JPH01228823A - Manufacture of tubular polycarbonate film and device therefor - Google Patents

Manufacture of tubular polycarbonate film and device therefor

Info

Publication number
JPH01228823A
JPH01228823A JP63055445A JP5544588A JPH01228823A JP H01228823 A JPH01228823 A JP H01228823A JP 63055445 A JP63055445 A JP 63055445A JP 5544588 A JP5544588 A JP 5544588A JP H01228823 A JPH01228823 A JP H01228823A
Authority
JP
Japan
Prior art keywords
tubular
film
cooling mandrel
cooling
annular die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63055445A
Other languages
Japanese (ja)
Other versions
JP2617975B2 (en
Inventor
Katsumi Okuyama
奥山 克巳
Hiroyasu Mizutani
水谷 弘康
Toshiharu Soga
曽我 敏春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP63055445A priority Critical patent/JP2617975B2/en
Publication of JPH01228823A publication Critical patent/JPH01228823A/en
Application granted granted Critical
Publication of JP2617975B2 publication Critical patent/JP2617975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/902Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/918Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92657Volume or quantity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

PURPOSE:To obtain a belt which has a uniform diameter and thickness and is free from a seam and fold by a method wherein a tubular film extruded through an annular die is brought into contact with a cooling mandrel while gas, whose feed pressure and feed quantity are controlled, is being fed/discharged continuously from the inside of the tubular film and the tubular film is always received maintaining a tubular state. CONSTITUTION:An outer circumference of a molten film (a) of polycarbonate extruded into a tubular state through an annular die 3 fitted to an extruding machine 2 is cooled with cool air blown off through a cooling ring 6. Then gas (b) whose feed pressure/feed quantity are controlled is fed on the inside of the film (a) continuously through a feed pipe 13, discharged through a discharge pipe 15 and solidified through cooling by bringing the film (a) into contact with a cooling mandrel 5 with the inner pressure fixed. Then the same is passed through among nip rolls 9, 9, 9, 9 arranged on the circumference of a supporting pipe bar 4 and in a state at intervals of 90 deg. in a circumferential direction and received while maintaining the tubular state. Therefore, the received tubular polycarbonate film F is free from a seam and fold even if the same is cut into round slices.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子機器用資材として好適なチューブ状ポリカ
ーボネートフィルム製造法および装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for producing a tubular polycarbonate film suitable as a material for electronic devices.

(従来の技術) ポリカーボネートフィルムは衝撃強度および引張弾性率
が大である等の機械的特性ならひに電気的特性、耐熱性
に秀れる等の特徴を活かして電気絶縁部品あるいは電気
機器用資材として各種機器に用いられている。
(Prior art) Polycarbonate films are used as electrical insulating parts or materials for electrical equipment by taking advantage of their mechanical properties such as high impact strength and tensile modulus, as well as excellent electrical properties and heat resistance. Used in various devices.

特に、前記の特性を活かし各種機器の駆動ベルトあるい
は電子写真用の感光ベルト等とじて用いられる。この場
合、ベルトを輪状にしたときの幅方向における直径の均
一性およびベルトの幅方向の厚みの均一性が特に重要な
ため、第4図に示すように、厚みの均一性に秀れたフラ
ット状フィルムを所定長に裁断したものの両端を継ぎベ
ルト(イ)としている、このため、ベルトの幅方向にお
ける直径は略均−とするが、継ぎ目(ロ)を有する。
In particular, taking advantage of the above characteristics, it is used as drive belts for various devices, photosensitive belts for electrophotography, and the like. In this case, when the belt is shaped like a ring, the uniformity of the diameter in the width direction and the uniformity of the thickness in the width direction of the belt are particularly important. A shaped film is cut to a predetermined length, and both ends are spliced to form a belt (a).Therefore, although the diameter of the belt in the width direction is approximately equal, there is a seam (b).

このような継ぎ目(ロ)は駆動ベルトとして使用する場
合に継ぎ目(ロ)部分で微小な振動が発生し、このため
精密機器への適用が制限されるという問題点があり、感
光ベルトとして使用する場合には、継ぎ目(ロ)部分の
感光性能が他の部分と異なるため、継ぎ目(ロ)部分は
機能上使えず、電子写真用機器の感光ベルトとしての性
能が低下するという問題点がある。
When such a seam (B) is used as a drive belt, minute vibrations occur at the seam (B), which limits its application to precision equipment. In this case, the photosensitive performance of the seam (b) portion is different from that of other portions, so the seam (b) portion cannot be used functionally, resulting in a problem that the performance as a photosensitive belt for electrophotographic equipment is degraded.

そこで、継ぎ目のないベルトとするため、第5図に示す
ように、環状ダイ(ハ)よりポリカーボネート樹脂をチ
ューブ状で押出し冷却固化してチューブ状フィルム(ニ
)とし、このチューブ状フィルム(ニ)を輪切りにして
ベルトとする手段が提案されている。
Therefore, in order to make a seamless belt, as shown in Figure 5, polycarbonate resin is extruded in a tube shape from an annular die (c), cooled and solidified to form a tubular film (d). A method has been proposed in which the material is cut into rings and made into belts.

しかし、このようにして作られたベルトの幅方向に対す
る直径の均一性に対応するチューブ状フィルムの直径は
、環状ダイくハ)と引取りニップロール(ホ)との間で
、溶融状態から固化状態に移行するチューブ状フィルム
内に、密封した加圧気体と、環状ダイ(ハ)近傍の冷却
リング(へ)かチューブ状フィルムの周りに吹き付ける
冷却気体とによってもたらされる順次環状ダイからニッ
プロールに向って向上する溶融状態のチューブ状フィル
ムの溶融張力と、環状ダイからニップロールに向って順
次薄くなるチューブ状フィルムの厚みとのバランスによ
ってチューブ状フィルムの直径が決まるため、チューブ
状フィルムの直径を均一にすることは難しいという問題
点がある。
However, the diameter of the tubular film, which corresponds to the uniformity of the diameter in the width direction of the belt made in this way, changes from the molten state to the solidified state between the annular die (c) and the take-up nip roll (e). The process of passing from the annular die to the nip rolls is carried out by a sealed pressurized gas and a cooling ring near the annular die (c) or cooling gas blown around the tubular film. The diameter of the tubular film is determined by the balance between the increasing melt tension of the tubular film in the molten state and the thickness of the tubular film that gradually becomes thinner from the annular die to the nip roll, making the diameter of the tubular film uniform. The problem is that it is difficult.

