JPS5842957B2 - Positive characteristic porcelain heating element - Google Patents

Positive characteristic porcelain heating element

Info

Publication number
JPS5842957B2
JPS5842957B2 JP54029251A JP2925179A JPS5842957B2 JP S5842957 B2 JPS5842957 B2 JP S5842957B2 JP 54029251 A JP54029251 A JP 54029251A JP 2925179 A JP2925179 A JP 2925179A JP S5842957 B2 JPS5842957 B2 JP S5842957B2
Authority
JP
Japan
Prior art keywords
holes
positive characteristic
porcelain
heating element
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54029251A
Other languages
Japanese (ja)
Other versions
JPS5578483A (en
Inventor
登 山本
重孝 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP54029251A priority Critical patent/JPS5842957B2/en
Publication of JPS5578483A publication Critical patent/JPS5578483A/en
Publication of JPS5842957B2 publication Critical patent/JPS5842957B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は小さな体積で大きな発熱が得られ、しかも過熱
断線の心配がない正特性磁器発熱体に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive characteristic porcelain heating element that can generate a large amount of heat with a small volume and is free from the risk of overheating and disconnection.

従来、正の温度係数を有する抵抗体、例えば、チタン酸
バリウム系正特性磁器を用いた発熱体は、正特性磁器を
円板状で用いており、−個でたかだか数ワットの発熱量
しか得られず、数十ワットの発熱量を得させるためには
大きな放熱板をつけなければならないので、発熱体とし
て構造的Oこ大きな制約をうけ、また大電力、例えばI
KW以上の発熱量を得させるためには多数個必要であり
、発熱体全体が大型になり、また不経済なものであった
Conventionally, heating elements using positive temperature coefficient resistors, such as barium titanate-based positive temperature coefficient porcelain, have been made of positive temperature coefficient porcelain in the form of disks, and only a few watts of heat can be generated from each resistor. In order to generate several tens of watts of heat, a large heat sink must be attached, which imposes large structural constraints on the heating element, and also requires large amounts of power, such as I
In order to obtain a calorific value of KW or more, a large number of heating elements are required, making the entire heating element large and uneconomical.

また正特性磁器を円筒形にしてその外面と内面に電極を
附与してヒーターとすることも知られているが、このヒ
ーターで表面積約1000criとするためには直径約
50間で長さを300mm以上とする必要があり、極め
て大きな体積を占めるとともlこ機械的強度も劣り実用
性の乏しいものであった。
It is also known to make a heater by making positive characteristic porcelain into a cylindrical shape and attaching electrodes to its outer and inner surfaces, but in order to obtain a surface area of about 1000 cr with this heater, the diameter should be about 50 mm and the length. It needs to be 300 mm or more, which occupies an extremely large volume and has poor mechanical strength, making it impractical.

さらに、円筒状または円板状の正特性磁器の内部に熱が
こもらないように、熱放散用の穴を穿設した正特性磁器
よりなる発熱体も知られているが、磁器体に穴を穿設す
る如き方法では、穴を穿設する前の表面積に対し穴を穿
設した後の単位体積当りの表面積を極めて大きくするこ
とは困難であり、さらに穴を隔てる隔壁の厚みをほぼ均
一σこすることは一層困難であって大きな発熱量を得る
ことはできず、例えば1個の正特性磁器により300W
程度の発熱をさせる発熱体を工業的に製造するこ、とは
不可能であった。
Furthermore, there are heating elements made of positive temperature porcelain that have holes for heat dissipation in order to prevent heat from accumulating inside the cylindrical or disk shaped positive temperature porcelain. With methods such as drilling holes, it is difficult to make the surface area per unit volume after drilling the holes extremely larger than the surface area before drilling the holes, and furthermore, it is difficult to make the thickness of the partition wall separating the holes almost uniform σ. It is more difficult to rub and it is not possible to obtain a large amount of heat, for example, 300W with one piece of positive characteristic porcelain.
It has been impossible to industrially produce a heating element that generates a certain amount of heat.

