JPS5843251B2 - Thermoplastic resin film manufacturing method - Google Patents

Thermoplastic resin film manufacturing method

Info

Publication number
JPS5843251B2
JPS5843251B2 JP51145548A JP14554876A JPS5843251B2 JP S5843251 B2 JPS5843251 B2 JP S5843251B2 JP 51145548 A JP51145548 A JP 51145548A JP 14554876 A JP14554876 A JP 14554876A JP S5843251 B2 JPS5843251 B2 JP S5843251B2
Authority
JP
Japan
Prior art keywords
film
mandrel
die
diameter
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51145548A
Other languages
Japanese (ja)
Other versions
JPS5371170A (en
Inventor
善比古 武藤
征訓 松岡
満男 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP51145548A priority Critical patent/JPS5843251B2/en
Publication of JPS5371170A publication Critical patent/JPS5371170A/en
Publication of JPS5843251B2 publication Critical patent/JPS5843251B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 本発明はダイ、マンドレル及びフィルムが内包する空間
を減圧することにより、フィルムがマンドレルに始めて
接触する位置を調整して、透明性良好かつ均一延伸性に
優れた結晶性熱可塑性樹脂からなる管状フィルムを、均
一かつ長時間安定して製造する方法に関する。
Detailed Description of the Invention The present invention reduces the pressure in the space enclosed by the die, mandrel, and film to adjust the position where the film first contacts the mandrel, thereby improving crystallinity with good transparency and uniform stretchability. This invention relates to a method for producing a tubular film made of thermoplastic resin uniformly and stably for a long time.

管状溶融フィルムの冷却固化法としては、空冷法、水等
の液体による液冷法、金属等の熱伝導率に優れた固体と
接触させる固体接触冷却法が一般に知られているが、冷
却効率の点で固体接触冷却法が最も優れる。
Generally known methods for cooling and solidifying tubular molten films include air cooling, liquid cooling using a liquid such as water, and solid contact cooling in which the film is brought into contact with a solid having excellent thermal conductivity such as a metal. The solid contact cooling method is the best in this respect.

従って、固体接触冷却法は、特に結晶化速度の速い樹脂
、例えばポリヘキサメチレンアジパミド樹脂で透明性良
好かつ均一延伸性に優れた管状フィルムを作る場合に好
適である。
Therefore, the solid contact cooling method is particularly suitable for producing a tubular film with good transparency and excellent uniform stretchability using a resin with a fast crystallization rate, such as polyhexamethylene adipamide resin.

固体接触冷却法には、フィルムの外側からの接触法と内
側から接触する方法があるが、管状溶融フィルムの冷却
固化時に後収縮があるので、フィルムと冷却体の接触を
よくして冷却効果を高め、さらにフィルム径を一定化す
るため、マンドレルを使用するフィルム内側からの固体
接触冷却法(マンドレル冷却法)の方が優れている。
Solid contact cooling methods include a method in which the film is contacted from the outside and a method in which it is contacted from the inside, but since there is post-shrinkage when the tubular molten film is cooled and solidified, it is necessary to improve the cooling effect by making good contact between the film and the cooling body. In order to increase the film diameter and make the film diameter constant, a solid contact cooling method using a mandrel from inside the film (mandrel cooling method) is better.

マンドレルを用いるフィルム製造法において、透明性良
好かつ均一延伸性に優れたフィルムを均一かつ長時間安
定して製造するためには、次の2点が重要であり問題に
なることが多い。
In a film manufacturing method using a mandrel, the following two points are important and often cause problems in order to uniformly and stably manufacture a film with good transparency and excellent uniform stretchability over a long period of time.

■ フィルムがマンドレルに始めて接触する位位付近で
のフィルムとマンドレルの十分なる密着。
■ Sufficient adhesion between the film and mandrel near the point where the film first contacts the mandrel.

密着度が小さすぎるとマンドレルとフィルム間の熱交換
が不十分となり、溶融フィルムの冷却速度が遅くなり、
結晶化が進行して目的とする透明性良好かつ均一延伸性
に優れたフィルムを得ることができない。
If the degree of adhesion is too small, the heat exchange between the mandrel and the film will be insufficient, and the cooling rate of the molten film will be slow.
Crystallization progresses, making it impossible to obtain the desired film with good transparency and uniform stretchability.