しかも、チューブ状フィルム内に加圧気体を密封するた
めには引取りニップロールを用いることが必須となり、
ニップロールを用いると、チューブ状フィルムが二つ折
り状態となり、折り目部分が降伏点伸びを越えた変形を
受け、チューブ状フィルムの長手方向に平行な2ケ所の
折り目を形成し、結局、折り目部分の感光性能が池の部
分と異なり感光ベルトとして性能低下をもたらすことと
なる。
Moreover, in order to seal the pressurized gas inside the tubular film, it is essential to use a take-up nip roll.
When a nip roll is used, the tubular film is folded in two, and the folded part undergoes deformation exceeding the yield point elongation, forming two folds parallel to the longitudinal direction of the tubular film. The performance of the photosensitive belt is different from that of the pond part, and the performance of the photosensitive belt is lowered.

このように、ベルトの幅方向に対し、ベルトを輪状とし
たときの直径が均一であり、かつベルトの幅方向の厚み
が均一であって継ぎ目あるいは折り目のないベルトを得
ることはできなかっな。
As described above, it is impossible to obtain a belt that has a uniform diameter when the belt is formed into a ring shape, a uniform thickness in the width direction, and has no seams or creases.

(発明が解決しようとする課題) 従来、ベルl〜の幅方向に対する直径の均一性を有し、
かつ幅方向の厚みを均一とするとともに継き目、折り目
のないチューブ状ポリカーボネートフィルムを製造し得
ないという問題点があった。
(Problems to be Solved by the Invention) Conventionally, a bell l~ has uniformity in diameter in the width direction,
Another problem is that it is impossible to produce a tubular polycarbonate film that has a uniform thickness in the width direction and has no seams or creases.

(課題を解決するための手段) 本発明は、ベルトの幅方向に対する直径の均一性を有し
、かつ幅方向の厚みを均一とするとともに継ぎ目、折り
目のないチューブ状ポリカーボネートフィルムを提供す
るものであって、請求項(1)は押出機に装着した環状
ダイより押出されたチューブ状ポリカーボネートフィル
ムの内側に供給圧力と、供給量とを制御した気体を連続
的に供給・排除させながら冷却マンドレルに接触されて
冷却固化させチューブ状態を維持したままで連続して引
取るようにしたことを特徴とするチューブ状ポリカーボ
ネートフィルム製造法であり、請求項(2)は押出機に
装着した環状ダイに同一軸線状に支持管棒を固定し、こ
の支持管棒に冷却マンドレルを同心状に固設し、前記環
状ダイと冷却マンドレルとの間に前記支持管棒と同心状
に冷却リングを配設し、前記冷却マンドレルより下方の
支持管棒の外周に枢支した複数の内側ロールと、これら
内側ロールに、それぞれ対応して設けた外側ロールとか
らなるニップロールを複数個配設し、前記支持管棒に供
給圧力、供給量制御気体連続供給機構と、冷却マンドレ
ル内熱媒供給機構とを付設してなることを特徴とするチ
ューブ状ポリカーボネートフィルム製造装置である。
(Means for Solving the Problems) The present invention provides a tubular polycarbonate film that has a uniform diameter in the width direction of the belt, a uniform thickness in the width direction, and has no seams or creases. Accordingly, claim (1) is a method of continuously supplying and discharging gas with controlled supply pressure and supply amount to the inside of a tubular polycarbonate film extruded from an annular die attached to an extruder, and then to a cooling mandrel. A method for producing a tubular polycarbonate film, characterized in that the tubular polycarbonate film is brought into contact, cooled and solidified, and is continuously taken off while maintaining the tube state, and claim (2) is characterized in that the polycarbonate film is made of a polycarbonate film that is identical to the annular die attached to the extruder. a support tube rod is fixed axially, a cooling mandrel is fixed concentrically to the support tube rod, and a cooling ring is disposed concentrically with the support tube rod between the annular die and the cooling mandrel; A plurality of nip rolls each consisting of a plurality of inner rolls pivotally supported on the outer periphery of the support tube rod below the cooling mandrel and outer rolls provided correspondingly to these inner rolls are disposed, and the nip rolls are provided on the support tube rod. This is a tubular polycarbonate film manufacturing apparatus characterized by being equipped with a gas continuous supply mechanism for controlling supply pressure and supply amount, and a heating medium supply mechanism within a cooling mandrel.

(実 施 例) チューブ状ポリカーボネートフィルム製造装置1は、第
1図、第2図および第3図に示すように、押出機2に装
着した環状ダイ3に同一軸線上に、支持管体4を固定し
、この支持管体4に冷却マンドレル5を同心状に固定し
である。
(Example) As shown in FIGS. 1, 2, and 3, the tubular polycarbonate film manufacturing apparatus 1 includes a support tube 4 coaxially attached to an annular die 3 attached to an extruder 2. A cooling mandrel 5 is fixed concentrically to this supporting tube body 4.

