JPS5842275A - Insulation gate type field-effect transistor - Google Patents

Insulation gate type field-effect transistor

Info

Publication number
JPS5842275A
JPS5842275A JP56140803A JP14080381A JPS5842275A JP S5842275 A JPS5842275 A JP S5842275A JP 56140803 A JP56140803 A JP 56140803A JP 14080381 A JP14080381 A JP 14080381A JP S5842275 A JPS5842275 A JP S5842275A
Authority
JP
Japan
Prior art keywords
region
semiconductor region
semiconductor
conductive layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56140803A
Other languages
Japanese (ja)
Inventor
Tatsuro Sakai
達郎 酒井
Kuniharu Kato
邦治 加藤
Yuki Shimada
島田 悠紀
Iwao Kuroda
黒田 「巌」
Hiroshi Yoshida
浩 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56140803A priority Critical patent/JPS5842275A/en
Publication of JPS5842275A publication Critical patent/JPS5842275A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors

Abstract

PURPOSE:To reduce the resistance when ON position is given as well as to reduce power consumption for the titled resistor by a method wherein a conductor layer to be used as an ohmic contacting current circuit is provided on the surface of the high specific resistance drain region of the MOSFET whereon the high specific resistance drain region is provided on the channel side. CONSTITUTION:An n<-> type layer 2 of high specific resistance is provided on an n<+> type substrate 1, a p type region 6 is formed thereon, an n<+> type region 8 to be turned to a source region is provided in the region 6, and then a gate electrode 11 is formed on the surface 9 of the remaining p type region which will be used as a channel region through the intermediary of an insulating layer 10. Also, an n<+> type region 5 is provided on the surface of an n<-> type layer 2 as a low resistance drain region, and a conductor layer 41 is provided as an ohmic- contacting current circuit on the surface of a high specific resistance drain region 7 located between a channel region 9 and a low resistance drain region 5. As a result, the series resistance between a source and a drain is reduced by the action of a conductor layer 41, thereby enabling to cut down the power consumption of the titled transistor.

Description

【発明の詳細な説明】 ゛本発明は絶−ゲート置電界効果)ツyジスタの改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an isolated gate field effect twister.

絶縁ゲート撒電界劫果トランジスタとして従来、第1図
に示す如く1例えばN+llの層状の半導体領域1上に
N″″ 鑞の層状の半導体領域2を配してなる構成を有
する半導体基板5を有し、面してその半導体領域2内に
、その半導体領域1側とは反対側の主li4儒より、N
+鑞の半導体領域5がアイランド状に形成され、又半導
体領域2内に、その主ai4儒より、P@の半導体領域
6が、半導体領域2の主面4儒に半導体領域6と半導体
領域5とにより取囲まれてなる半導体領域2による環状
の領域7を形成すべく形成され、一方体導体領域6内に
、その王@4側より、N乃至N+ff1(図に於てはf
ll)の半導体領域8が、半導体領域6の主面4側に半
導体領域7にて取囲まれた半導体領域6による環状の領
域9を形成すべく形成され、又半導体領域6の領域9の
主@4儒の表面上に、絶縁層10を介して導電性層11
が配さn、更に半導体領域5の王m4偶の表面上に導電
性層12がオーミックに附され、尚更に半導体領域8に
主面4偶の表面上に導電性層15がオーミックに附され
、又半導体領域6の半導体領域8よりみて領域9側とは
反対側の領域14の11m4側の11面上に導電性層1
3よりこれと一体に延長せる導電性層15がオーミック
に附されてなり。
Conventionally, an insulated gate field effect transistor has a semiconductor substrate 5 having a structure, as shown in FIG. Then, facing into the semiconductor region 2, from the main li4 on the opposite side to the semiconductor region 1 side,
+Semiconductor region 5 is formed in an island shape, and within semiconductor region 2, from its main surface, P@ semiconductor region 6 is formed on the main surface of semiconductor region 2. is formed to form an annular region 7 surrounded by the semiconductor region 2, and on the other hand, in the conductor region 6, from N to N+ff1 (f in the figure)
The semiconductor region 8 of ll) is formed to form an annular region 9 of the semiconductor region 6 surrounded by the semiconductor region 7 on the main surface 4 side of the semiconductor region 6, and the main surface of the region 9 of the semiconductor region 6 is A conductive layer 11 is placed on the surface of @4Fu through an insulating layer 10.
A conductive layer 12 is ohmically applied to the surface of the main surface of the semiconductor region 5, and a conductive layer 15 is ohmically applied to the surface of the main surface of the semiconductor region 8. In addition, a conductive layer 1 is formed on the 11th surface of the 11m4 side of the region 14 on the opposite side to the region 9 side when viewed from the semiconductor region 8 of the semiconductor region 6.
3, a conductive layer 15 which can be extended integrally with this is attached in an ohmic manner.

