JPS5842735A - Blowing device for powder - Google Patents

Blowing device for powder

Info

Publication number
JPS5842735A
JPS5842735A JP13863981A JP13863981A JPS5842735A JP S5842735 A JPS5842735 A JP S5842735A JP 13863981 A JP13863981 A JP 13863981A JP 13863981 A JP13863981 A JP 13863981A JP S5842735 A JPS5842735 A JP S5842735A
Authority
JP
Japan
Prior art keywords
powder
pressure
value
control valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13863981A
Other languages
Japanese (ja)
Other versions
JPS623207B2 (en
Inventor
Masahiko Tsunoda
昌彦 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13863981A priority Critical patent/JPS5842735A/en
Publication of JPS5842735A publication Critical patent/JPS5842735A/en
Publication of JPS623207B2 publication Critical patent/JPS623207B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To make stable operation possible by providing pressure measuring devices on the upper stream and down stream sides of a conveying pipe, and a measuring device for weight of powder in the powder introducing part to the conveying pipe, inputting measured values to an arithmetic device and controlling the opening and closing of a control valve by means of the arithmetic device in accordance with the measured values. CONSTITUTION:Pressure measuring devices are provided at the points P1 and P2 of a powder conveying pipe 3 of a blowing device for powder, and a measuring device 7 for weight of powder is provided in the powder introducing part to the pipe 3. The pressure p1 measured with the pressure measuring device at the point p1, the pressure p2 measured with the pressure measuring device at the point P2 and the introducing weight W of the powder measured with the device 7 are inputted to an arithmetic device C. The device C operates the P1 value by the equation (K1, K2 are constants specific to the device) from a desired rate of ejection of a gas (variable constant) and the actually measured values p2, W. The device C controls a control valve 6' so as to change the actually measured p1 value to the calculated p1 value.

Description

【発明の詳細な説明】 本発明は溶融金属浴中に粉体を吹き込む装置に関する。[Detailed description of the invention] The present invention relates to an apparatus for blowing powder into a molten metal bath.

例えば鋼の炉外製錬に3いて溶鋼中に脱硫剤を吹き込む
場合のように、溶融金属浴中に粉体を吹き込まねばなら
ぬことは、冶金分野に訃いてしばしは起きる。
It often occurs in the metallurgical field that powder must be injected into a bath of molten metal, such as when desulfurizing agents are injected into molten steel in the ex-furnace smelting of steel.

従来は、このような目的のためには、諸種の変形はある
が2本質的には、その下部に粉体定量排出装置を備えた
密閉できる粉体容器を設け、一つの供給源よシの高圧気
体の流112分し、1方を該容器の頭部空間に連結し、
他方を前記粉体の定量排出装置の出口を介して、長い輸
送管にょシランスパイプに連結してなる装置が使用され
ていた。
Conventionally, for this purpose, although there are various modifications, essentially a sealable powder container is provided with a powder quantitative discharge device at the bottom of the container, and the powder can be supplied from a single supply source. 112 streams of high pressure gas, one end connected to the head space of the vessel;
A device has been used in which the other end is connected to a long transport pipe and a silance pipe via the outlet of the powder quantitative discharge device.

このような装置を実際に運転するときの衆も重要な要件
は他の諸種の条件が変化してもランスパイプから噴出す
る気体の量が可及的に変動し表いことでめる。即′ち、
従来の装置では搬送気体に含1れる粉体の量、ランスパ
イプの溶融金属中への浸漬の深さ等が変動するたびに大
幅に変動せざるを得ない、 この問題を解決する一つの方法は、高圧気体の供給源よ
シ装置に到る流路に定流量弁を挿入し。
When actually operating such a device, an important requirement for everyone is to ensure that the amount of gas ejected from the lance pipe varies as much as possible even if various other conditions change. That is,
One way to solve this problem is that in conventional equipment, the amount of powder contained in the carrier gas, the depth of immersion of the lance pipe into the molten metal, etc. have to fluctuate significantly each time they change. Insert a constant flow valve in the flow path from the high-pressure gas source to the device.

輸送条件の変化にかかわらず、一定の量の気体を供給す
ることである。
It is to supply a constant amount of gas regardless of changes in transport conditions.

しかしながらこの方法では運転条件が比較的ゆつくり変
動する場合にしか対応することができない。
However, this method can only deal with cases where operating conditions change relatively slowly.