次いで、環状ダイ3と冷却マンドレル5との間に前記支
持管体4と同心状に冷却リング6を配設し、前記冷却マ
ンドレル5の下方の支持管体4の外周に枢支して複数の
内側ロール7.7゜7・・・を設け、これら内側ロール
7.7.7・・・にそれぞれ対応して外側ロール8,8
.8・・・を設け、内側ロール7と外側ロール8とから
なるニップロール9,9.9・・・を複数組配設しであ
る。
Next, a cooling ring 6 is disposed concentrically with the support tube 4 between the annular die 3 and the cooling mandrel 5, and is pivoted on the outer periphery of the support tube 4 below the cooling mandrel 5. Inner rolls 7.7°7... are provided, and outer rolls 8, 8 are provided corresponding to these inner rolls 7.7.7..., respectively.
.. 8, and a plurality of sets of nip rolls 9, 9, 9, . . . each consisting of an inner roll 7 and an outer roll 8 are provided.

前記支持管体4には供給圧力・供給量制御気体連続供給
排出機構10と、冷却マンドレル5内に熱媒を供給し、
循環するようにした冷却マンドレル内熱媒供給機横11
とを付設しである。
The support pipe body 4 is equipped with a supply pressure/supply amount control gas continuous supply/discharge mechanism 10, and a heating medium is supplied into the cooling mandrel 5.
Circulating cooling mandrel heat medium supply machine horizontal 11
It is attached.

前記供給圧力・供給量制御気体連続供給排出機構10は
前記支持管体4内を通り吹出し口12に接続する供給管
13と、前記支持管体4内を通り吹込み口14に接続す
る排出管15とにより形成しである。
The supply pressure/supply amount control gas continuous supply/discharge mechanism 10 includes a supply pipe 13 that passes through the support tube 4 and connects to the blowout port 12, and a discharge pipe that passes through the support tube 4 and connects to the blowout port 14. 15.

前記冷却マンドレル5内への熱媒供給機構11は前記支
持管体4内を通り冷却マンドレル5内に開口する流入口
16に接続しである供給管17と、前記支持管体4内を
通り冷却マンドレル5内の流出口18に接続しである排
出管19とよりなる。
A heat medium supply mechanism 11 into the cooling mandrel 5 includes a supply pipe 17 that passes through the support pipe 4 and is connected to an inlet 16 that opens into the cooling mandrel 5, and a supply pipe 17 that passes through the support pipe 4 and connects to the inflow port 16 that opens into the cooling mandrel 5. It consists of a discharge pipe 19 connected to an outlet 18 in the mandrel 5.

このような、チューブ状ボリカーポ°ネートフィルム製
造装置によってチューブ状ポリカーボネートフィルムを
次のように製造する。
A tubular polycarbonate film is manufactured using such a tubular polycarbonate film manufacturing apparatus as follows.

即ち、押出機2に装着した環状ダイ3よりチューブ状に
押出された溶融フィルム(a>は外周辺を冷却リング6
から吹出す冷気により冷却されるとともに内側に、供給
管13を経て供給圧力・供給量を制御された気体(b)
を連続して供給され、排出管15を経て排出され、常に
内側圧力を所定圧力としながら、冷却マンドレル5に接
触させて冷却固化させ、次いで前記支持管体4の周りで
周方向、90度間隔状に配したニップロール9,9,9
.9間に通しチューブ状を維持しながら引取る。
That is, a molten film (a> is extruded into a tube shape from an annular die 3 attached to an extruder 2) and a cooling ring 6 is attached to the outer periphery.
Gas (b) is cooled by the cold air blown out from the inside, and the supply pressure and supply amount are controlled through the supply pipe 13.
is continuously supplied and discharged through the discharge pipe 15, is brought into contact with the cooling mandrel 5 to be cooled and solidified while always keeping the inner pressure at a predetermined pressure, and then is cooled and solidified around the support tube 4 in the circumferential direction at 90 degree intervals. Nip rolls 9, 9, 9 arranged in a shape
.. Pass it through the tube between 9 and take it out while maintaining the tube shape.

従って、引取られたチューブ状ポリカーボネートフィル
ム(F)は輪切り状に裁断しても継き目、折り目はない
Therefore, even when the tubular polycarbonate film (F) is cut into slices, there are no seams or creases.

本発明に用いるポリカーボネート樹脂としては、特に制
限はなく、公知のものでよく代表的なものとしては、ビ
スフェノールAからなるポリカーボネートおよびビスフ
ェノールAとハロゲン化ビスフェノールAとの共重合体
ポリカーボネートが挙げられる。
The polycarbonate resin used in the present invention is not particularly limited, and typical examples include polycarbonate made of bisphenol A and polycarbonate copolymer of bisphenol A and halogenated bisphenol A.

また、本発明に用いるポリカーボネート樹脂のJISK
6719によるMFRは、0,05g/10分以上20
g/10分以下が好ましく、望ましくは0.1g/10
分以上Log/10分以下であり、MFRが0905未
満になると溶融状態のチューブ状ポリカーボネートの延
展性がなくなり均一な変形が困難となるため厚みの均一
なチューブ状ポリカーボネートフィルムが得にくい傾向
がある。
In addition, JISK of the polycarbonate resin used in the present invention
MFR by 6719 is 0.05g/10min or more20
g/10 minutes or less, preferably 0.1 g/10
min or more and Log/10 min or less, and when the MFR is less than 0905, the molten tubular polycarbonate loses its ductility and uniform deformation becomes difficult, so it tends to be difficult to obtain a tubular polycarbonate film with a uniform thickness.

一方、MFRが20g/10分を越えると、溶融状態に
あるチューブ状ポリカーボネートフィルムの溶融張力が
小さくなり、その結果溶融状態から固化する過程でチュ
ーブ形状が不安定となるため直径と厚みの均一なチュー
ブ状ポリカーボネートフィルムを得にくい傾向がある。
On the other hand, if the MFR exceeds 20 g/10 minutes, the melt tension of the tubular polycarbonate film in the molten state becomes small, and as a result, the tube shape becomes unstable during the process of solidifying from the molten state, making it difficult to maintain uniform diameter and thickness. Tubular polycarbonate films tend to be difficult to obtain.