■ フィルムとマンドレル間で生じる気泡状空気の封入
の防止。
■ Prevents air bubbles from being trapped between the film and the mandrel.

気泡状空気の封入が発生すると、その部分はマンドレル
と密着しないので結晶化が進み、著しく白化する上、厚
み斑や平面性も著しく悪くなり商品価値のない不均一な
フィルムしか得られない。
When bubble-like air is enclosed, the area does not come into close contact with the mandrel, so crystallization progresses, resulting in significant whitening, as well as uneven thickness and significantly poor flatness, resulting in a non-uniform film with no commercial value.

これら2点は直径50關以上の大口径の管状フィルムを
製造する際に特に問題となる。
These two points are particularly problematic when manufacturing a large-diameter tubular film with a diameter of 50 mm or more.

即ち、大口径管状フィルムを製造するためダイ及びマン
ドレルの径を大きくするに従ってフィルムとマンドレル
の密着度は小さくなり、又、気泡状空気の封人の発生は
著しくなる。
That is, as the diameters of the die and mandrel are increased in order to produce a large-diameter tubular film, the degree of adhesion between the film and the mandrel decreases, and the occurrence of air bubbles increases significantly.

これらの問題を解決する従来技術として次の方法が知ら
れている。
The following method is known as a conventional technique for solving these problems.

まず、マンドレルとフィルムの密着度を大きくする方法
として、ダイリップ出口におけるフィルムの流出速度に
対し、マンドレル上を接しながら移動するフィルム送行
速度を大きくする方法(%公昭44−15917号)が
知られている。
First, as a method for increasing the degree of adhesion between the mandrel and the film, a method is known in which the speed at which the film moves while touching the mandrel is increased relative to the outflow speed of the film at the exit of the die lip (% Kosho No. 44-15917). There is.

この方法においては製品フィルム厚さに対しダイリップ
間隙を十分大きくとる必要がある。
In this method, it is necessary to make the die lip gap sufficiently large relative to the product film thickness.

ところが、ダイリップ間隙を大きくとりすぎるとダイリ
ップ部における樹脂圧力損失が著しく小さくなり均一押
出に支障を生じるので、この方法が有効に働らく製造条
件が限られ一般的でない。
However, if the die lip gap is made too large, the resin pressure loss at the die lip portion becomes extremely small, which impedes uniform extrusion, so this method is not commonly used because the manufacturing conditions under which it works effectively are limited.

特にマンドレルとフィルムの密着度の非常に小さい直径
507/L7IL以上の大口径管状フィルムの製造にお
いてほとんど効果が認められなかった。
Particularly, almost no effect was observed in the production of large-diameter tubular films with a diameter of 507/L7IL or more, in which the degree of adhesion between the mandrel and the film was very small.

次に、気泡状空気の封入防止対策としては、フィルムが
マンドレルに始めて接触する位置に環状空気を吹きつけ
る方法(特公昭44−15917号)が提案されている
Next, as a measure to prevent the inclusion of air bubbles, a method has been proposed in which an annular air is blown at the position where the film first contacts the mandrel (Japanese Patent Publication No. 44-15917).

この方法は、流動状態にあるフィルムに対し外乱を与え
る可能性が大きく、均一なフィルムを製造するのに好ま
しい方法でなく、又、その防止効果が小さい為、特に気
泡状空気の封入の著しい直径501m以上の大口径管状
フィルムの製造においてはほとんど効果が見られなかっ
た。
This method has a large possibility of causing disturbance to the film in a flowing state, and is not a preferable method for producing a uniform film. Also, since the prevention effect is small, it is especially Almost no effect was observed in the production of large-diameter tubular films of 501 m or more.

以上のように、従来技術では、管状フィルムの口径の大
小にかかわらず、透明性良好かつ均一延伸性に優れた管
状熱可塑性樹脂フィルムを均一かつ長時間安定して製造
することができなかった。
As described above, with the prior art, it has not been possible to uniformly and stably produce a tubular thermoplastic resin film with good transparency and uniform stretchability for a long time, regardless of the diameter of the tubular film.

そこで本発明者等は上記問題点を解決すべく種種検討し
た結果本発明に到達したものである。
Therefore, the present inventors conducted various studies to solve the above-mentioned problems, and as a result, they arrived at the present invention.