たとえば、気体だけが溶融金属中に噴出している時に、
粉体の導入を開始すると、それに伴なって管路抵抗が上
詳し、それに対応するためには。
For example, when only gas is ejected into molten metal,
When you start introducing powder, the resistance of the pipeline increases accordingly, and you need to deal with it.

供給源からの気体の圧力を上昇させなければならないが
、定量弁を備えた従来の装置では、管路抵抗の増加に見
合って圧力の上昇が起こるために。
The pressure of the gas from the source must be increased, and in conventional devices with metering valves, the increase in pressure is commensurate with the increase in line resistance.

定流量の気体の一部分が粉体容器内の気体の圧縮に費や
されてランスパイプからの気体噴出量が減少し、この減
少度は粉体容器の容量が大である程。
A portion of the constant flow of gas is used to compress the gas in the powder container, reducing the amount of gas ejected from the lance pipe, and the degree of this reduction is the larger the capacity of the powder container.

圧力上昇の程度が大きい程大きく、極端な場合には噴出
のエネルギーが不足してランスl上イブ閉塞の原因とな
る。
The greater the degree of pressure rise, the greater the increase, and in extreme cases, the ejection energy is insufficient, causing blockage of the lance l upper eve.

これらの欠点を改良するために、高圧気体供給源よりの
管路を定流量弁の上流で分岐し、粉体容器の頭部空間へ
Il″を定流量弁を通さずに配管し、粉体定量排出装置
へのみ定流量弁を介して配管し。
In order to improve these drawbacks, the pipeline from the high-pressure gas supply source is branched upstream of the constant flow valve, and Il'' is piped to the head space of the powder container without passing through the constant flow valve. Piping only to the metered discharge device via a constant flow valve.

粉体定量排出装置の部分の圧力を測定し、その測定結果
に基づいて粉体容器頭部空間への流iを制御する方式が
提案されている。
A method has been proposed in which the pressure at a portion of the powder metering discharge device is measured and the flow i into the head space of the powder container is controlled based on the measurement result.

しかしこの方式によって4上述の欠点は多少の改善は見
られるものの問題は依然として解決されない。
However, although this method somewhat improves the above-mentioned drawbacks, the problems still remain unsolved.

本発明者は上記のような問題の解決には、長い輸送路の
ランス/ぞイブに近い部分の圧力変化を常に把握して速
やかに対処することが重要であることに着目して本発明
を完成した。
The present inventor developed the present invention by focusing on the fact that in order to solve the above-mentioned problems, it is important to constantly grasp the pressure changes in the portion near the lance/zobe of a long transport route and promptly deal with them. completed.

本発明によれば1つの供給源から供給される高圧搬送気
体を、1つの制御弁を経た後に2分して。
According to the invention, the high-pressure carrier gas supplied from one source is divided into two after passing through one control valve.

1方を1つの密閉粉体容器の頭部空間に導き、他方を前
記粉体容器の下部の粉体取出口に導き、そこからさらに
吹込ランスパイプに至る搬送管を設けてなる溶融金属に
粉体を吹き込む装置において。
One end is led into the head space of a sealed powder container, the other end is led into the powder outlet at the bottom of the powder container, and a conveying pipe is provided from there to the blowing lance pipe. In a device that blows the body.

吹込ランスパイプにかかる圧力の変動、搬送管に導入さ
れる粉体量の変動にもかかわらず、常に一定菫の気体を
ランスパイプから噴出させるために搬送管の上流側と下
流側に、それぞれ圧力測定装置を、粉体取出口に搬送管
に導入される粉体の量を測定する装置を設け、さらにこ
れらの測定装置に電気的に連結され、前記制御弁に電磁
的に結合される演算器を設け、該演算器に下流側にかか
る圧力と粉体導入量に変動があっても気体噴出量が所定
値以上になるような上流側の圧力管算出させ。
In order to always blow out a constant amount of violet gas from the lance pipe despite fluctuations in the pressure applied to the blowing lance pipe and fluctuations in the amount of powder introduced into the transport pipe, pressure is applied on the upstream and downstream sides of the transport pipe. A measuring device is provided at the powder outlet to measure the amount of powder introduced into the conveying pipe, and a computing device is electrically connected to these measuring devices and electromagnetically coupled to the control valve. is provided, and the computing unit is used to calculate the upstream pressure pipe such that the amount of gas ejected is equal to or greater than a predetermined value even if there are fluctuations in the pressure applied to the downstream side and the amount of powder introduced.