而して半導体領域5をlitのドレイン領域、半導体領
域2を第2のドレイy領域、半導体領域6をチャンネル
形成領域、半導体領域8をソース領域、め置層10をゲ
ージ絶縁層、導電性層11%12.15及び15を夫々
ゲート電ti。
The semiconductor region 5 is a drain region of lit, the semiconductor region 2 is a second drain region, the semiconductor region 6 is a channel forming region, the semiconductor region 8 is a source region, and the mounting layer 10 is a gauge insulating layer and a conductive layer. 11% 12.15 and 15 respectively gate voltage ti.

ドレイン電極、ノース電極及びパックゲート電極とせる
構成のものが提案されている・所で、斯る第1図に示す
絶縁ゲート型電界効果トツンジスタの場合、ソース電極
としての導電性層13及びドレイン電極としての導電性
層12閾に負荷を通じて所要の電源を接続せる状態で、
導電性層13及びゲージ電極としての導電性層11関に
、導電性層11側を正とする予定の値(!11値)より
大なる電圧で意味づけられた2値表示で「1」の制御電
圧を与えれば、チャンネル形成用領域としての半導体領
域6の領域9の表面(主1i4儒の面)側にN波層でな
るチャンネルが形g、すれ、この為導電性層15゜ノー
ス領域′としての半導体領域8.半導体領域6の領域9
に形成せるチャンネル、嬉2のドレイン領域としての半
導体領域2の領域7.tslのドレイン領域としての半
導体領域5.及び導電性層12〈よる電流路を形成せる
オフ状態が得られ、又上述せる如(導電性層1s及び1
2関に負荷を通じて所要の電源を接続せる状態で。
A structure having a drain electrode, a north electrode, and a pack gate electrode has been proposed. However, in the case of the insulated gate field effect transistor shown in FIG. 1, the conductive layer 13 as the source electrode and the drain electrode With the required power source connected through the load to the conductive layer 12 threshold as
Between the conductive layer 13 and the conductive layer 11 as a gauge electrode, a binary value of "1" is displayed, meaning a voltage greater than the expected value (!11 value) with the conductive layer 11 side being positive. When a control voltage is applied, a channel consisting of an N-wave layer is formed on the surface (main 1i4 surface) side of region 9 of semiconductor region 6 as a channel forming region, and therefore the conductive layer 15° north region 8. Region 9 of semiconductor region 6
Region 7 of the semiconductor region 2 as a channel formed in the drain region of the semiconductor region 2. 5. Semiconductor region as drain region of tsl. An off state is obtained in which a current path is formed by the conductive layers 1s and 12.
With the required power supply connected to the second gate through the load.

導電性層15及び11閣に、上述せる閾値より小なる電
圧で意味づけられた2値表示で「0」の制御電圧を与え
れば、上述せるチャンネルが形成されず、この為上述せ
る電流路を形成せるオン状態が得られず、オフ状態が得
られるものである。
If a control voltage of "0" is applied to the conductive layers 15 and 11 in a binary representation meaning a voltage smaller than the above-mentioned threshold value, the above-mentioned channel will not be formed, and therefore the above-mentioned current path will not be formed. In this case, an on state cannot be obtained, but an off state can be obtained.