本発明における環状ダイの向きは押出機に対して上向き
に取付けても下向きに取付けてもよいが、フィルムの製
造速度が比較的遅い場合には、上向きとすると、フィル
ムの自重により変形し折り目等が発生するため、下向き
が好ましい。
The annular die in the present invention may be installed upward or downward relative to the extruder, but if the film production speed is relatively slow, if it is placed upward, it may deform due to the film's own weight, resulting in creases, etc. , so downward direction is preferable.

前記の環状ダイの構造は、同等制限されるものではない
が、チューブ状フィルムの厚みの均一性という点からス
パイラルダイが好ましく、また、環状ダイは単層ダイで
も多層ダイでもよく、多層ダイの場合の各層のポリカー
ボネート樹脂は同一であってもよいし、異なってるもの
でもよい。
The structure of the annular die is not limited to the same, but a spiral die is preferable from the viewpoint of uniformity of the thickness of the tubular film, and the annular die may be a single layer die or a multilayer die, In this case, the polycarbonate resins in each layer may be the same or different.

本発明における冷却マンドレルは環状ダイに続いて位置
させであるが、冷却マンドレルは環状ダイに接続しても
よく、環状ダイを貫通して外部の構造体に接続してもよ
い。
Although the cooling mandrel in the present invention is positioned next to the annular die, the cooling mandrel may be connected to the annular die or may pass through the annular die and be connected to an external structure.

環状ダイと冷却マンドレルとの間にある溶融状態のチュ
ーブ状フィルムの周りの温度環境は安定状態にあること
が好ましく、チューブ状フィルムの外側より、冷却リン
グから温度制御した気体を均一に吹付けることが好まし
い。
It is preferable that the temperature environment around the molten tubular film between the annular die and the cooling mandrel is in a stable state, and a temperature-controlled gas is uniformly blown from the cooling ring from the outside of the tubular film. is preferred.

環状ダイのダイリップと溶融状態のチューブ状フィルム
が最初に冷却マンドレルに接する点との間の距離は20
市以上500111+以下が望ましく、20nua未溝
とするとダイリップと冷却マンドレル間でチューブ状溶
融フィルムが急激に変形するため、切断し易くなり連続
生産を困難とする。一方、500市を越えると、環状ダ
イのダイリップと冷却マンドレルとの間の溶融状態にあ
るチューブ状フィルムの内、溶融張力の小さい溶融チュ
ーブ状フィルムの占める割合が多くなるためにチューブ
形状が不安定となり、安定連続生産が困難となる。
The distance between the die lip of the annular die and the point where the molten tubular film first contacts the cooling mandrel is 20
It is preferable that the diameter is 500111+ or less, and if it is not grooved to 20 nua, the tubular molten film will be rapidly deformed between the die lip and the cooling mandrel, making it easy to cut and making continuous production difficult. On the other hand, when the temperature exceeds 500, the tube shape becomes unstable because the proportion of the molten tubular film with low melt tension increases among the tubular film in the molten state between the die lip of the annular die and the cooling mandrel. This makes stable continuous production difficult.

環状ダイのダイリップ直径D1と冷却マンドレルの直径
D2との関係は第3図を参照して、D  =3D  以
下、D2=0,5D、以上とす2す ることが望ましく、好ましくはD2=1.5D 以下、
D2=0.6D1以上であり、さらに好ましくはD  
=0.99D1以下、p2=0.8D1以上である。冷
却マンドレルの直径D が3D1を越えると、溶融状態
のチューブ状フィルムが冷却マンドレルに接する位置で
スティックスリップによる垂みが発生し、長手方向に厚
みの均一なフィルムが得られなくなる。
Referring to FIG. 3, the relationship between the die lip diameter D1 of the annular die and the diameter D2 of the cooling mandrel is such that D = 3D or less, D2 = 0.5D or more, and preferably D2 = 1.5D or more. 5D or less,
D2=0.6D1 or more, more preferably D
= 0.99D1 or less, p2 = 0.8D1 or more. If the diameter D of the cooling mandrel exceeds 3D1, stick-slip sag occurs at the position where the molten tubular film contacts the cooling mandrel, making it impossible to obtain a film with a uniform thickness in the longitudinal direction.

一方、D が0.5D、未満であると、溶融状態のチュ
ーブ状フィルムが冷却マンドレルに円周方向で同時に接
触しなくなるため、厚みの均一なフィルムが得られなく
なる。
On the other hand, if D is less than 0.5D, the molten tubular film will not simultaneously contact the cooling mandrel in the circumferential direction, making it impossible to obtain a film with uniform thickness.

゛もっとも望ましい形態は第3図に示すように、ダイリ
ップの直径D1より、冷却マンドレルの直径D2を小と
し、さらにダイリップと冷却マンドレルの間にある溶融
状態のチューブ状フィルムの直径D を冷却マンドレル
の直径D2よつ小として、冷却マンドレルにチューブ状
溶融フィルムを接触させて冷却固化させるとよい。
゛The most desirable form, as shown in Fig. 3, is to make the diameter D2 of the cooling mandrel smaller than the diameter D1 of the die lip, and to make the diameter D of the molten tubular film between the die lip and the cooling mandrel smaller than the diameter D1 of the cooling mandrel. The tubular molten film may be cooled and solidified by contacting the cooling mandrel with a diameter smaller than D2.

冷却マンドレルの環状ダイ側の周縁部の2111IR以
上20mmR以下で面取りをするのが好ましい。
It is preferable to chamfer the peripheral edge of the cooling mandrel on the annular die side with a radius of 2111IR or more and 20mmR or less.