本発明の正特性磁器発熱体は従来のこれらの欠点を解決
したもので、1瀝当りの貫通孔の数が少なくとも5個以
上でかつ貫通孔との間の隔壁の厚みが1u以下よりなる
多数の貫通孔を有する発熱体である。
The positive characteristic porcelain heating element of the present invention solves these conventional drawbacks, and has at least 5 or more through holes per die, and the thickness of the partition wall between the through holes is 1 μ or less. It is a heating element with a through hole.

さらに詳しい本発明の構成を一実施例である第1図、第
2図、第3図を用いて説明すると、1d当りの貫通孔1
の数が少なくとも5個以上でかつ貫通孔1と貫通孔1と
の間の階壁2の厚みが1mr/を以下よりなり、さらに
好ましくは貫通孔1を有する両端面に電極3を設けた多
数の貫通孔1を有する正特性磁器4よりなる発熱体であ
る。
A more detailed explanation of the structure of the present invention will be given with reference to FIGS. 1, 2, and 3, which are examples.
The number of through holes 1 is at least 5 or more, and the thickness of the floor wall 2 between the through holes 1 is 1 mr/or less, and more preferably, the electrodes 3 are provided on both end faces with the through holes 1. This is a heating element made of positive characteristic porcelain 4 having a through hole 1 of .

なお正特性磁器4に設ける貫通孔1の数は正特性磁器4
の固有抵抗、固有強度と必要とする発熱量、抵抗等から
自由に選ぶことができるが、単位体積当りの発熱量を多
くするために単位面積(−)当り5個以上とすることが
望ましい。
The number of through holes 1 provided in the positive characteristic porcelain 4 is the same as that of the positive characteristic porcelain 4.
They can be freely selected based on the specific resistance, specific strength, required calorific value, resistance, etc., but it is desirable to have five or more per unit area (-) in order to increase the calorific value per unit volume.

この数が5個未満と少ない場合には、放熱表面積が小さ
くなるので貫通孔1中に流体を強制的に貫流させても実
用的な大きな発熱量が得られないのである。
If the number is as small as less than 5, the heat dissipation surface area becomes small, so even if the fluid is forced to flow through the through hole 1, a practically large amount of heat cannot be obtained.

また正特性磁器4の外形は円筒三角形、円板、四角飯等
必要に応じて自由に選ぶことができる。
Further, the outer shape of the positive characteristic porcelain 4 can be freely selected as required, such as a cylindrical triangle, a disk, or a rectangular shape.

第2図ζこ示すように多数の貫通孔1を有する正特性磁
器4よりなる発熱体の外側面にも凹凸を設は外側面から
の放熱を良くすることもできる。
As shown in FIG. 2, the heat dissipation from the outer surface can be improved by providing unevenness on the outer surface of the heating element made of positive characteristic porcelain 4 having a large number of through holes 1.

また貫通孔1の形状は三角、四角、六角、同等必要に応
じて自由に選ぶことができる。
Further, the shape of the through hole 1 can be freely selected from triangular, square, hexagonal, etc. as required.

かかる形状の正特性磁器4は、プレス法、押出し法、吸
水性のハニカム状紙へ磁器体となる原料スラリーを浸漬
する方法等により製造することができる。
The positive characteristic porcelain 4 having such a shape can be manufactured by a pressing method, an extrusion method, a method of dipping a raw material slurry that will become a porcelain body into water-absorbing honeycomb paper, or the like.

貫通孔1の大きさ、貫通孔1と貫通孔1との間の隔壁2
の厚みも正特性磁器体4の固有抵抗、固有強度と必要と
する発熱量、抵抗等から自由に選ぶことができるが、貫
通孔1と貫通孔1との間の隔壁2の厚みは1間以下とす
ることが望ましい。
Size of through hole 1, partition wall 2 between through holes 1
The thickness of the partition wall 2 between the two through holes 1 can be freely selected depending on the specific resistance, specific strength, required heat generation amount, resistance, etc. of the positive characteristic porcelain body 4. The following is desirable.