従って、嬉1allにて上述せる従来の絶縁ゲート撤電
界効果トランジスタの場合、導電性層15及び12間に
、負荷を通じて所要の電源を上述せる2値表示て「1」
の制御電圧を与えnは、電源より上述せる電流路を通じ
て負荷に電流を供給し、然し乍ら導電性層13及び11
閏に、上述せる2値表示でrOJの制御電圧を与えれば
、負荷に電流を供給しないというスイッチング素子とし
ての機能を呈するものである。
Therefore, in the case of the conventional insulated gate field effect transistor described above, the required power supply through the load is expressed as a binary value "1" between the conductive layers 15 and 12.
n supplies a current from the power source to the load through the current path described above, while the conductive layers 13 and 11
If a control voltage of rOJ is applied to the lever in the above-mentioned binary display, it functions as a switching element in that it does not supply current to the load.

然し乍ら、第1図にて上述せる従来の絶縁ゲート置電界
効果トランジスタの場合、上述せるオン状態を形成せる
電流路につきみるに、その電流路は、第2のドレイン領
域としての半導体領域2の領域7の表面(主11i4偶
の面)にaう。
However, in the case of the conventional insulated gate field effect transistor described above in FIG. A on the surface of 7 (main 11i4 even surface).

拡がりの極めて小なる電流路であるものである。This is a current path with extremely small spread.

依って、第1図にて上述せる従来の絶縁ゲート聾電界効
果トランジスタの場合、上述せるオン状態に於て、導電
性層11員び12閣の等価抵抗即ちオン抵抗が無視し得
ない大なる値を有し、又この鳥人なる電力消費を伴うと
いう欠点−を有していた。
Therefore, in the case of the conventional insulated gate deaf field effect transistor shown in FIG. However, it also had the disadvantage of high power consumption.

又従来、第2図に示す如<、1111図にて上述せる構
成に於て、その第1のドレイン領域としての半導体領域
5及びそれに附されたドレイン電極としての導電性層1
2が省略され、これに応じて半導体領域2の主面4側に
半導体領域6にて取囲まれてなる半導体領域2によるア
イランド状の領域27が形成され、又半導体領域1の半
導体領域211とは反対側の面上に導電性層52がオー
叱ツク&C附され、而して半導体領域1をlitのドレ
イン領域、導電性層s2をドレイン電極とせることを除
いては、第1図の場合と同様の構成を有するものも提案
されている。
Conventionally, as shown in FIG. 2, in the configuration described above in FIG.
2 is omitted, and accordingly, an island-shaped region 27 of the semiconductor region 2 surrounded by the semiconductor region 6 is formed on the main surface 4 side of the semiconductor region 2, and the semiconductor region 211 of the semiconductor region 1 and The structure of FIG. 1 is similar to that of FIG. 1, except that a conductive layer 52 is attached on the opposite surface, and the semiconductor region 1 is used as the drain region of the lit, and the conductive layer s2 is used as the drain electrode. A device having a configuration similar to that of the case has also been proposed.

所で、斯る112図に示す絶縁ゲート微電界効果トフン
ジスタの場合、それが上述せる事項を除いては第1図の
場合と同様の構成を有するので、詳細説明はこれを省略
するも、第1図の場合に準じた。ソース電極としての導
電性層13゜ソース領域としての半導体領域8.チャン
ネル形成領域としての半導体領域6の領域9に形成せる
チャンネル、第2のドレイン領域としての半導体値域2
の領域27.第1のドレイン領域としての半導体領域1
.及びドレイン電極としての導電性層32による電流路
を形成せるオフ状Im、及びその電流路の形成されない
オフ状−が得られ、依って第1図の場合と同様のスイッ
チング−子としての機能を呈すること明らかである。
By the way, in the case of the insulated gate micro-field effect transistor shown in FIG. 112, it has the same configuration as the case of FIG. Same as in Figure 1. Conductive layer 13 as source electrode; Semiconductor region 8 as source region. Channel formed in region 9 of semiconductor region 6 as channel formation region, semiconductor range 2 as second drain region
Area 27. Semiconductor region 1 as first drain region
.. An off-state Im in which a current path is formed by the conductive layer 32 as a drain electrode, and an off-state Im in which no current path is formed are obtained, so that it functions as a switching element similar to the case of FIG. It is clear that

然し乍ら、第2図にて上述せる従来の絶縁ゲート撒電界
効果トツンジスタの場合、上述せるオン状態を形成せる
電流路につきみるに、その電流路は、ドレイン電極とし
ての導電性層52が、第2のドレイン領域としての半導
体領域2の領域27の表面(主114儒の面)と対向し
て存するので、上述せるオン状態を形成せる電流路が、
第2のドレイン領域としての半導体領域2の領域27の
表面側の、チャンネル形成用領域としての半導体領域6
の傾城9側に於ける。
However, in the case of the conventional insulated gate field effect transistor shown in FIG. exists opposite the surface (main 114 surface) of the region 27 of the semiconductor region 2 serving as the drain region of
Semiconductor region 6 as a channel forming region on the surface side of region 27 of semiconductor region 2 as second drain region
On the 9th side of the castle.