即ち、本発明の方法とは、環状ダイとその円形スリット
中心に垂直に配置されたマンドレルからなるフィルム製
造装置を用い、ダイ、マンドレル及びフィルムが内包す
る空間を減圧することにより、フィルムがマンドレルに
始めて接触する位置を調整することからなる熱可塑性樹
脂フィルム製造法である。
That is, the method of the present invention uses a film manufacturing apparatus consisting of an annular die and a mandrel arranged perpendicularly to the center of its circular slit, and by reducing the pressure in the space enclosed by the die, mandrel, and film, the film is attached to the mandrel. This is a thermoplastic resin film manufacturing method that consists of adjusting the position of initial contact.

ダイ、マンドレル及びフィルムが内包する空間の減圧度
を高めるにつれて、フィルムがマンドレルに初めて接触
する位置はダイ側に移動し、それと共にフィルムとマン
ドレル間の密着度が大きくなり、結晶化度の低い透明性
良好かつ均一延伸性良好なるフィルムが得られ、さらに
、フィルムとマンドレル間で生じる気泡状空気の封入も
発生しなくなる。
As the degree of vacuum in the space enclosed by the die, mandrel, and film increases, the position where the film first contacts the mandrel moves toward the die, and the degree of adhesion between the film and the mandrel increases, resulting in a transparent product with low crystallinity. A film with good properties and uniform stretchability can be obtained, and furthermore, the inclusion of air bubbles between the film and the mandrel does not occur.

しかし、その位置がダイ側に近づきすぎるとフィルムは
マンドレル上をスムーズに滑らなくなりフィルムに横縞
状の斑が生じたり、著しい場合フィルム破断が生じたり
する。
However, if the position is too close to the die side, the film will not slide smoothly on the mandrel, and horizontal stripes will appear on the film, or in severe cases, the film will break.

従って、その位置を適正な位置にくるよう減圧度を調整
することが重要である。
Therefore, it is important to adjust the degree of pressure reduction so that the position is at an appropriate position.

又、その位置を常に適正な位置に保持するため、精密な
減圧装置が必要である。
In addition, a precise pressure reducing device is required to maintain the position at an appropriate position at all times.

溶融フィルムの内外圧の変動を検知して自動的に減圧度
を制御する装置を使用するのもよい。
It is also possible to use a device that detects fluctuations in the internal and external pressures of the molten film and automatically controls the degree of pressure reduction.

マンドレルは内部を冷媒循環させることが好ましく、そ
の長さはフィルムを十分冷却するのに必要な長さとし、
又、熱伝導率の良好な金属を用い、その表面は0.2
p Rmax以上、3.0μRmax以下の荒さを有す
ることが望ましい。
It is preferable that the mandrel circulates a refrigerant inside the mandrel, and the length thereof is the length necessary to sufficiently cool the film.
In addition, a metal with good thermal conductivity is used, and its surface has a thermal conductivity of 0.2
It is desirable to have a roughness of p Rmax or more and 3.0 μRmax or less.

本発明は、均一かつ安定な成膜を実施しやすい、ダイの
スリット内径がマンドレル外径より犬なる装置に適用さ
れることが好ましいが、必ずしもこれに限るものではな
い。
The present invention is preferably applied to an apparatus in which the inner diameter of the slit of the die is smaller than the outer diameter of the mandrel, which facilitates uniform and stable film formation, but is not necessarily limited to this.

第1図に、本発明を実施するための装置の一例を略図で
示す。
FIG. 1 schematically shows an example of an apparatus for carrying out the invention.

第1図において、1は環状ダイ、2は内部冷却機構をも
つマンドレル、3はデフレータ−14は引取ニップロー
ル、5は管状フィルム、6は溶融樹脂流入口、7はマン
ドレル冷却水供給口、8はマンドレル冷却水排出口、9
、10゜lL12,13及び14は、ダイ、マンドレ
ル及びフィルムが内包する空間Aの減圧度を調整するた
めの装置であり、9,10及び11はニードルバルブ、
12は空気溜(エアーチャンバー)、13はファン、1
4は減圧度測定装置である。
In FIG. 1, 1 is an annular die, 2 is a mandrel with an internal cooling mechanism, 3 is a deflator, 14 is a take-up nip roll, 5 is a tubular film, 6 is a molten resin inlet, 7 is a mandrel cooling water supply port, and 8 is a Mandrel cooling water outlet, 9
, 10゜L12, 13 and 14 are devices for adjusting the degree of vacuum in the space A enclosed by the die, mandrel and film, 9, 10 and 11 are needle valves;
12 is an air chamber, 13 is a fan, 1
4 is a decompression degree measuring device.

