 2 and 3. In the RC type alloy, for example, the temperature at which the direction of easy magnetization of DyCo turns from the zero plane to the true direction is about 370''K, and it can be used at a temperature higher than this. Furthermore, 8 of this alloy
%Co can be partially replaced with other elements.

114図を参照しながら、磁気冷凍機の基本的動作を説
明する。ll性材料1はこれを竺成する結晶が温度に応
じて磁化容易方向が転向する結晶からなり、かつこの結
晶が少々くとも1つの結晶方向に配向しておシ、、密封
11ii12内に回転可能に設けられ、密封室261−
何から静磁場を作用させる。磁、!1#9、。カー、−
1,&□ッ、オ、ヵ。。
The basic operation of the magnetic refrigerator will be explained with reference to FIG. The magnetic material 1 is made up of crystals whose direction of easy magnetization changes depending on the temperature, and these crystals are oriented in at least one crystal direction and rotated within the hermetic seal 11ii12. A sealed chamber 261-
What makes a static magnetic field work? Magnetic! 1#9. Carr, -
1, & □, oh, ka. .

転して−る関は、密封室2に低温側媒体を導入して磁性
材料1と接触させて冷却し、低温側回路3に循llさせ
る。他方、磁性材料1の方向が結晶温度が上昇する方向
である間は低温側媒体との接触を中止し、高温側媒体を
流入させて高温側回路4に循環させる。
In this case, a low-temperature medium is introduced into the sealed chamber 2, brought into contact with the magnetic material 1, cooled, and circulated through the low-temperature circuit 3. On the other hand, while the direction of the magnetic material 1 is in the direction in which the crystal temperature increases, contact with the low-temperature medium is stopped, and the high-temperature medium is allowed to flow in and circulate to the high-temperature circuit 4.

本発明の磁気冷凍機は従来の断熱消磁にもとづくものと
は異なり、通常の永久磁石、電磁石によ−)て得られる
程度の静磁場中において回転させることにより、て十分
な冷凍機能を発揮することができる。遷移温度が常温よ
り低い希土類コバルト型合金を使用することによって、
常温付近で冷凍盲せることができる。なお従来の気体冷
凍機に比較すれば、作業物質の体積が約、300分の1
と少さく、ま九高圧圧縮機を必要としないので、小型化
し、ま九騒音およq振動を軽減することができ、たとえ
ばノ璽セフノン素子を使用する電1IIIfIAの冷\
1 却にも利用できると考えられる。
The magnetic refrigerator of the present invention is different from conventional ones based on adiabatic demagnetization, and exhibits a sufficient refrigeration function by rotating in a static magnetic field similar to that obtained with ordinary permanent magnets or electromagnets. be able to. By using a rare earth cobalt type alloy with a transition temperature lower than room temperature,
It can be frozen at room temperature. In addition, compared to conventional gas refrigerators, the volume of working material is approximately 1/300th
Since it is small in size and does not require a high-pressure compressor, it can be downsized and reduce noise and vibration.
1 It is thought that it can also be used for

次に、本発明のa蝉冷凍機の1)の実施態様、の要部を
第5図を参照1ながら説明する。 Ml!に#科DF、
、−町、1 (”O,?’・。、、)、の磁化容易方向
がC固より真方向に転向する遷移温度は55Cでありて
、この温度以上では変化しない。この結晶を温度100
℃で磁!中で加圧成形した圧粉体を温度1200℃で1
h焼結した。この焼結体を加工して多数の貫流孔をあけ
た扇状体aとし、この扇状体1個の重量は13IIであ
り、4個の扇状体を断熱的に接着して磁性材料lとした
。磁性材料1を密封室2の内11に接して回転可能Ki
t付け、密封室2の両側には靜戯場源を配置し、密封室
2Ka場の方向に対して直角に媒体流出口を設け、磁性
材料lの内腔5から媒体水(30%)十エチルアルコー
ル(7,0−)を流量100−シーinで流入させた。
Next, the main parts of the embodiment 1) of the cicada refrigerator of the present invention will be explained with reference to FIG. Ml! # Department DF,
The transition temperature at which the easy magnetization direction of , -machi, 1 ("O,?'・.,,) changes from the C solid direction to the true direction is 55 C, and does not change above this temperature. This crystal is heated to a temperature of 100 C.
Magnetic at ℃! The compacted powder compacted in the chamber was heated to 1200°C
h Sintered. This sintered body was processed to form a fan-shaped body a with a large number of through-holes, each fan-shaped body weighed 13II, and four fan-shaped bodies were adiabatically bonded to form a magnetic material l. The magnetic material 1 can be rotated in contact with the inside 11 of the sealed chamber 2.
A quiet field source is arranged on both sides of the sealed chamber 2, a medium outlet is provided at right angles to the direction of the Ka field of the sealed chamber 2, and a medium water (30%) is poured from the inner cavity 5 of the magnetic material 1. Alcohol (7,0-) was flowed in at a flow rate of 100-c.

