JPS5842843Y2 - air conditioner - Google Patents

air conditioner

Info

Publication number
JPS5842843Y2
JPS5842843Y2 JP1978065065U JP6506578U JPS5842843Y2 JP S5842843 Y2 JPS5842843 Y2 JP S5842843Y2 JP 1978065065 U JP1978065065 U JP 1978065065U JP 6506578 U JP6506578 U JP 6506578U JP S5842843 Y2 JPS5842843 Y2 JP S5842843Y2
Authority
JP
Japan
Prior art keywords
pipe
evaporator
temperature
air conditioner
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978065065U
Other languages
Japanese (ja)
Other versions
JPS54167461U (en
Inventor
勝視 宮崎
友通 金子
稔 野村
茂保 鈴木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP1978065065U priority Critical patent/JPS5842843Y2/en
Publication of JPS54167461U publication Critical patent/JPS54167461U/ja
Application granted granted Critical
Publication of JPS5842843Y2 publication Critical patent/JPS5842843Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、圧縮機、凝縮器、キャピラリチューブ、室内
側蒸発器等により冷凍サイクルを構成した空気調和機、
さらにくわしくいえば室内側蒸発器の配管構造に関する
ものである。
[Detailed description of the invention] This invention is an air conditioner that has a refrigeration cycle composed of a compressor, a condenser, a capillary tube, an indoor evaporator, etc.
More specifically, it relates to the piping structure of the indoor evaporator.

まず、第1図に示す空気調和機の冷凍サイクルについて
述べる。
First, the refrigeration cycle of the air conditioner shown in FIG. 1 will be described.

1は圧縮機、2は凝縮器、3はキャピラリチューブ、4
は蒸発器で、これらの機器は順次配管により連結されて
いる。
1 is a compressor, 2 is a condenser, 3 is a capillary tube, 4
is an evaporator, and these devices are sequentially connected by piping.

圧縮機1から吐出された高温高圧の冷媒ガスは、凝縮器
2に流入し、ここで放熱、凝縮して飽和状態、もしくは
さらに冷却されて過冷却状態となって送り出される。
The high-temperature, high-pressure refrigerant gas discharged from the compressor 1 flows into the condenser 2, where it radiates heat and condenses to a saturated state, or is further cooled to a supercooled state and is sent out.

その液冷媒は、キャピラリチューブ3により減圧され、
蒸発しやすい状態となって蒸発器4に流入する。
The liquid refrigerant is depressurized by the capillary tube 3,
It enters the evaporator 4 in a state where it is easily evaporated.

ここで冷媒が蒸発する際、蒸発熱を周囲からうぽい、再
び圧縮機1に吸いこまれる。
When the refrigerant evaporates here, the heat of evaporation is absorbed from the surroundings and sucked into the compressor 1 again.

この一連のサイクルにより、室内側の熱を吸収し、室外
側に放熱する。
This series of cycles absorbs heat from the indoor side and radiates it to the outdoor side.

さらに、このサイクルを第2図のモリエル線により説明
する。
Further, this cycle will be explained using Mollier lines in FIG.

同図において、横軸はエンタルビンを表わし、縦軸は圧
力を表わす。
In the figure, the horizontal axis represents enthalbin, and the vertical axis represents pressure.

aの状態にある冷媒を圧縮機1で温度t1、圧力P工の
bの状態まで断熱圧縮し、凝縮器2で温度t2、圧力P
1のCの飽和液状態にまで放熱させる。
The refrigerant in state a is adiabatically compressed in compressor 1 to state b at temperature t1 and pressure P, and in condenser 2 it is compressed to state b at temperature t2 and pressure P.
The heat is radiated to a saturated liquid state of 1C.

さらに、キャピラリチューブ3により圧力P2、温度t
3の状態dまで減圧して蒸発器4に送りこむ。
Furthermore, the capillary tube 3 further increases the pressure P2 and the temperature t.
The pressure is reduced to state d in step 3 and sent to the evaporator 4.

蒸発器4に送りこまれた冷媒は、吸熱しながら温度t4
、圧力P2の過熱蒸気状態aに戻り、圧縮機1に吸いこ
まれる。
The refrigerant sent to the evaporator 4 absorbs heat and reaches a temperature t4.
, it returns to the superheated vapor state a at pressure P2 and is sucked into the compressor 1.

このモリエル線上において、蒸発器4によってdの状態
の冷媒がaの状態に変化する際、飽和蒸気線と交わるe
の状態で液冷媒の蒸発により吸収する蒸発熱量が最大に
なり、それ以後冷媒はガスの状態で吸熱しながら過熱ガ
スの状態aになる。
On this Mollier line, when the refrigerant in state d changes to state a by the evaporator 4, e crosses the saturated vapor line.
In this state, the amount of heat of evaporation absorbed by evaporation of the liquid refrigerant reaches a maximum, and thereafter the refrigerant becomes a superheated gas state a while absorbing heat in the gas state.