冷却マンドレルの長手方向の長さは、望ましくは10m
+以上であるが、20nu+以上ダイリップ径の3倍以
下が好ましく、10市未満であると、ダイリップと冷却
マンドレルと溶融状態のチューブ状フィルムとで囲まれ
た空間の内圧の制御が不安定となる。ダイリップ径の3
倍を越えると冷却固化したチューブ状フィルムと冷却マ
ンドレル側面との掌擦が増大し、冷却マンドレルと、冷
却マンドレルに続いて位置するニップロールによる引取
りとの間で冷却固化したフィルムが塑性変形し、チュー
ブ状フィルムの厚みが不均一になる。
The length of the cooling mandrel in the longitudinal direction is preferably 10 m.
+ or more, but preferably 20 nu+ or more and 3 times the die lip diameter or less, and if it is less than 10 nu, control of the internal pressure in the space surrounded by the die lip, cooling mandrel, and molten tubular film becomes unstable. . Die lip diameter 3
If the temperature exceeds twice that, the palm rubbing between the cooled and solidified tubular film and the side surface of the cooling mandrel will increase, and the cooled and solidified film will be plastically deformed between the cooling mandrel and the nip roll located next to the cooling mandrel. The thickness of the tubular film becomes uneven.

冷却マンドレルの表面状態は0.3μ以上の凹凸を有す
るいわゆる梨地加工処理様が望ましく、好ましくは凹凸
を0.5μ以上25μ以下とし、さらに好ましくは1μ
以上10ノ1以下とするとよい、凹凸が0.3μ未満で
ある溶融状態のチューブ状フィルムが冷却マンドレルに
接する位置でスティックスリップを発生し長手方向に均
一な厚みのフィルムが得られなくなり、凹凸が25μを
越えるとチューブ状フィルムの内面に引掻き傷が発現す
るとともに、ダイリップと冷却マンドレルと溶融状態の
チューブ状フィルムとで囲まれた空間の内圧の制御が不
安定となる。
The surface condition of the cooling mandrel is desirably a so-called satin finish having an unevenness of 0.3μ or more, preferably 0.5μ or more and 25μ or less, and more preferably 1μ.
It is better to set the roughness to 10 to 1 or less.A molten tubular film with an unevenness of less than 0.3μ will cause stick-slip at the position where it contacts the cooling mandrel, making it impossible to obtain a film with a uniform thickness in the longitudinal direction, and the unevenness will occur. If it exceeds 25μ, scratches will appear on the inner surface of the tubular film, and control of the internal pressure in the space surrounded by the die lip, cooling mandrel, and molten tubular film will become unstable.

冷却マンドレルの素材は金属、セラミックス、木、布等
が望ましく、好ましくは金属またはセラミックスである
。テフロン等のプラスチック系素材はスティックスリッ
プが発生し易いため好ましくない。
The cooling mandrel is desirably made of metal, ceramics, wood, cloth, etc., preferably metal or ceramics. Plastic materials such as Teflon are not preferred because they tend to cause stick-slip.

冷却マンドレルは真円で長手方向に直径を一定としたも
の、あるいはダイリップに近い側の直径を大とし5/1
00以下の勾配を有する逆テーパー状であってもよい。
The cooling mandrel is a perfect circle with a constant diameter in the longitudinal direction, or a 5/1 cooling mandrel with a larger diameter on the side closer to the die lip.
It may also have a reverse tapered shape with a slope of 00 or less.

冷却マンドレルの表面は0゛C以上200℃以下とする
ことが望ましく、好ましくは10°C以上150℃以下
であり、さらに好ましくは20℃以上130℃以下であ
る。0℃未満になると溶融状態のチューブ状フィルムが
冷却マンドレルに接した瞬間急激に冷却固化するために
、安定して連続的に溶融状態のチューブ状フィルムが冷
却マンドレルに接触しなくなるため、厚みの均一なフィ
ルムが得られなくなる。200°Cを越えると冷却マン
ドレル上でスティックスリップが発生し、長手方向に厚
みの均一なフィルムが得られなくなる。
The temperature of the surface of the cooling mandrel is preferably 0°C or more and 200°C or less, preferably 10°C or more and 150°C or less, and more preferably 20°C or more and 130°C or less. When the temperature is below 0℃, the molten tubular film rapidly cools and solidifies the moment it comes into contact with the cooling mandrel, so the molten tubular film does not come into contact with the cooling mandrel stably and continuously, resulting in a uniform thickness. It is no longer possible to obtain a film that is accurate. If the temperature exceeds 200°C, stick-slip occurs on the cooling mandrel, making it impossible to obtain a film with a uniform thickness in the longitudinal direction.

冷却マンドレルの温度調節は公知の手段を採用し得るが
、温調精度および温調能力より、冷却マンドレル内部を
温調された熱媒が循環するようにすることが望ましい。
Although known means can be used to adjust the temperature of the cooling mandrel, it is desirable to circulate a temperature-controlled heating medium inside the cooling mandrel in terms of temperature control accuracy and temperature control ability.

ダイリップと冷却マンドレルと溶融状態のチューブ状フ
ィルムとで囲まれた空間には、供給址と供給圧力とを制
御された気体を連続的に供給し、かつ連続的に排出する
必要があり、前記空間が密閉状態にあると、フィルム厚
みの均一性には影響を与えない程度の微小なフィルムの
引取りむらを起生じ、あるいはダイリップと冷却マンド
レルとの間の溶融状態にあるチューブが均一に同時に接
触しなくなり厚みの均一なフィルムが得られなくなる。
The space surrounded by the die lip, the cooling mandrel, and the molten tubular film needs to be continuously supplied with gas with a controlled supply site and supply pressure, and must be continuously discharged. If the die lip and cooling mandrel are in a closed state, there will be slight unevenness in the film take-up that does not affect the uniformity of the film thickness, or the tube in the molten state between the die lip and the cooling mandrel may come into contact uniformly and simultaneously. This makes it impossible to obtain a film with uniform thickness.