この厚みが厚い場合には単位面積当りの貫通孔1の数を
多くしても大きな表面積が得られず、さらに単位面積当
りの貫通孔1の占める面積が小さくなるため流体の流通
抵抗が大きくなり、また貫通孔1周辺の磁器体表面は冷
却されて抵抗が小さくなっていても磁器体内部は冷却さ
れず高い抵抗となってしまい、電気を通しに<<シ、実
用的な大きな発熱が得られないためである。
If this thickness is large, a large surface area cannot be obtained even if the number of through holes 1 per unit area is increased, and furthermore, the area occupied by the through holes 1 per unit area becomes smaller, resulting in increased fluid flow resistance. In addition, even though the surface of the porcelain body around the through hole 1 is cooled and its resistance is reduced, the inside of the porcelain body is not cooled and has a high resistance, which causes a large amount of heat to be generated for practical purposes. This is so that you will not be affected.

また、隔壁2の厚みがほぼ均一であることが望ましく、
その理由は部分的に厚みが大きく異なる部分があると、
発熱体として用いたとき(こ、各部の温度が異なり、熱
歪によって破壊しやすくなるためである。
Further, it is desirable that the thickness of the partition wall 2 is approximately uniform;
The reason is that there are parts where the thickness differs greatly,
This is because when used as a heating element, the temperature of each part differs, making it easy to break due to thermal strain.

なお、多数の貫通孔を有する正特性磁器4へ電極をつけ
る方法は銀を主成分とするペーストの塗布、焼付法、ア
ルミニウム等の金属のメタリコン、無電解ニッケルメッ
キ法等の方法を用いる。
The method for attaching electrodes to the positive characteristic porcelain 4 having a large number of through holes includes methods such as applying a paste containing silver as a main component, baking, metallicon of metal such as aluminum, and electroless nickel plating.

多数の貫通孔1を有する正特性磁器4へ電極をつける位
置は、貫通孔1を有する面内でも貫通孔1を有しない面
でも良いが、第3図に示すように貫通孔1を有する両端
面に電極3を設けると、貫通孔1を隔てる隔壁2に均等
に電流が流れ、各隔壁2の発熱量がほぼ均一になるので
、貫通孔1中を流通する流体が均一に加熱されるためよ
り有効である。
The electrodes can be attached to the positive characteristic porcelain 4 which has a large number of through holes 1 either on the surface with the through holes 1 or on the surface without the through holes 1, but as shown in FIG. When the electrodes 3 are provided on the surface, current flows evenly through the partition walls 2 that separate the through holes 1, and the amount of heat generated by each partition wall 2 becomes almost uniform, so that the fluid flowing through the through holes 1 is heated uniformly. more effective.

貫通孔1中を流通する流体としては気体では空気、液体
では絶縁油が1つの例であるが、必要に応じ、正特性磁
器及びその電極等を劣化させない状態で他の気体又は液
体またはこれらの混合物を使うことができる。
Examples of the fluid flowing through the through hole 1 include air as a gas and insulating oil as a liquid, but if necessary, other gases or liquids or these may be used without deteriorating the positive characteristic porcelain and its electrodes. Mixtures can be used.

また貫通孔以外の部分、例えば磁器体外壁部にも気体又
は液体を対流させることは必要に応じ自由に選択できる
Further, it is possible to freely select, as necessary, to cause gas or liquid to convect in parts other than the through-holes, for example, in the outer wall of the porcelain body.

本発明の発熱体は以上のような構成より成るものであり
、実際の使用に際しては例えば第4図および第5図に示
すとおり、電源端子5,6Iこ発熱体としての前記多数
の貫通孔を有する正特性磁器4と貫通孔1に空気を強制
的に貫通させるファン7とを並列にスイッチ8を通じて
接続し、多数の貫通孔1を有する正特性磁器4とファン
7は第4図に示すよう(こ円筒状の枠9の中に対置させ
、多数の貫通孔1を有する正特性磁器4は耐熱性の絶縁
性支持体10で枠9に固定した。
The heating element of the present invention is constructed as described above, and in actual use, as shown in FIGS. A positive characteristic porcelain 4 having a large number of through holes 1 and a fan 7 for forcing air to pass through the through holes 1 are connected in parallel through a switch 8, and the positive characteristic porcelain 4 having a large number of through holes 1 and the fan 7 are connected in parallel as shown in FIG. (The positive characteristic porcelain 4 having a large number of through holes 1 was placed oppositely in the cylindrical frame 9 and fixed to the frame 9 with a heat-resistant insulating support 10.