領域27の表面にθう方向への拡がりの極めて小なる電
流路部を有するものである。
The surface of the region 27 has a current path portion with extremely small spread in the θ direction.

従って、第2図にて上述せる従来の絶縁ゲート型電界効
果トランジスタも又、第1図にて上述せる従来の絶縁ゲ
ート朧電界効果トツンジメタの場合と同様に、オン抵抗
が蕪視し得ない大なる値を有し、又この為、大なる電力
消費を伴うという欠点を有していた。
Therefore, the conventional insulated gate field effect transistor shown above in FIG. This has the disadvantage of consuming a large amount of power.

JIs図は1本発明による絶縁ゲート渥電界効果トラン
ジスタの第1の実施例を示し、@tgとの対応部分には
同一符号を附し詳細111f11はこれを省略する4、
第1図にて上述せる構成に於て、その第2のドレイン領
域としての半導体領域2の環状の領域7の主面4側の面
に、電流路としての環状の導電性層41が、チャンネル
形成領域としての半導体領域6及び第1のドレイン領域
としての半導体領域5に連接することなしに、オーミッ
クに附されてなることを除G1ては、第1図の場合と同
様の構成を有する・但しこの場合、導電性層41は、半
導体領域6及び5に出来得る限り近い位置迄延長せしめ
6を可とする。
JIs diagram 1 shows a first embodiment of an insulated gate field effect transistor according to the present invention, parts corresponding to @tg are given the same reference numerals, and details 111f11 are omitted4.
In the configuration described above in FIG. 1, an annular conductive layer 41 serving as a current path is formed on the main surface 4 side of the annular region 7 of the semiconductor region 2 serving as the second drain region. G1 has the same configuration as in the case of FIG. 1, except that it is ohmicly attached without being connected to the semiconductor region 6 as the formation region and the semiconductor region 5 as the first drain region. However, in this case, the conductive layer 41 is allowed to extend 6 to a position as close as possible to the semiconductor regions 6 and 5.

以上が1本発明による絶縁ゲート型電界効釆ト2ンジス
タのIllの実施例の構成であるが。
The above is the configuration of an embodiment of the insulated gate field effect transistor Ill according to the present invention.

斯る構成によれば、それが上述せる事項を除(、%て第
1図の場合と同様の構成を有するので、詳細説明はこれ
を省略する4、第1図にτ上述せると同様に、ノース電
極としての導電性層13及びドレイン電極としての導電
性層12関に負荷を通じて所要の電源を接続せる状−て
、導電性層13及びゲート電極としての導電性層11閣
に、第1図にで上述量ると同様の2値表示で「1」の制
御電圧を与えれば、第1図にて上述せると同様に、チャ
ンネル形成領域としての半導体値域6の領域9にチャン
ネルが形成される。
According to this configuration, it has the same configuration as the case of FIG. 1 except for the matters mentioned above, so a detailed explanation thereof will be omitted. , the conductive layer 13 as a north electrode and the conductive layer 12 as a drain electrode are connected to a required power source through a load, and a first If a control voltage of "1" is applied in a binary representation similar to the amount described above in the figure, a channel will be formed in the region 9 of the semiconductor value range 6 as a channel formation region, as described above in FIG. Ru.

この為第1図にて上述せると同様の、第2のドレイン領
域としての半導体領域2の領域7を含む電流路が形成さ
れると共に、導電性層1!。
Therefore, a current path is formed that includes the region 7 of the semiconductor region 2 as the second drain region, as described above in FIG. 1, and the conductive layer 1! .