第3図は前記のような性質を有する冷媒を蒸発させる従
来の蒸発器4を示す。
FIG. 3 shows a conventional evaporator 4 for evaporating a refrigerant having the above-mentioned properties.

同図において5は中間の配管、6は出口配管、11は人
口配管で、人口配管11は出口配管6に隣接している。
In the figure, 5 is an intermediate pipe, 6 is an outlet pipe, and 11 is an artificial pipe, and the artificial pipe 11 is adjacent to the outlet pipe 6.

この蒸発器4によって冷媒を蒸発させると、配管5では
第2図のeのような状態になり、温度が最も低くなる。
When the refrigerant is evaporated by the evaporator 4, the pipe 5 becomes in a state as shown in e in FIG. 2, and the temperature becomes the lowest.

また、出口配管6では第2図のaのような状態になり、
温度が高くなる。
In addition, the outlet piping 6 will be in a state like a in Figure 2,
The temperature increases.

このため、蒸発器の上部と冷媒の蒸発する中間にあたる
下部とでは温度差が生じる。
Therefore, a temperature difference occurs between the upper part of the evaporator and the lower part, which is the middle part where the refrigerant evaporates.

第4図は上述の蒸発器4を組みこんだ室内側ユニット7
を示す。
FIG. 4 shows an indoor unit 7 incorporating the above-mentioned evaporator 4.
shows.

8はユニットの内面、9はファンで、蒸発器4はファン
9の吸込側に取付けられている。
8 is an inner surface of the unit, 9 is a fan, and the evaporator 4 is attached to the suction side of the fan 9.

この室内側ユニット7においては、蒸発器4の上部と下
部で温度差があるため蒸発器4の上部と下部を通過する
空気にも温度差を生じる。
In this indoor unit 7, since there is a temperature difference between the upper and lower parts of the evaporator 4, a temperature difference also occurs in the air passing through the upper and lower parts of the evaporator 4.

また、蒸発器を通過し冷却されて露点温度に達した空気
の湿度はほぼ100%近い状態になっている。
Furthermore, the humidity of the air that has passed through the evaporator and been cooled to reach the dew point temperature is nearly 100%.

そのため蒸発器の上部を通過した空気が蒸発器の下部を
通過した空気の触れ冷されると露点以上に達して、ユニ
ットの内面8、ファン9等に霜付を生じてしまう難点が
ある。
Therefore, when the air that has passed through the upper part of the evaporator is cooled by contact with the air that has passed through the lower part of the evaporator, the temperature reaches the dew point or higher, resulting in frost formation on the inner surface 8, fan 9, etc. of the unit.

本考案は、通過する空気の温度差をなくすため、蒸発器
全体の温度分布を均一にすることを目的とするものであ
る。
The purpose of the present invention is to make the temperature distribution uniform throughout the evaporator in order to eliminate temperature differences in the air passing through it.

以下、本考案の一実施態様を第5図により説明する。Hereinafter, one embodiment of the present invention will be explained with reference to FIG.

10は蒸発器全体を示す。10 indicates the entire evaporator.

11は蒸発器の上部に設けた入口配管、5および14は
中間の配管、13は蒸発器上部の配管、12は配管13
と配管14とを連結したU字形管、6は出口配管で、中
間の配管14に隣接させて設けである。
11 is an inlet pipe provided at the top of the evaporator, 5 and 14 are intermediate pipes, 13 is a pipe at the top of the evaporator, and 12 is a pipe 13
A U-shaped pipe 6 connecting the pipe 14 and the pipe 14 is an outlet pipe, which is provided adjacent to the pipe 14 in the middle.

入口配管11から流入した冷媒は、最も温度の低くなる
中間の配管5,14を通過した後、U字形管12を介し
て蒸発器上部の配管13に導がれる。
The refrigerant flowing in from the inlet pipe 11 passes through the intermediate pipes 5 and 14 where the temperature is lowest, and then is led to the pipe 13 at the upper part of the evaporator via the U-shaped pipe 12.

そして冷媒は中間の配管14に隣接している出口配管6
から流出する。
The refrigerant is then supplied to the outlet pipe 6 adjacent to the intermediate pipe 14.
flows out from

したがって、この蒸発器10を第4図のように室内側ユ
ニットに組みこんだ場合には温度の高くなる配管部と低
くなる配管部を近接させたことで蒸発器10の上部と下
部との温度差がほとんどなくなり、蒸発器を通過した後
の空気の温度分布を均一化することができる。
Therefore, when this evaporator 10 is assembled into an indoor unit as shown in FIG. 4, the temperature between the upper and lower parts of the evaporator 10 is increased by placing the piping part where the temperature becomes high and the piping part where the temperature becomes low close together. The difference is almost eliminated, and the temperature distribution of the air after passing through the evaporator can be made uniform.