連続的に供給する気体としては空気、窒素が好ましく、
また供給する気体の温度は一定温度とすることが好まし
い。
As the gas to be continuously supplied, air and nitrogen are preferable.
Further, it is preferable that the temperature of the gas to be supplied is constant.

第1図および第3図を参照して、溶融状態のチューブ状
フィルムが冷却マンドレルに接する近傍において、環状
ダイの中心と冷却マンドレルの中心とを通る垂直面で切
った断面に関し、溶融状態のチューブ状フィルムが冷却
マンドレルに接する点をA点とし、このA点直近上位の
チューブ状フィルム上の点をB点とし、A点を通り環状
ダイの中心と冷却マンドレルの中心とを通る線に平行な
線上の点を0点とし、環状ダイの下方に冷却マンドレル
が位置する場合には、冷却マンドレルに向かって左側に
関し、環状ダイの上方に冷却マンドレルに向かって右側
に関して、それぞれについて、A点と0点を結ぶ線AC
と、A点とB点とを結ぶ線ABとのなすjcABが時計
回りを−、反時計回りを十とするとき1.?CABは+
20゛以下−45°以上が望ましく、好ましくは+10
°以下−30゜以上、さらに好ましくは±0°以下−2
0゛以上とするとよい、 ZCABが十20゛を越える
と溶融状態のチューブ状フィルムが冷却マンドレルに同
時に均一に接触しなくなり厚みの均一なフィルムが得ら
れなくなる。一方5,1cABが一45°未満になると
冷却マンドレル上でスティックスリップが発生し均一な
厚みのフィルムが得られなくなる。
With reference to FIGS. 1 and 3, in the vicinity where the molten tubular film contacts the cooling mandrel, the molten tubular film is The point where the shaped film touches the cooling mandrel is point A, the point on the tubular film immediately above point A is point B, and a line parallel to the line passing through point A and the center of the annular die and the center of the cooling mandrel is defined as point A. The point on the line is the 0 point, and when the cooling mandrel is located below the annular die, point A and 0 are respectively related to the left side facing the cooling mandrel and above the annular die to the right side facing the cooling mandrel. line AC connecting the points
When jcAB formed by and a line AB connecting points A and B, the clockwise direction is - and the counterclockwise direction is 1.1. ? CAB is +
20° or less -45° or more is desirable, preferably +10
-30° or more, more preferably ±0° or less -2
It is preferable to set it to 0° or more. If ZCAB exceeds 120°, the molten tubular film will not come into uniform contact with the cooling mandrel at the same time, making it impossible to obtain a film with uniform thickness. On the other hand, if 5,1cAB is less than 145°, stick-slip occurs on the cooling mandrel, making it impossible to obtain a film of uniform thickness.

冷却固化したチューブ状ポリカーボネートフィルムに折
り目を付けずに連続的に引取る手段は、連続的に移動し
ているチューブ状フィルムの内側に位置し環状ダイの反
対側の支持管体の周りに少なくとも2ケ所以上で回転可
能、あるいは回転不能な内側ロールを取付け、これらニ
ップロールと、これらに対応してチューブ状フィルムの
外側に位置するよう配設し、ゴム弾性体で被覆した外側
ロールとの間で、チューブ状フィルムを挾み付けること
により可能となる。
The means for continuously taking off the cooled and solidified tubular polycarbonate film without creating creases includes at least two means located inside the continuously moving tubular film and around the support tube on the opposite side of the annular die. At least two rotatable or non-rotatable inner rolls are attached, and between these nip rolls and corresponding outer rolls located outside the tubular film and covered with a rubber elastic material, This is possible by sandwiching a tubular film.

チューブ状フィルムを引取る駆動力は、外側ロール側に
付与するのが装置の複雑さ、操作性の点が好ましい。
The driving force for taking up the tubular film is preferably applied to the outer roll side in view of the complexity of the device and ease of operation.

ニップロールにより引取ったチューブ状フィルムは、目
的とする用途における許容範囲内の変形量でチューブ状
フィルム内に気体を保持したままの状態で巻取ることか
できるし、僅かの変形も許されない場合には、ニップロ
ールより引取ったチューブ状フィルムは輪切り状に所望
の長さに切断すればよい。
The tubular film drawn by the nip roll can be rolled up with the amount of deformation within the allowable range for the intended use, while retaining gas within the tubular film, and in cases where even the slightest deformation is unacceptable. The tubular film taken from the nip rolls may be cut into slices of desired length.

本発明により得られるチューブ状ポリカーボネートフィ
ルムの厚さは10μ以上1000μ以下が望ましく、好
ましくは15μ以上500μ以下、さらに好ましくは2
0μ以上300μ以下である。フィルムの厚さが10μ
未満になるとニップロールで引取る際、塑性変形し厚み
の均一なフィルムが得られない、1000μを越えると
冷却マンドレル上での冷却が困難となる。
The thickness of the tubular polycarbonate film obtained by the present invention is desirably 10μ or more and 1000μ or less, preferably 15μ or more and 500μ or less, and more preferably 2
It is 0 μ or more and 300 μ or less. Film thickness is 10μ
If it is less than 1,000 μm, it will be plastically deformed when taken off with nip rolls, making it impossible to obtain a film with a uniform thickness, and if it exceeds 1,000 μm, cooling on a cooling mandrel will be difficult.

なお、得られたチューブ状ポリカーボネートフィルムは
、熱的経時的寸法安定性の付与および許容される範囲の
1紋小な塑性変形の修正のなめに、200℃以下の温度
において張力を掛けた状態で熱処理するとよい。
The obtained tubular polycarbonate film was kept under tension at a temperature of 200°C or less in order to provide thermal dimensional stability over time and to correct small plastic deformations within an allowable range. Heat treatment is recommended.

第1図、第2図および第3図を参照して、本発明実施の
1例を説明する。
An example of implementing the present invention will be described with reference to FIGS. 1, 2, and 3.