このような装置を用いることにより、ダイ、マンドレル
及びフィルムが内包する空間Aの減圧度をコントロール
することができ、それによって、フィルム5がマンドレ
ルに始めて接触する位置Bを調整することができる。
By using such a device, it is possible to control the degree of vacuum in the space A enclosed by the die, mandrel, and film, thereby adjusting the position B where the film 5 first contacts the mandrel.

なお、本発明に適用しつる装置は、第1図のものに限定
されるものではない。
Note that the hanging device applicable to the present invention is not limited to the one shown in FIG.

本発明に適用しつる樹脂は、ポリプロピレン等のポリオ
レフィン樹脂、ポリエステル樹脂、ポリヘキサメチレン
アジパミド、ポリε−カプラミド、ポリ11−アミノウ
ンデカナミド、ポリラウリンアミド及びこれらの共重合
体、ブレンド物等のポリアミド樹脂等である。
The vine resin applicable to the present invention includes polyolefin resins such as polypropylene, polyester resins, polyhexamethylene adipamide, polyε-capramide, poly11-aminoundecanamide, polylaurinamide, and copolymers and blends thereof. and other polyamide resins.

しかし特に、結晶化速度が早く、均一延伸可能な低結晶
化未延伸フィルムの得にくいポリアミド樹脂更にポリア
ミド樹脂の中でも特に結晶化速度の速いポリヘキサメチ
レンアジパミドの管状フィルム製造に適している。
However, it is particularly suitable for producing tubular films of polyamide resins which have a fast crystallization rate and are difficult to obtain into low-crystallized unstretched films that can be stretched uniformly, and also of polyhexamethylene adipamide, which has a particularly fast crystallization rate among polyamide resins.

以下本発明をさらに詳しく説明するため実施例を示す。Examples will be shown below to explain the present invention in more detail.

実施例 1 ηr3.8(25°C296%硫酸溶液)ポリヘキサメ
チレンアジパミドをロ径160mmリップ間隙0、5
mmの環状ダイより280℃にて押出し、表面荒さ1.
0μRmaxの直径145 trim1長さ2507n
7ILのアルミニウムに硬質クロムメッキを施した表面
温度50℃のマンドレルにて溶融フィルム内側より接触
冷却し、第1図に示したと同様の装置を用いて、ダイ、
マンドレル及びフィルムが内包する空間Aを減圧するこ
とにより、フィルムがマンドレルに始めて接触する位置
Bをダイリップ面より帝*20mmの位置に調整して直
径145朋、肉厚150μの管状フィルムを4.0m/
minの引取速度で成膜した。
Example 1 ηr3.8 (25°C, 296% sulfuric acid solution) Polyhexamethylene adipamide with a diameter of 160 mm and a lip gap of 0 and 5
Extruded at 280°C from an annular die with a surface roughness of 1.
0μRmax diameter 145 trim1 length 2507n
Contact cooling was performed from the inside of the molten film using a mandrel made of hard chromium plated 7IL aluminum with a surface temperature of 50°C, and using the same equipment as shown in Figure 1, a die,
By reducing the pressure in the space A contained by the mandrel and the film, the position B where the film first contacts the mandrel is adjusted to a position 20 mm above the die lip surface, and a tubular film with a diameter of 145 mm and a wall thickness of 150 μm is heated to 4.0 m. /
The film was formed at a take-up speed of min.

その結果、密度1.1224曇り度9.6%なる低結晶
性で透明性良好かつ気泡状空気封入による斑のない均一
性良好な管状フィルムが8時間以上安定して得られた。
As a result, a tubular film having a density of 1.1224 and a haze of 9.6%, low crystallinity, good transparency, and good uniformity without unevenness due to inclusion of air bubbles was obtained stably for more than 8 hours.

なお、表面荒さはJISB−0601、曇り度はJIS
K−6714、に基づき測定し、密度は成膜後攻水しな
いように注意して10分以内に25℃の四塩化炭素−ト
ルエン系の密度勾配管に投入して測定した。
In addition, surface roughness is determined by JISB-0601, and cloudiness is determined by JIS.
K-6714, and the density was measured by placing the film into a carbon tetrachloride-toluene density gradient tube at 25° C. within 10 minutes, being careful not to flood the film after film formation.