ファン7の多数の貫通孔1を有する正特性磁気4と反対
側の枠9には通気口11を設け、多数の貫通孔1を有す
る正特性磁器4は例えば直径70mmφ、厚さ10mm
tとし、隔壁と隔壁との間隙を1mmの四角形の貫通孔
1を約1800個等間隔にあけた形状(貫流する空気等
流体と接しうる表面積約720i)とし、前述のとおり
貫通孔1を有する両端面に電極3を設けた構造とし、抵
抗が急増し始める温度が120℃で常温における抵抗が
15cjのものを用いた。
A vent hole 11 is provided in the frame 9 on the opposite side to the positive characteristic magnet 4 having a large number of through holes 1 of the fan 7, and the positive characteristic porcelain 4 having a large number of through holes 1 has a diameter of 70 mmφ and a thickness of 10 mm, for example.
t, and the gap between the partition walls is a shape in which approximately 1800 rectangular through holes 1 of 1 mm are equally spaced (a surface area of approximately 720 i that can be in contact with fluid such as air passing through), and the through holes 1 are provided as described above. A structure was used in which electrodes 3 were provided on both end faces, and the temperature at which the resistance began to increase rapidly was 120° C., and the resistance at room temperature was 15 cj.

電源端子5,6間に1oovの電圧をかけ、スイッチ8
の接点12.13を閉じてファン7を回転したところ、
多数の貫通孔1を有する正特性磁器4は周囲温度25℃
で500Wの発熱をした。
Apply a voltage of 1oov between power terminals 5 and 6, and switch 8
When the contacts 12 and 13 were closed and the fan 7 was rotated,
The positive characteristic porcelain 4 having a large number of through holes 1 has an ambient temperature of 25°C.
It generated 500W of heat.

この後、スイッチ8の接点12を閉じたままとし、接点
13を開いてファン7の回転を止め、空気を自然対流の
状態にしたところ多数の貫通孔1を有する正特性磁器4
の発熱量は51Wに減少し、自然対流と強制対流におけ
る発熱量の比は約10倍であった。
After this, the contact 12 of the switch 8 was kept closed and the contact 13 was opened to stop the rotation of the fan 7 and the air was brought into a state of natural convection.
The calorific value decreased to 51 W, and the ratio of the calorific value in natural convection and forced convection was about 10 times.

従って本発明では貫通孔1に流体を強制的に貫流させる
ことにより、発熱量を比較的に増大できるとともに、流
体量を変化させることにより発熱量を調節できる発熱装
置が得られるものである。
Therefore, in the present invention, by forcing fluid to flow through the through hole 1, a heat generating device can be obtained in which the amount of heat generated can be relatively increased, and the amount of heat generated can be adjusted by changing the amount of fluid.

さらに他の実施例について説明すれば、第6図に示すよ
うに多数の貫通孔を有する正特性磁器4とニクロム・ヒ
ーター14とを直列とし、これと並列にファン7を接続
し、この両者をスイッチ8を通して電源端子5,6に接
続した。
To explain yet another embodiment, as shown in FIG. 6, a positive characteristic porcelain 4 having a large number of through holes and a nichrome heater 14 are connected in series, and a fan 7 is connected in parallel with the nichrome heater 14. It was connected to power supply terminals 5 and 6 through switch 8.

多数の貫通孔を有する正特性磁器4は実施例1と同じ構
造とし、25℃における抵抗値が6gのものを用いた。
The positive characteristic porcelain 4 having a large number of through holes had the same structure as in Example 1, and had a resistance value of 6 g at 25°C.

ニクロム・ヒーター14は抵抗を5gとし多数の貫通孔
を有する正特性磁器4の上方に取付けた。
The nichrome heater 14 had a resistance of 5 g and was installed above the positive characteristic porcelain 4 having a large number of through holes.

そして発熱装置の周囲温度を25℃とし電源端子5.6
間に100Vを印加し、スイッチ8の接点12.13を
閉じたところ瞬間的にIOAの電流が流れ30分後の電
流は8Aすなわち発熱量は800Wになった。
Then, the ambient temperature of the heating device is set to 25℃, and the power terminal 5.6
When 100V was applied between them and the contacts 12 and 13 of the switch 8 were closed, a current of IOA instantly flowed, and 30 minutes later, the current was 8A, that is, the amount of heat generated was 800W.