ダイリップの外径75市φ、リップ間隙0゜5順の4条
環状スパイラルダイとした環状ダイ3を貫通する支持管
体4に、外径65mmφ、側面の長さ60市、環状ダイ
3側の周縁を5 rava Rで面取りし、アルミナ系
セラミックスを表面凹凸2μになるように溶射した鋼製
冷却マンドレル5を環状ダイ3の端面より60市の位置
に取付け、さらに冷却マンドレル5の下端より下方10
0mmの位置に10關φのゴム製内側ロール7.7を取
付け、これら2個の内側ロール7゜7に、それぞれ対応
してチューブ状フィルムの外側に位置し、かつ(図示し
ない)モーターによって駆動される50止φのゴム製外
側ロール8.8を設け、対向する内側ロール7と外側ロ
ール8からなるニップロール9,9を配設し、ポリカー
ボネート樹脂(三菱瓦斯化学、ニーピロンE−2000
、MFR=5g/10分)を50止φの押出機より29
0℃で押出し、冷却リング6より100°Cの空気を吹
付けながら、供給管13から0.03kg/aa、IN
Q/ninの空気を供給し、ZCABを一5°とした溶
融状態のチューブ状フィルムを、供給管13から80℃
の温水を2 Q/ninで循環させである冷却マンドレ
ル5に接触せしめたのち、ニップロール9.9によって
5m/1ainで引取り、フィルム厚さ100μのチュ
ーブ状ポリカーボネートフィルムを得た。
The support tube 4 that passes through the annular die 3 is made of a four-ring spiral die with a die lip outer diameter of 75 mm and a lip gap of 0°5. A steel cooling mandrel 5 whose periphery has been chamfered with 5 rava R and alumina-based ceramics sprayed so as to have a surface unevenness of 2 μm is installed at a position of 60 cm from the end face of the annular die 3, and further 10 cm below the lower end of the cooling mandrel 5.
A rubber inner roll 7.7 with a diameter of 10 mm is installed at the 0 mm position, and these two inner rolls 7.7 are respectively located outside the tubular film and driven by a motor (not shown). A rubber outer roll 8.8 with a diameter of 50 stops is provided, nip rolls 9, 9 consisting of an inner roll 7 and an outer roll 8 facing each other are provided, and polycarbonate resin (Mitsubishi Gas Chemical, Kneepilon E-2000
, MFR=5g/10min) from a 50-stop φ extruder.
While extruding at 0°C and blowing air at 100°C from the cooling ring 6, 0.03 kg/aa, IN from the supply pipe 13.
Q/nin air is supplied, and the molten tubular film with ZCAB set to -5° is heated to 80°C from the supply pipe 13.
The hot water was circulated at 2 Q/nin and brought into contact with the cooling mandrel 5, and then taken off at 5 m/1 ain by nip rolls 9.9 to obtain a tubular polycarbonate film with a film thickness of 100 μm.

得られたフィルムは直径の変化が±0.5%であり、円
周方向の厚みの変化が±5%、長手方向のスティックス
リップによる厚さの変化は認められず、JISK711
3に準拠して測定した引張弾性率が、円周方向において
、22000kt/aA、長手方向において23000
ksr/−であり、140°Cにおける熱収縮率が0%
と機械的特性、熱的特性に秀れ、直径と厚さを均一とし
、折り目のないチューブ状ポリカーボネートフィルムで
あった。
The obtained film had a change in diameter of ±0.5%, a change in thickness in the circumferential direction of ±5%, no change in thickness due to stick-slip in the longitudinal direction, and conformed to JISK711.
3, the tensile modulus is 22,000 kt/aA in the circumferential direction and 23,000 in the longitudinal direction.
ksr/-, heat shrinkage rate at 140°C is 0%
It was a tubular polycarbonate film with excellent mechanical and thermal properties, uniform diameter and thickness, and no creases.