実施例 2 実施例1により得られたフィルムを連続的に管状2軸延
伸機に導いて、延伸温度120℃で縦3.5倍、横3.
5倍に2軸延伸したところ8時間以上安定して均一な延
伸フィルムが得られた。
Example 2 The film obtained in Example 1 was continuously introduced into a tubular biaxial stretching machine, and was stretched by 3.5 times in length and 3.5 times in width at a stretching temperature of 120°C.
When the film was biaxially stretched 5 times, a uniform stretched film was obtained that remained stable for 8 hours or more.

得られた延伸フィルムの物性を下表に示す。The physical properties of the obtained stretched film are shown in the table below.

得られたフィルムは高強度かつ透明性良好なフィルムで
あった。
The obtained film had high strength and good transparency.

なお、引張試験条件は下記の通りである。In addition, the tensile test conditions are as follows.

試験片サイズ1071X71!X 120mm、チャッ
ク間50mmクロスヘッドスピード100mm1min
比較例 1 ダイ、マンドレル及びフィルムが内包する空間を減圧し
ない他、実施例1と同じ条件でフィルムを成膜した。
Test piece size 1071X71! X 120mm, chuck distance 50mm, cross head speed 100mm 1min
Comparative Example 1 A film was formed under the same conditions as in Example 1 except that the space enclosed by the die, mandrel, and film was not depressurized.

フィルムがマンドレルに始めて接触する位置はダイリッ
プ面より、38關であった。
The position where the film first contacted the mandrel was 38 degrees from the die lip surface.

得られたフィルムは、密度1.1302曇り度68.3
%の高結晶性、透明性不良かつ気泡状空気封入による斑
のある商品価値のないものであった比較例 2 比較実施例1により得られたフィルムを実施例2と同じ
条件で延伸したところ延伸切れの為連続した延伸が全く
不可能であった。
The resulting film had a density of 1.1302 and a haze of 68.3.
Comparative Example 2 The film obtained in Comparative Example 1 was stretched under the same conditions as Example 2. Comparative Example 2 had no commercial value due to high crystallinity, poor transparency, and unevenness due to bubble-like air inclusions. Continuous stretching was completely impossible due to the breakage.

実施例 3 ■0.65(35°C,O−クロロフェノール溶液)の
ポリエチレンテレフタレートを、第1図に示したと同様
の装置を用いて、口径160關、リップ間隙0.5 m
mの環状ダイより280℃にて押出し、マンドレルにて
冷却し、かつダイ、マンドレル及びフィルムが内包する
空間を減圧して直径145朋肉厚330μの管状フィル
ムを成膜したところ密度1.1338、曇り度5.4%
の低結晶性、透明性良好かつ気泡状空気封入による斑の
ない均一性良好なフィルムが安定して得られた。
Example 3 ■ 0.65 (35°C, O-chlorophenol solution) polyethylene terephthalate was prepared using a device similar to that shown in Fig. 1, with a diameter of 160 mm and a lip gap of 0.5 m.
A tubular film with a diameter of 145 mm and a wall thickness of 330 μm was formed by extruding it at 280° C. from an annular die of 1.3 mm, cooling it with a mandrel, and reducing the pressure in the space enclosed by the die, mandrel, and film, and the density was 1.1338. Cloudiness 5.4%
A film with low crystallinity, good transparency, and good uniformity without unevenness due to inclusion of air bubbles was stably obtained.

マンドレルは直径145關長さ250關でアルミに硬質
クロムメッキを施した表面荒さ2.5μRmaxのもの
を表面温度56°Cになるよう内部より温調して用いた
The mandrel was made of aluminum plated with hard chrome and had a surface roughness of 2.5 μRmax, with a diameter of 145 mm and a length of 250 mm, and the temperature was controlled from the inside so that the surface temperature was 56° C.

引取速度は4.0m/minであり、フィルムがマンド
レルに始めて接触する位置をダイリップ面より25mm
の位置に保った。
The take-up speed is 4.0 m/min, and the position where the film first contacts the mandrel is 25 mm from the die lip surface.
It was kept in position.