その算出結果に基づいて、前記制御弁の開閉を制御する
こと全特徴とする装置が提供される。
There is provided an apparatus characterized in that the opening and closing of the control valve is controlled based on the calculation result.

次に図面全参照して本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to all the drawings.

第1図は前述の典型的な従来の装置の概念を示’T。FIG. 1 shows the concept of the typical conventional device mentioned above.

粉体吹込装置はその下部に粉体定量排出装置2を備えた
粉体容器1と2図示されていない高圧気体供給源から導
かれ、定流量弁6t−備えた搬送気体管系であって定流
量弁の下流で2つに分岐し。
The powder blowing device is a conveying gas pipe system equipped with a constant flow valve 6t, which is led from a high pressure gas supply source (not shown), and has a powder container 1 and 2 equipped with a powder metering discharge device 2 at the bottom thereof. Branches into two downstream of the flow valve.

1方は粉体定量排出装置2の出口を通って長い搬送管3
を通ってランスパイプ4に至シ、他は粉体容器の頭部空
間に連っている。通常ランスパイプを溶融金属(とりべ
などに容れである)中に出し入れするための装置5(図
では巻き上は滑車)が設けられているが、これは差し当
って本発明には関係がない。)前述のように、このよう
な装置では。
One side is a long conveying pipe 3 that passes through the outlet of the powder quantitative discharge device 2.
through which it leads to the lance pipe 4, and the rest to the head space of the powder container. Usually, a device 5 (a pulley for winding up in the figure) is provided for taking the lance pipe in and out of the molten metal (contained in a ladle, etc.), but this is not relevant to the present invention for the time being. . ) As mentioned above, in such a device.

搬送管5内に起こる急激な圧力の変化に対応できない。It cannot cope with sudden changes in pressure that occur within the conveying pipe 5.

変動は主としてランスパイプ浸漬の深さの変化か、搬送
路に導入される粉体の量の変化のいずれかまたは両方に
よって起るのであり、搬送管の上流側pl点の圧力PI
(!:下流@pz点の圧カptJM送管への粉体導入量
Wを測定し、それらの変化如伺にかかわらず、Gが所定
値以上であるようにすればよいわけであるが、今日まで
のところ、それらがどのような関係にあるかを解明した
上で、制御されている装置はない。
Fluctuations are mainly caused by changes in the immersion depth of the lance pipe, changes in the amount of powder introduced into the conveyance path, or both, and the pressure PI at the PL point on the upstream side of the conveyance tube
(!: It is sufficient to measure the amount W of powder introduced into the pressure cup JM pipe at the downstream @pz point and ensure that G is equal to or higher than a predetermined value regardless of the changes in these values. To date, there is no device that has been controlled after elucidating the relationship between them.

本発明者は流路を流れる気体に関するFanningの
式を参考にして、粉体を含む気体の流れに関して、H験
に基づいていくつかの仮説式を設定し。
The present inventor referred to Fanning's equation regarding gas flowing through a flow path, and set several hypothetical equations based on H experiments regarding the flow of gas containing powder.

実験を重ねた結果、上記のpt、P2.W# Gの間に
は。
As a result of repeated experiments, the above pt, P2. Between W# and G.

p+2キP22+ K、G”十に2GWなる関係が実用
的な精度で成立することを発見した。
It was discovered that the relationship p+2kiP22+K,G"2GW in 10 holds true with practical accuracy.

式中Kt 、 Kt fi Gとw2適当に定めて大気
中で実験し、@易に決定し得る。従って、Pt点pPt
点に圧力測定装置を設け、搬送管への粉体導入部に導入
粉体量測定装置を設け、それらの測定値を一つの演算器
に入力し、上記式tGt−所望の一定値としてplに関
して解く演算をさせ′れば、その状態においてGを所定
値に保つべきp、の値が算出される。
In the formula, Kt, Kt, G, and w2 can be appropriately determined and can be easily determined by experimenting in the atmosphere. Therefore, Pt point pPt
A pressure measuring device is provided at the point, and a powder amount measuring device is provided at the powder introduction part into the conveying pipe, and these measured values are input into one computing unit, and the above formula tGt - desired constant value is used for pl. By performing calculations to solve the problem, the value of p that should keep G at a predetermined value in that state is calculated.