よって、室内側ユニットの内部における霜付を防止でき
る。
Therefore, frost formation inside the indoor unit can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空気調和機の冷凍サイクルを示す系統図、第2
図はモリエル線上に示したサイクル図、第3図は空気調
和機の従来の蒸発器を示す斜視図、第4図は室内側ユニ
ットを示す断面側面図、第5図は本考案による蒸発器の
一実施態様を示す斜視図である。 5・・・・・・中間の配管、6・・・・・・出口配管、
10・・・・・・蒸発器、11・・・・・・入口配管、
12・・・・・・U字形管、13・・・・・・上部の配
管、14・・・・・・中間の配管。
Figure 1 is a system diagram showing the refrigeration cycle of an air conditioner;
The figure is a cycle diagram shown on the Mollier line, Figure 3 is a perspective view showing a conventional evaporator for an air conditioner, Figure 4 is a cross-sectional side view showing an indoor unit, and Figure 5 is an evaporator according to the present invention. FIG. 1 is a perspective view showing one embodiment. 5...Middle piping, 6...Outlet piping,
10... Evaporator, 11... Inlet piping,
12... U-shaped pipe, 13... Upper piping, 14... Middle piping.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、凝縮器、キャピラリチューブ、室内側蒸発器等
により冷凍サイクルを構成した空気調和機において、空
気の流れに対し、はぼ直角に設けた室内側蒸発器10の
冷媒配管の全長の中間に配置した配管14と端部に配置
した配管13とをU字形管12によりたがいに連結し、
出口配管6を前記配管14と隣接させて配置した構造を
特徴とする空気調和機。
In an air conditioner in which a refrigeration cycle is configured by a compressor, a condenser, a capillary tube, an indoor evaporator, etc., a refrigerant pipe is installed in the middle of the entire length of the indoor evaporator 10, which is installed approximately at right angles to the air flow. The arranged pipe 14 and the pipe 13 arranged at the end are connected to each other by a U-shaped pipe 12,
An air conditioner characterized by a structure in which an outlet pipe 6 is arranged adjacent to the pipe 14.
JP1978065065U 1978-05-17 1978-05-17 air conditioner Expired JPS5842843Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978065065U JPS5842843Y2 (en) 1978-05-17 1978-05-17 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978065065U JPS5842843Y2 (en) 1978-05-17 1978-05-17 air conditioner

Publications (2)

Publication Number Publication Date
JPS54167461U JPS54167461U (en) 1979-11-26
JPS5842843Y2 true JPS5842843Y2 (en) 1983-09-28

Family

ID=28969772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978065065U Expired JPS5842843Y2 (en) 1978-05-17 1978-05-17 air conditioner

Country Status (1)

Country Link
JP (1) JPS5842843Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336874Y2 (en) * 1974-09-09 1978-09-07

Also Published As

Publication number Publication date
JPS54167461U (en) 1979-11-26

Similar Documents

Publication Publication Date Title
JP4604909B2 (en) Ejector type cycle
US6595012B2 (en) Climate control system
CN110462309A (en) Heat exchanger and refrigerating plant
TWI579509B (en) Energy-saving air conditioning system
CN208475492U (en) A kind of pulsating heat pipe heat-exchanger rig with tapered tube configuration
JPS5842843Y2 (en) air conditioner
JPS5913571Y2 (en) air conditioner
KR100729705B1 (en) Heat exchanger for refrigeration cycle
CN209246359U (en) Air-conditioning system
CN207501482U (en) It is a kind of can be in the domestic air conditioning unit of -30 DEG C of environment temperatures
JPH078999Y2 (en) Air source heat pump
CN206905361U (en) A kind of air-cooled condenser
CN205505203U (en) Air -conditioner
CN210892243U (en) Air conditioner
JP3536905B2 (en) Cool air / dehumidification switching type air conditioner
CN220541218U (en) Constant temperature and humidity refrigerating air conditioning system
CN209819929U (en) Water source dehumidification heat pump drying system
JPS5913570Y2 (en) air conditioner
JPS5913572Y2 (en) Air-cooled heat pump equipment
KR200425271Y1 (en) Heat exchanger for refrigeration cycle
JPS6216615Y2 (en)
CN208398201U (en) A kind of air-conditioner set
JPS583011Y2 (en) heat pump equipment
JPS6216627Y2 (en)
KR0120035Y1 (en) Refrigerant separating apparatus for airconditioner