スイッチ8の接点12を閉じたままとし、接点13を開
いたところ多数の貫通孔を有する正特性磁器4の抵抗が
増加し電流はわずかに0.6Ajこ減少した。
When the contact 12 of the switch 8 was kept closed and the contact 13 was opened, the resistance of the positive characteristic porcelain 4 having many through holes increased and the current decreased slightly by 0.6 Aj.

この時多数の貫通孔を有する正特性磁器4に印加されて
いる電圧は97■で、ニクロム・ヒーター14の発熱量
は3Wのため、ファン7が停止しても、ニクロム・ヒー
ター14は赤熱せず外枠も加熱されなかった。
At this time, the voltage applied to the positive characteristic porcelain 4 which has many through holes is 97■, and the amount of heat generated by the nichrome heater 14 is 3W, so even if the fan 7 stops, the nichrome heater 14 will not become red hot. The outer frame was also not heated.

また、スイッチ8の接点12.13を閉じたまま発熱装
置の周囲温度を0℃としたところ電流はIOAに増加し
、定常的にIKWの発熱をした。
Further, when the ambient temperature of the heat generating device was set to 0° C. with the contacts 12 and 13 of the switch 8 closed, the current increased to IOA, and heat of IKW was generated steadily.

なお、正特性磁器からなる発熱体を複数個用い、送風機
からの風を複数個の発熱体の貫通孔中を通過させれば、
正特性磁器からなる発熱体の数に対応した大きな発熱量
を持った発熱装置が得られることは当然である。
In addition, if multiple heating elements made of positive characteristic porcelain are used and the air from the blower is passed through the through holes of the multiple heating elements,
Naturally, it is possible to obtain a heat generating device having a large amount of heat generated in accordance with the number of heat generating elements made of positive characteristic porcelain.

そして、先の実施例の直径70mmφ、厚さ10mmt
の寸法(以下、同じ)の正特性磁器で、1d当りの貫通
孔の数が約47個で隔壁の厚みが約0、4 mmのもの
(A)、1d当りの貫通孔の数が約16個で隔壁の厚み
が約0.5 mmのもの(B)、およびIC11!L当
りの貫通孔の数が約5個で隔壁の厚みが約1.0闘のも
の(Qの3種類の、多数の貫通孔を有する正特性磁器か
らなる発熱体の貫通孔中に、強制的に25℃の空気(以
下、同じ)を貫流させた場合の風量と発熱量との関係は
第7図に示すとおりであり、発熱体の貫通孔中に流体を
強制的に貫流させることにより、発熱量を飛躍的に増大
できるとともに、風量を変化させることにより発熱量を
調節できる。
And, the diameter of the previous example is 70 mmφ and the thickness is 10 mm.
Positive characteristic porcelain with dimensions (hereinafter the same), the number of through holes per 1 d is approximately 47 and the thickness of the partition wall is approximately 0.4 mm (A), the number of through holes per 1 d is approximately 16 (B) with a partition wall thickness of approximately 0.5 mm, and IC11! The number of through holes per L is approximately 5 and the thickness of the partition wall is approximately 1.0 mm (3 types of Q, forced into the through holes of the heating element made of positive characteristic porcelain with a large number of through holes) The relationship between air volume and calorific value when air at a temperature of 25°C (the same applies hereinafter) is made to flow through is shown in Figure 7. , the amount of heat generated can be dramatically increased, and the amount of heat generated can be adjusted by changing the air volume.

また、貫通孔中に貫流させる空気の風量を約0.6m3
/minとし、さらに隔壁の厚みを約0.4 amに一
定とした場合の、1d当りの貫通孔の数と発熱量との関
係は第8図に示すとおりであり、1d当りの貫通孔の数
が多くなると単位体積当りの表面積が大きくなるので発
熱量も著るしく増加するものであるが、前述のとおり1
d当りの貫通孔の数が5個未満になると発熱量は極めて
小さくなって、実用的な発熱装置が得られないので、貫
通孔の数は5個以上が望ましい。
In addition, the volume of air flowing through the through hole is approximately 0.6 m3.
/min, and the thickness of the partition wall is kept constant at approximately 0.4 am, the relationship between the number of through holes per 1 d and the amount of heat generation is as shown in Figure 8. As the number increases, the surface area per unit volume increases, so the calorific value increases significantly, but as mentioned above, 1
If the number of through holes per d is less than 5, the amount of heat generated becomes extremely small and a practical heat generating device cannot be obtained, so it is desirable that the number of through holes is 5 or more.