しかし実測されるp、値はそれとは異なっているので、
演算器は算出てれたp、値と実測されたp、値の差を算
出し、それに基づいてp、t−算出された値に変するよ
うに制御弁の開度を調節する指令を制御弁に与える。こ
のような演算器および制御装置の ゛設計製作は今日で
は当該技術分野においては容易に実施することができる
から、それについて詳細に述べる必要はない。
However, the actually measured p value is different from that, so
The arithmetic unit calculates the difference between the calculated p, value and the actually measured p, value, and based on it, controls a command to adjust the opening degree of the control valve to change p, t to the calculated value. Give to the valve. The design and fabrication of such computing units and control devices is readily practiced today in the art, so there is no need to discuss them in detail.

本発明者は第1図に示す装置において、28点と21点
に圧力測定装置を設け、粉体導入部2に粉体導入量を測
定する計器7を設け、弁6は定流量弁ではなく2手動弁
とした。ここで用いられた圧力測定装置、粉体搬出量測
定装置等は何れも既知である。粉体容器の容量は400
1で、搬送管3の内径は19顛、長さは5.1mであシ
ワランスパイプは内径21.6ms長さ4mであった。
In the apparatus shown in FIG. 1, the present inventor provided pressure measuring devices at points 28 and 21, provided a meter 7 in the powder introduction section 2 to measure the amount of powder introduced, and the valve 6 was not a constant flow valve. 2 manual valves. The pressure measuring device, powder discharge amount measuring device, etc. used here are all known. The capacity of the powder container is 400
1, the inner diameter of the conveying pipe 3 was 19 mm and the length was 5.1 m, and the wrinkle lance pipe had an inner diameter of 21.6 ms and a length of 4 m.

気体として空気を用い、毎分0.5〜1.8N−の範囲
で噴出させつつ、嵩比重1.31粒度100メツシユ以
下の粉体を、毎分0〜23〜の範囲で搬送路に導入し、
Gが一定になるように制御弁6を手で操作しs’ Pl
y pieGs ”の30個の組合せについて実測した
結果に基づいてに+ y Kt ’に算出すると、この
装置に関してそれぞれ0.328.0−564の値が得
られた。
Using air as the gas, blowing out at a rate of 0.5 to 1.8 N- per minute, and introducing powder with a bulk specific gravity of 1.31 and a particle size of 100 mesh or less into the conveyance path at a rate of 0 to 23 per minute. death,
Operate the control valve 6 by hand so that G becomes constant and s' Pl
When +yKt' was calculated based on the results of actual measurements for 30 combinations of ypieGs'', values of 0.328.0-564 were obtained for this device, respectively.

そこで本発明者は第2図に示すような装置を組みたてた
。この装置は第1図に示す装置と実質的に同じものであ
るが、前記のように28点と27点に圧力測定装置を設
け、粉体導入部2に粉体導入量を測定する計器7を設け
、別に前記の演算をさせる演算器C?設け、弁6′は定
流量弁ではなく。
Therefore, the inventor constructed a device as shown in FIG. This device is substantially the same as the device shown in FIG. 1, but as described above, pressure measuring devices are provided at points 28 and 27, and a meter 7 for measuring the amount of powder introduced into the powder introduction section 2 is installed. A computing unit C? is provided and separately performs the above calculation. However, the valve 6' is not a constant flow valve.

電気信号によって開閉する制御弁とした。寸法諸元は先
に記載の通シである。この演算器は(−fcだし、ここ
でp′、は21点における圧力の実測値)′f:算出す
るように設定し、Δp値に応じてそれが0になるように
制御弁6′ヲ開閉するように設定した。
This is a control valve that opens and closes using electrical signals. The dimensions are as described above. This calculator is set to calculate (-fc, where p' is the actual measured value of pressure at 21 points)'f: and controls the control valve 6' so that it becomes 0 according to the Δp value. It was set to open and close.

この場合、圧力の単位は気圧、Gの単位はNm’/―。In this case, the unit of pressure is atmospheric pressure, and the unit of G is Nm'/-.