、磁性、材、科1はlrpmで時計方向に回転させ、f
fl畔材料、1を通る磁場の強さ、は4kO・とした。
, Magnetism, Material, Family 1 is rotated clockwise at lrpm, f
The strength of the magnetic field passing through the fl edge material 1 was set to 4 kO·.

第5図に示す位置5では扇状体aおよびbは、a場の方
向に対する磁化容易方向が平行から直角に変6′)′)
あるので、磁性材料1は消磁して吸熱する。
At position 5 shown in FIG. 5, the directions of easy magnetization of the sectors a and b change from parallel to perpendicular to the direction of the field a6')')
Therefore, the magnetic material 1 demagnetizes and absorbs heat.

このとき紘流串管の弁6を操作して低温側回路3−開放
する。次Km性材料1が回転して、さきの方向、が直角
から半行に変るときには低温側回路空を閉じ、高温!回
路4に開放する。低温側回路3は図示しない導管および
ポン!によりて低温側媒体を循環させ、磁性材料1の内
腔5に戻す・1となり、温度は25.7℃が0.7℃だ
け降下し九・これを反復して10分後には、媒体温度を
7℃まで降下させることができた。
At this time, the low temperature side circuit 3 is opened by operating the valve 6 of the Koryu skewer. Next, when Km-sensitive material 1 rotates and the previous direction changes from a right angle to a half line, the low temperature side circuit is closed and the high temperature is reached! Open to circuit 4. The low-temperature side circuit 3 includes a conduit and a pump (not shown). The medium on the low temperature side is circulated and returned to the inner cavity 5 of the magnetic material 1.The temperature becomes 1, and the temperature drops from 25.7℃ to 0.7℃9.After 10 minutes of repeating this, the medium temperature The temperature could be lowered to 7℃.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気冷凍機で使用する単結晶の磁化容
易方向の模型図であり、 第2図は本発明の磁気冷凍機で使用するRCOsl1合
金単結晶の磁化容易方向と温度との関係を示すグラフで
69、 第3図は本発明の磁気冷凍準で使用する”z”<r型合
全単結晶の磁化容易方向と温度との関係を示すグラフで
あり、 第4図は本発明の磁気冷凍機の原理を示す説明−二□の 第5図は本発明の磁気冷   実施態様の要部説明図で
ある。・    □ ゛ 1・・・磁性材料、2・・・密封室 3 ass低温側
媒体回路、4・・・高温側媒体回路、5・・・磁性材料
の内腔、6・・・弁。 特許出願人 富士通株式会社 特杵出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士 内 1)幸 男 弁理士 山 口 昭 之 ′8( 、′□:、 第2図 第3@
Figure 1 is a model diagram of the easy magnetization direction of the single crystal used in the magnetic refrigerator of the present invention, and Figure 2 is a diagram showing the relationship between the easy magnetization direction and temperature of the RCOsl1 alloy single crystal used in the magnetic refrigerator of the present invention. Figure 3 is a graph showing the relationship between the easy magnetization direction and temperature of the "z"<r type combined single crystal used in the magnetic refrigeration quasi of the present invention, and Figure 4 is a graph showing the relationship between the temperature and the direction of easy magnetization. Explanation of the Principle of the Magnetic Refrigerator of the Invention-2 □ FIG. 5 is an explanatory view of the main part of the magnetic cooling embodiment of the present invention.・ □゛1...Magnetic material, 2...Sealed chamber 3...Ass low temperature side medium circuit, 4...High temperature side medium circuit, 5...Inner cavity of magnetic material, 6...Valve. Patent applicant Fujitsu Limited Tokugi Patent attorney Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney 1) Yukio Patent attorney Akira Yamaguchi '8 ( , '□:, Figure 2, 3@