さらにまた、貫通孔に貫流させる空気の風量を約0.6
m3/minとしさらに1−当りの貫通孔の数を約47
個(こ一定とした場合の、貫通孔と貫通孔との間の隔壁
の厚みと発熱量および流通抵抗との関係は第9図に示す
とおりであり、隔壁の厚みが厚くなると表面積が小さく
なるので発熱量は低下し、反対に貫通孔の大きさが小さ
くなるので流通抵抗は増加する。
Furthermore, the amount of air flowing through the through hole is approximately 0.6
m3/min, and the number of through holes per 1-1 is approximately 47.
The relationship between the thickness of the partition wall between the through holes, the amount of heat generated, and the flow resistance is as shown in Fig. 9, assuming that the number of partition walls is constant. As the thickness of the partition wall increases, the surface area decreases. Therefore, the amount of heat generated decreases, and conversely, the size of the through hole decreases, so the flow resistance increases.

そして、特に隔壁の厚みが1mmを越えると流通抵抗が
著るしく増大し、発熱量の低下とあいまって実用的な発
熱装置が得られないので貫通孔と貫通孔との隔壁の厚み
は1闘以下とすることが望ましい。
In particular, if the thickness of the partition wall exceeds 1 mm, the flow resistance increases significantly, and this, combined with the decrease in heat generation, makes it impossible to obtain a practical heat generating device. The following is desirable.

以上詳記したように、1d当りの貫通孔の数が少なくと
も5個以上でかつ貫通孔と貫通孔との間の隔壁の厚みが
1間以下よりなる多数の貫通孔を有する本発明の正特性
磁器発熱体は、小さな体積で大きな表面積を有するもの
であり、気体または液体を貫通孔中に強制的に貫流させ
ることにより、磁器体内部が高温となり抵抗を増大して
極度ζこ電流を減少することがないので、流体を強制的
に貫流させる手段をそなえない場合に比較して極めて大
きな発熱をさせることができ、さらに強制的に貫流させ
る気体または液体の量と温度によってその発熱量を変化
させることができるものであり、たとえ貫通孔中に気体
又は液体を強制的に貫流させるための手段としてのファ
ンが故障しても過熱の危険がないので、本発明による発
熱体は風量または液量が変化しても加熱された気体また
は液体の温度が変化しに<<、小型で安全性の高い各種
温風器、例えば、ヘヤードライヤ、電気温風機、衣類乾
燥機、フトン乾燥機等の発熱体として利用できるもので
あり産業上極めて有用である。
As detailed above, the positive characteristics of the present invention include a large number of through holes, in which the number of through holes per 1 d is at least 5 or more, and the thickness of the partition wall between the through holes is 1 mm or less. A porcelain heating element has a small volume and a large surface area, and by forcing gas or liquid to flow through the through hole, the inside of the porcelain body becomes high temperature, increasing the resistance and reducing the extreme current. Therefore, it is possible to generate an extremely large amount of heat compared to a case without a means to force the fluid to flow through it, and the amount of heat generated changes depending on the amount and temperature of the gas or liquid forced to flow through it. The heating element according to the invention has a low air flow or liquid volume, since there is no risk of overheating even if the fan as a means for forcing gas or liquid to flow through the through-holes fails. Even if the temperature of the heated gas or liquid changes, the temperature of the heated gas or liquid will not change. It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の発熱体の異なる具体例を
示す説明図、第3図は本発明の発熱体の具体例の断面を
示す説明図、第4図は本発明の発熱体を用いた発熱装置
の一具体例の構造を示す模式図、第5図および第6図は
本発明の発熱体を用いた異なる具体例の回路図、また、
第7図は風量と発熱量との関係を示す特性図、第8図は
1−当りの貫通孔の個数と発熱量との関係を示す特性図
、第9図は隔壁の厚みと発熱量および流通抵抗との関係
を示す特性図である。
1 and 2 are explanatory diagrams showing different specific examples of the heating element of the present invention, FIG. 3 is an explanatory diagram showing a cross section of a specific example of the heating element of the present invention, and FIG. 4 is an explanatory diagram showing a specific example of the heating element of the present invention. FIGS. 5 and 6 are schematic diagrams showing the structure of a specific example of a heating device using the heating element of the present invention, and FIGS.
Figure 7 is a characteristic diagram showing the relationship between air volume and calorific value, Figure 8 is a characteristic diagram showing the relationship between the number of through holes per unit and calorific value, and Figure 9 is a characteristic diagram showing the relationship between partition wall thickness and calorific value. FIG. 3 is a characteristic diagram showing the relationship with flow resistance.