Wの単位は助/−である。The unit of W is auxiliary/-.

この装置を用いて、溶融鋼中にCaの粉末を吹き込んだ
が、 Caの導入開始時や、ランスの浸漬深さの変動に
対してもよく即応し、安定操業を続けることができた。
Using this equipment, Ca powder was injected into molten steel, and it was able to quickly respond to changes in the introduction of Ca and the immersion depth of the lance, and was able to continue stable operation.

上記の実施態様の場合、P11d粉体導入部、P2はラ
ンスパイプの基部に設定されているが、この位置に限定
されるものではなく、搬送管の上流部と下流部の圧力が
測定できればよい。
In the case of the above embodiment, P11d powder introduction part and P2 are set at the base of the lance pipe, but they are not limited to this position, as long as the pressure at the upstream and downstream parts of the conveying pipe can be measured. .

前述の式は、基本の形Atを示したもので、この式の主
旨を変えないで2種々の変形は司能であり、或いは又、
更に複雑なたとえば、Wの急激な変化に対しては、その
時間的変化の大きさによって、Gそのものの指示値も変
える等の計jIヲ加え構で従来の装置のもつ欠点全排除
したものであシ。
The above formula shows the basic form At, and it is possible to make various modifications without changing the main idea of the formula, or alternatively,
For more complex cases, for example, in response to a sudden change in W, the indicated value of G itself is changed depending on the magnitude of the change over time.This method eliminates all the drawbacks of conventional devices. Ashi.

その産業上の貢献は甚だ大である。Its contribution to industry is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の典型的な粉体吹込装置の概念を示す図で
ある。 第2図は本発明の粉体吹込装置の概念を示す図である。 これらの図において。 1、:粉体@器    2:粉体定量排出装置3:粉体
搬送管   4:吹込ランスノイプ6:定!弁    
 6′:制御弁 7:粉体排出量測定装置 C:演算器    10:溶融金属浴 特許出願人角田晶彦 代理人弁理士松井政広 第1図
FIG. 1 is a diagram showing the concept of a typical conventional powder blowing device. FIG. 2 is a diagram showing the concept of the powder blowing device of the present invention. In these figures. 1.: Powder @ device 2: Powder quantitative discharge device 3: Powder conveyance pipe 4: Blowing lance snoop 6: Constant! valve
6': Control valve 7: Powder discharge amount measuring device C: Arithmetic unit 10: Molten metal bath Patent applicant Akihiko Tsunoda Representative Patent attorney Masahiro Matsui Figure 1

Claims (1)

【特許請求の範囲】 11つの供給源がら供給される高圧搬送気体を。 1つの制御弁を経た後に2分して、1方を1つの密閉粉
体容器の頭部空間に導き、他方を前記粉体容器の下部の
粉体取出口に導き、そこからさらに吹込ランスパイプに
至る搬送管を設けてなる溶融金属に粉体を吹き込む装置
において、吹込ランスパイプにかかる圧力の変動、搬送
管に導入される粉体量の変動にもかかわらず、常に一定
量の気体をランスパイプから噴出させるために搬送管の
上流側と下流側に、それぞれ圧力測定装置を、粉体取出
口に搬送管に導入される粉体の量を測定する装置を設け
、さらにこれらの測距装置に電気的に連結さ、れ、前記
制御弁に電磁的に結合される演算器を設け、該演算器に
下流側にかかる圧力と粉体導入量に変動があっても気体
噴出量が所定値以上になるような上流側の圧力を算出さ
せ、その算出結果に基づいて、前記制御弁の開閉を制御
することを特徴とする装置。 2、特許請求の範囲第1項記載の装置であって。 搬送管の上流側の圧力をPt+下流側の圧力’kp、。 搬送管への粉体導入量6wとし、所望の気体噴出量をG
(可変定数)とし、p2.Wのそれぞれのある値に対し
て、演算器に p−禦 P2! 十 K、G” + K、GWを基本と
する式(x、、x、Fia置に固有の定数)に従ってp
、値を算出させ、それと実測されたp、値の差からe 
pI値を算出値に変するように制御弁の開度を調節する
指令を出させることt″特徴する装置。
Claims: High pressure carrier gas supplied from eleven sources. After passing through one control valve, it is divided into two parts, one leading into the head space of one closed powder container, the other leading into the powder outlet at the bottom of said powder container, and from there a further blowing lance pipe. In a device that blows powder into molten metal, which is equipped with a conveyor pipe leading to A pressure measuring device is installed on the upstream and downstream sides of the conveying pipe in order to cause the powder to be ejected from the pipe, and a device is installed at the powder outlet to measure the amount of powder introduced into the conveying pipe, and these distance measuring devices are also installed. A computing unit electrically connected to the control valve and electromagnetically coupled to the control valve is provided, and the computing unit controls the amount of gas ejected to a predetermined value even if there are fluctuations in the pressure applied to the downstream side and the amount of powder introduced. An apparatus characterized in that the upstream pressure is calculated as above, and the opening and closing of the control valve is controlled based on the calculation result. 2. The device according to claim 1. The pressure on the upstream side of the conveying pipe is Pt + the pressure on the downstream side 'kp. The amount of powder introduced into the conveying pipe is 6W, and the desired gas ejection amount is G.
(variable constant), p2. For each value of W, the arithmetic unit calculates p-P2! According to the formula (x, , x, constant specific to Fia position) based on K, G” + K, GW, p
, the value is calculated, and from the difference between it and the actually measured p value, e
A device characterized by: issuing a command to adjust the opening degree of a control valve so as to change a pI value into a calculated value.
JP13863981A 1981-09-04 1981-09-04 Blowing device for powder Granted JPS5842735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13863981A JPS5842735A (en) 1981-09-04 1981-09-04 Blowing device for powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13863981A JPS5842735A (en) 1981-09-04 1981-09-04 Blowing device for powder