Claims (1)

【特許請求の範囲】[Claims] 1、磁性材料を構成する結晶が温度に応じて磁化容易方
向が転向する単結晶あるいは少くと−1つの結晶方向が
整列され九′結′&から*#、諌磁性材料(1゛)を密
封室(2)C)静磁場中にお一回転させ、磁性材料(1
)の方向が、結晶温度が上昇する方向であると*に高温
側一体と!!−させ、結菖温度が降下する方向であると
liK低温−媒体と接触させて低温側媒体を冷却させる
ヒとを反復することを特徴とす為磁気冷凍機。
1. The crystal that makes up the magnetic material is a single crystal whose direction of easy magnetization changes depending on the temperature, or at least one crystal direction is aligned and the magnetic material (1゛) is sealed. Chamber (2)C) Place the magnetic material (1
) is the direction in which the crystal temperature increases, and the high temperature side is integrated with *! ! A magnetic refrigerator characterized in that it repeatedly brings the temperature of the iris into contact with a low temperature medium to cool the low temperature medium in the direction in which the temperature of the iris decreases.
JP14085381A 1981-09-09 1981-09-09 Magnetic refrigerator Granted JPS5843367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14085381A JPS5843367A (en) 1981-09-09 1981-09-09 Magnetic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14085381A JPS5843367A (en) 1981-09-09 1981-09-09 Magnetic refrigerator

Publications (2)

Publication Number Publication Date
JPS5843367A true JPS5843367A (en) 1983-03-14
JPH0138229B2 JPH0138229B2 (en) 1989-08-11

Family

ID=15278255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14085381A Granted JPS5843367A (en) 1981-09-09 1981-09-09 Magnetic refrigerator

Country Status (1)

Country Link
JP (1) JPS5843367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520946A (en) * 2005-12-21 2009-05-28 株式会社大宇エレクトロニクス Magnetic refrigerator
JP2009524796A (en) * 2006-01-27 2009-07-02 株式会社大宇エレクトロニクス Active magnetic refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520946A (en) * 2005-12-21 2009-05-28 株式会社大宇エレクトロニクス Magnetic refrigerator
JP4825879B2 (en) * 2005-12-21 2011-11-30 株式会社大宇エレクトロニクス Magnetic refrigerator
JP2009524796A (en) * 2006-01-27 2009-07-02 株式会社大宇エレクトロニクス Active magnetic refrigerator

Also Published As

Publication number Publication date
JPH0138229B2 (en) 1989-08-11

Similar Documents

Publication Publication Date Title
Brown Magnetic heat pumping near room temperature
US8312730B2 (en) Magnetic refrigeration device and magnetic refrigeration system
Herbst et al. Neodymium-iron-boron permanent magnets
US4507927A (en) Low-temperature magnetic refrigerator
US3413814A (en) Method and apparatus for producing cold
US7076958B2 (en) Magnetic material
US4459811A (en) Magnetic refrigeration apparatus and method
Wikus et al. Magnetocaloric materials and the optimization of cooling power density
JPS63148061A (en) Magnetic refrigerator and method thereof
Hashimoto et al. Investigations on the possibility of the RAl 2 system as a refrigerant in an ericsson type magnetic refrigerator
JPS60223972A (en) Rotary type magnetic refrigerator
JP2002356748A (en) Magnetic material
Anagnostou et al. Preparation and characterization of the NdFe10 T 2N x (T= Mo, V) compounds with the ThMn12 tetragonal‐type structure
Coey Intrinsic magnetic properties of compounds with the Nd2Fe14B structure
US5165242A (en) Refrigerator or air conditioner based on a magnetic fluid
Petrov et al. Large magnetocaloric effect in LiLnP4O12 (Ln= Gd, Tb, Dy) single crystals
JPS5843367A (en) Magnetic refrigerator
JPS6326312B2 (en)
JPS59230541A (en) Ultra-low temperature magnet apparatus
Barclay A 4 K to 20 K rotational-cooling magnetic refrigerator capable of 1mW to> 1W operation
JPH04242901A (en) Magnetic body material for magnetic refrigeration
JPH0317055B2 (en)
Hashimoto et al. Recent progress in magnetic refrigeration studies
JPH046352A (en) Refrigerating method, cold-heat accumulator and liquefier
JP2837795B2 (en) Cryogenic regenerator