このフィルムを連続的に管状2軸延伸機に導いて、延伸
温度120℃で縦3.5倍、横3.8倍に2軸延伸した
ところ、安定して均一な25μ厚さの延伸フィルムが得
られた。
This film was continuously guided into a tubular biaxial stretching machine and biaxially stretched 3.5 times in length and 3.8 times in width at a stretching temperature of 120°C, resulting in a stable and uniform stretched film with a thickness of 25μ. Obtained.

なお、密度は25℃の四塩化炭素−n−へブタン系の密
度勾配管に投入して測定した。
Note that the density was measured by putting the sample into a carbon tetrachloride-n-hebutane density gradient tube at 25°C.

その他の測定は実施例2に示したのと同じ方法による。Other measurements were performed using the same method as shown in Example 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に適用される装置の一例を示す一部断
面略図である。
FIG. 1 is a schematic partial cross-sectional view showing an example of a device applied to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 環状グイとその円形スリット中心に垂直に配置され
たマンドレルからなるフィルム製造装置を用い、ダイ、
マントトル及びフィルムが内包する空間を減圧しその減
圧度を制御することにより、フィルムがマンドレルに初
めて接触する位置を調整することからなる熱可塑性樹脂
フィルム製造法。
1. A die,
A method for manufacturing a thermoplastic resin film, which comprises adjusting the position where the film first contacts the mandrel by reducing the pressure in the space enclosed by the mantle and the film and controlling the degree of pressure reduction.
JP51145548A 1976-12-06 1976-12-06 Thermoplastic resin film manufacturing method Expired JPS5843251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51145548A JPS5843251B2 (en) 1976-12-06 1976-12-06 Thermoplastic resin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51145548A JPS5843251B2 (en) 1976-12-06 1976-12-06 Thermoplastic resin film manufacturing method

Publications (2)

Publication Number Publication Date
JPS5371170A JPS5371170A (en) 1978-06-24
JPS5843251B2 true JPS5843251B2 (en) 1983-09-26

Family

ID=15387718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51145548A Expired JPS5843251B2 (en) 1976-12-06 1976-12-06 Thermoplastic resin film manufacturing method

Country Status (1)

Country Link
JP (1) JPS5843251B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400184A (en) * 1964-09-21 1968-09-03 Exxon Research Engineering Co Process and apparatus for preparing film from thermoplastic resins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400184A (en) * 1964-09-21 1968-09-03 Exxon Research Engineering Co Process and apparatus for preparing film from thermoplastic resins

Also Published As

Publication number Publication date
JPS5371170A (en) 1978-06-24

Similar Documents

Publication Publication Date Title
CA1264910A (en) Method for the production of thermoplastic tubes
US3544667A (en) Process for biaxially stretching thermoplastic tubular film
US20090273125A1 (en) Manufacturing apparatus and manufacturing method for tubular resin film
US2541064A (en) Method of controlling the diameter and wall thickness of vinylidene chloride polymerfilm tubes
US5211899A (en) Process for production of polypropylene sheets or films
US3788503A (en) Method for producing biaxially molecule-oriented poly-{68 -caproamide resin film
US3655846A (en) Method and apparatus for making tubular film
US3008185A (en) Extrusion process and apparatus for forming tubular film
US3694538A (en) Method and apparatus for coating with plastics
US3207823A (en) Production of flattened tubular plastic film
JPS5843251B2 (en) Thermoplastic resin film manufacturing method
CA2514919C (en) Manufacturing apparatus for tubular resin film
FI87161C (en) FOERFARANDE OCH ANORDNING FOER AVKYLNING AV EN FRAON ETT SLITSMUNSTYCKE TILL ETT KYLSYSTEM STRAENGSPRUTAD SMAELTFILM
CA2100431C (en) Method and apparatus for molding inflation film
US3468995A (en) Producing plastic film
CA1060172A (en) Process for producing polymeric film and apparatus therefor
US3274314A (en) Thermoplastic film production
JP3152961B2 (en) Cooling mandrel
KR900005829B1 (en) Cooling device for extrusion articles
JPS598540B2 (en) Method for manufacturing tubular film
JPS5852822B2 (en) Method for producing biaxially oriented polyvinyl alcohol film
JPH084275Y2 (en) Film fixing device
JPH01228823A (en) Manufacture of tubular polycarbonate film and device therefor
JPS6131230A (en) Manufacture of inflation film
JP2500284B2 (en) Inflation molding equipment