Publications (2)

Publication Number Publication Date
JPS5842735A true JPS5842735A (en) 1983-03-12
JPS623207B2 JPS623207B2 (en) 1987-01-23

Family

ID=15226723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13863981A Granted JPS5842735A (en) 1981-09-04 1981-09-04 Blowing device for powder

Country Status (1)

Country Link
JP (1) JPS5842735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282027A (en) * 1985-06-07 1986-12-12 みかど化工株式会社 Insect control apparatus for culture of plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256223A (en) * 1987-04-10 1988-10-24 Kusakabe Denki Kk Strip accumulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282027A (en) * 1985-06-07 1986-12-12 みかど化工株式会社 Insect control apparatus for culture of plant

Also Published As

Publication number Publication date
JPS623207B2 (en) 1987-01-23

Similar Documents

Publication Publication Date Title
Yuan et al. Study of transient flow and particle transport in continuous steel caster molds: Part I. Fluid flow
GB1594613A (en) Method and apparatus for controlling a ladle
JPH0461284B2 (en)
JPH04253554A (en) Method and device for feeding powder or granular material into ingot mold for continuous casting
JPS5842735A (en) Blowing device for powder
US3807602A (en) Method and apparatus for dispensing a fluidizable solid from a pressure vessel
EP0116764B1 (en) Apparatus for blowing powdery refining agent into refining vessel
US2936326A (en) Method and apparatus for pressure metal dispensing
JP2742001B2 (en) Pulverized coal injection control method
JP3619187B2 (en) Flow control device and flow control method
JPH01241373A (en) Device for feeding molten metal
JPS58104839A (en) Fixed quantity supply mechanism for equipment for continuously supplying fixed quantity of powder
KR101310985B1 (en) Gas Supply Apparatus for Ladle furnace
JP2002265042A (en) Powder transport method and powder flow rate measuring method
JPS6221447A (en) Method for controlling blowing of gas with immersion nozzle for continuous casting
JPS5760215A (en) Method and device for measuring flow rate of solid particle
JPH07112253A (en) Device for controlling flow rate of inert gas in continuous casting apparatus
JPS5851207B2 (en) How to detect gas flow rate
JPH11189333A (en) Powder blowing velocity control device
JPS6398565A (en) Apparatus and method for measuring flow speed of molten steel in mold
JPH0158085B2 (en)
JPH09194963A (en) Method for controlling temperature of blowing furnace
SU1752778A1 (en) Arrangement for controlling the level of bath in converter
Olia et al. Pressure Distribution and Flow Rate Behavior in Continuous-Casting Stopper-Rod Systems: PFSR
JPH0667778B2 (en) Automatic blowing method for molten slag