(発明の効果) 本発明は直径と厚さの均一な折り目のないチューブ状ポ
リカーボネートフィルムを製造することができるから、
所要長さに切断し輪切り状とし、電子機器の怒光ベルト
とすると全長全幅に亘って−様な機能を発揮させること
ができ、継ぎ目、折り目がないから駆動ベルトとしても
好適である等、工業用資材として多くの用途に用いるこ
とができる。
(Effects of the Invention) Since the present invention can produce a fold-free tubular polycarbonate film with a uniform diameter and thickness,
When cut to the required length and sliced into ring shapes, it can be used as a flashing belt for electronic equipment to perform various functions over the entire length and width, and because there are no seams or creases, it is also suitable as a drive belt. It can be used as a material for many purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の要部断面図、第2図は第1図にお
ける■−■線から視た断面図、第3図は環状ダイと冷却
マンドレルとチューブ状フィルムとの関連を示す説明図
、第4図および第5図は従来法の説明図である。 1・・・チューブ状ポリカーボネートフィルム製造装置
、2・・・押出機、3・・・環状ダイ、4・・・支持管
体、5・・・冷却マンドレル、6・・・冷却リング、7
・・・内側ロール、8・・・外側ロール、9・・・ニッ
プロール、10・・・供給圧力・供給量制御気体連続供
給81横、11・・・冷却マンドレル内熱媒供給機構。 特 許 出 願 人  三菱油化株式会社2二押上機 手 2 図 蔓 3 図
Fig. 1 is a cross-sectional view of the main parts of the device of the present invention, Fig. 2 is a cross-sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is an explanation showing the relationship between the annular die, cooling mandrel, and tubular film. 4 and 5 are explanatory diagrams of the conventional method. DESCRIPTION OF SYMBOLS 1... Tubular polycarbonate film manufacturing device, 2... Extruder, 3... Annular die, 4... Support tube, 5... Cooling mandrel, 6... Cooling ring, 7
. . . Inner roll, 8 . Patent applicant: Mitsubishi Yuka Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)押出機に装着した環状ダイより押出されたチュー
ブ状ポリカーボネートフィルムの内側に供給圧力と、供
給量とを制御した気体を連続的に供給・排除させながら
冷却マンドレルに接触されて冷却固化させチューブ状態
を維持したままで連続して引取るようにしたことを特徴
とするチューブ状ポリカーボネートフィルム製造法。
(1) A tubular polycarbonate film extruded from an annular die attached to an extruder is continuously supplied and expelled with controlled supply pressure and amount of gas to the inside of the tubular polycarbonate film, which is then brought into contact with a cooling mandrel and cooled and solidified. A method for producing a tubular polycarbonate film, characterized in that the tubular polycarbonate film is continuously drawn while maintaining the tubular state.
(2)押出機に装着した環状ダイに同一軸線状に支持管
棒を固定し、この支持管棒に冷却マンドレルを同心状に
固設し、前記環状ダイと冷却マンドレルとの間に前記支
持管棒と同心状に冷却リングを配設し、前記冷却マンド
レルより下方の支持管棒の外周に枢支した複数の内側ロ
ールと、これら内側ロールに、それぞれ対応して設けた
外側ロールとからなるニップロールを複数個配設し、前
記支持管棒に供給圧力・供給量制御気体連続供給機構と
、冷却マンドレル内熱媒供給機構とを付設してなること
を特徴とするチューブ状ポリカーボネートフィルム製造
装置。
(2) A support tube rod is fixed coaxially to an annular die attached to an extruder, a cooling mandrel is concentrically fixed to the support tube rod, and the support tube is disposed between the annular die and the cooling mandrel. A nip roll consisting of a plurality of inner rolls having a cooling ring arranged concentrically with the rod and pivotally supported on the outer periphery of the support tube rod below the cooling mandrel, and outer rolls provided corresponding to each of these inner rolls. 1. A tubular polycarbonate film manufacturing apparatus, characterized in that a plurality of these are arranged, and the support tube rod is provided with a supply pressure/supply amount control gas continuous supply mechanism and a cooling mandrel internal heating medium supply mechanism.
JP63055445A 1988-03-09 1988-03-09 Method and apparatus for manufacturing tubular resin film Expired - Lifetime JP2617975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63055445A JP2617975B2 (en) 1988-03-09 1988-03-09 Method and apparatus for manufacturing tubular resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055445A JP2617975B2 (en) 1988-03-09 1988-03-09 Method and apparatus for manufacturing tubular resin film

Publications (2)

Publication Number Publication Date
JPH01228823A true JPH01228823A (en) 1989-09-12
JP2617975B2 JP2617975B2 (en) 1997-06-11

Family

ID=12998792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055445A Expired - Lifetime JP2617975B2 (en) 1988-03-09 1988-03-09 Method and apparatus for manufacturing tubular resin film

Country Status (1)

Country Link
JP (1) JP2617975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470165B2 (en) 2000-02-03 2002-10-22 Canon Kabushiki Kaisha Process for producing transfer member, transfer member, and image forming apparatus
JP2007130803A (en) * 2005-11-08 2007-05-31 Bridgestone Corp Manufacturing method of conductive endless belt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138931A1 (en) * 2016-02-10 2017-08-17 The Yokohama Rubber Co., Ltd. Extrusion molding equipment and process for producing cylindrical film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158015A (en) * 1985-12-24 1987-07-14 ゼロツクス コ−ポレ−シヨン Device and method of extruding flexible thin tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158015A (en) * 1985-12-24 1987-07-14 ゼロツクス コ−ポレ−シヨン Device and method of extruding flexible thin tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470165B2 (en) 2000-02-03 2002-10-22 Canon Kabushiki Kaisha Process for producing transfer member, transfer member, and image forming apparatus
JP2007130803A (en) * 2005-11-08 2007-05-31 Bridgestone Corp Manufacturing method of conductive endless belt

Also Published As

Publication number Publication date
JP2617975B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US3248463A (en) Continuous production of biaxially oriented crystalline thermoplastic film
JP2003531741A (en) Method and production line for continuously producing plastic tubes by biaxial stretching, and obtained plastic tubes
US5076977A (en) Process for controlling curl in polyester film
US3486196A (en) Apparatus for the production of multilayer tubes from thermoplastics
US4443399A (en) Method of producing biaxially oriented sheet or film and apparatus therefor
JP2004314588A (en) Device for and method of manufacturing tubular resin film
US3180909A (en) Process and apparatus for forming tubular films and the like
US3284552A (en) Method for making tubing
JPH01228823A (en) Manufacture of tubular polycarbonate film and device therefor
JPH0513816B2 (en)
JPS62255114A (en) Extrusion molding pipe and manufacture of said pipe
US3574806A (en) Method for producing flattened sheeting or flattened tubing of molten thermoplastic resins circumferential chill casting
JPH04255332A (en) Manufacture of resistance control endless belt material
US3315308A (en) Continuous production of biaxially oriented, crystalline, thermoplastic film
CA2100431C (en) Method and apparatus for molding inflation film
US3635634A (en) Apparatus for manufacturing tubular films of thermoplastic resins
US3880974A (en) Process for biaxially producing oriented tubular polyethylene terephthalate films by simultaneous stretching
JPH03189125A (en) Method for controlling film thickness of tubular film
JP4264313B2 (en) Inflation film manufacturing method
US3311679A (en) Process for orienting tubular films of polymeric material
JP4002363B2 (en) Tubular film manufacturing method and manufacturing apparatus thereof
JP3152956B2 (en) Method and apparatus for producing ultra-high molecular weight polyethylene film
JP2000141507A (en) Manufacture of conductive belt
EP1990176B1 (en) Expandable melt feed line
JP3568655B2 (en) Extruded polycarbonate resin laminated sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term