Claims (1)

【特許請求の範囲】[Claims] 11CrlL当りの貫通孔の数が少なくとも5個以上で
かつ貫通孔と貫通孔との間の隔壁の厚みがiin以下よ
りなる多数の貫通孔を有することを特徴とする特性磁器
発熱悦
A characteristic porcelain heating pleasure characterized by having a large number of through holes in which the number of through holes per 11CrlL is at least 5 or more and the thickness of the partition wall between the through holes is iin or less.
JP54029251A 1979-03-12 1979-03-12 Positive characteristic porcelain heating element Expired JPS5842957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54029251A JPS5842957B2 (en) 1979-03-12 1979-03-12 Positive characteristic porcelain heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54029251A JPS5842957B2 (en) 1979-03-12 1979-03-12 Positive characteristic porcelain heating element

Publications (2)

Publication Number Publication Date
JPS5578483A JPS5578483A (en) 1980-06-13
JPS5842957B2 true JPS5842957B2 (en) 1983-09-22

Family

ID=12271043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54029251A Expired JPS5842957B2 (en) 1979-03-12 1979-03-12 Positive characteristic porcelain heating element

Country Status (1)

Country Link
JP (1) JPS5842957B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954412A (en) * 1972-09-05 1974-05-27
JPS5433056A (en) * 1977-08-18 1979-03-10 Fuji Electric Co Ltd Display device
JPS5433055A (en) * 1977-08-18 1979-03-10 Fuji Electric Co Ltd Display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954412A (en) * 1972-09-05 1974-05-27
JPS5433056A (en) * 1977-08-18 1979-03-10 Fuji Electric Co Ltd Display device
JPS5433055A (en) * 1977-08-18 1979-03-10 Fuji Electric Co Ltd Display device

Also Published As

Publication number Publication date
JPS5578483A (en) 1980-06-13

Similar Documents

Publication Publication Date Title
JPS6316156Y2 (en)
GB2219914A (en) Heating unit and its structure for fixing ceramic plates having a positive temperature coefficient of electric resistance
TW200616B (en)
US1663810A (en) Electric heater
US4939349A (en) Ceramic thermistor heating element
JP6301558B2 (en) Thick film heating element with high thermal conductivity on both sides
US6873790B1 (en) Laminar air flow, low temperature air heaters using thick or thin film resistors
JPS5842957B2 (en) Positive characteristic porcelain heating element
US4730103A (en) Compact PTC resistance heater
US3526268A (en) Corona discharge heat transfer
Tait et al. Thick film heater elements and temperature sensors in modern domestic appliances
US4135179A (en) Electrical temperature sensing device
CN110139408B (en) Plate type electric heater
US5935470A (en) Composition heating element for rapid heating
JPH05315053A (en) Ptc thermistor heating device
JPH04321895A (en) Fluid heating pipe
US1778884A (en) Electric heating unit
JPH10106725A (en) Sheet-like heater element and electric carpet
JPH04151460A (en) Air warmer
JPH05258840A (en) Ptc heating device
JPS626318B2 (en)
JPH08286537A (en) Heat generating resistor and heater for fixing device of electrophotographic printer
JPS6217976A (en) Far infrared radiating body
JPS5838553Y2 (en) Hatsunetsu Thailand
JPS5853176A (en) Fluid heating positive temperature coefficient thermistor