半導体領域8.半導体領域6の領域9に形成せるチャy
ネに、半導体領域2の領域7の、領域!及び導電性層4
1閏の領域42.導電性層41、領域7の導電性層41
及び半導体領域5間の領域4墨、半導体領域5.及び導
電性層12による電流路が形成され、依ってCれ等電流
路によるオン状態が得られる・又上述せる如く導電性層
13及び12間に負荷を通じて所要の電源を接続せる状
態で、導電性層1s及び流路を形成せるオフ状態が得ら
れず、オフ状態が得られるものである。
Semiconductor area 8. Char y formed in region 9 of semiconductor region 6
Next, the area of area 7 of semiconductor area 2! and conductive layer 4
1 leap area 42. Conductive layer 41, conductive layer 41 in region 7
and the region 4 between the semiconductor regions 5 and the semiconductor region 5. A current path is formed by the conductive layer 12 and the conductive layer 12, and an on state is obtained by the current path such as C.Also, as described above, when a required power source is connected between the conductive layers 13 and 12 through the load, the conductive layer In this case, an OFF state in which a magnetic layer 1s and a flow path are formed cannot be obtained, but an OFF state can be obtained.

従って、第3図に示す本発明による絶縁ゲート瀧電界効
果トランジスタによれば、導電性層13及び12間に負
荷を通じて所要の電源を接続せる状態で、導電性層13
及び11閣に上述せる2値表示で「1」の制御電圧を与
えれば。
Therefore, according to the insulated gate field effect transistor according to the present invention shown in FIG.
And if a control voltage of "1" is given to the 11th cabinet in the binary display mentioned above.

電源より上述せる電流路を通じて負荷に電流を供給し、
然し乍ら導電性層13及び11間に上述せる2値表示で
「0」の制御電圧を与えれば。
Supplying current from the power supply to the load through the above-mentioned current path,
However, if a control voltage of "0" is applied between the conductive layers 13 and 11 in the binary representation described above.

負荷に電流を供給しないというスイッチング素子として
の機能を、第1図にて上述せる従来の絶縁ゲート湯電界
効果トランジスタの場合と同様に呈するものである。
It exhibits a function as a switching element of not supplying current to a load in the same manner as the conventional insulated gate hot water field effect transistor described above with reference to FIG.

然し乍ら、HS図にて上述せる本発明による絶縁ゲート
型電界効果トランジスタの鳩舎、上述せるオフ状態が第
11![て上述せると同様の第2のドレイン領域として
の半導体領域2の領域7を含む電流路の外、領域70表
面にオーイックに接触せる導電性層41を含む電流路が
形成されて得られ、而してその後者の電流路の等価抵抗
即ちオン抵抗は、領域7の導電性層41がオーンツク接
触せる領域が、導電性層41にて短絡されているので、
前者の電流路のオン抵抗に比し格段的に小であるもので
ある・従って上述せるオン状態に於て、電流は殆んど導
電性層41を含む後者の電流路に流れるものである。
However, in the HS diagram of the insulated gate field effect transistor according to the present invention, the off state is the 11th! [As described above, in addition to the current path including the region 7 of the semiconductor region 2 as the second drain region, a current path including the conductive layer 41 in contact with the surface of the region 70 is formed, The equivalent resistance of the latter current path, that is, the on-resistance, is, since the region where the conductive layer 41 of the region 7 is in direct contact with the conductive layer 41 is short-circuited by the conductive layer 41.
This is much smaller than the on-resistance of the former current path; therefore, in the above-mentioned on state, most of the current flows through the latter current path that includes the conductive layer 41.

依って、菖5図にて上述せる本発明による絶縁ゲート瀧
電界効果トツyジスタの場合、上述せるオン状態に於て
、導電性層1s及び12間の等価抵抗即ちオン抵抗が、
纂1図の場合に比し格段的に小なる値を有し、この為第
1図の場合の如くに大なる消費電力を伴うことがない。
Therefore, in the case of the insulated gate field effect transistor according to the present invention shown in FIG.
This value is significantly smaller than that in the case shown in FIG. 1, and therefore there is no need for large power consumption as in the case shown in FIG.

という大なる特徴を有するものである。It has this great feature.

次に$1411を伴なって装置11による絶縁ダート瀧
電昇効果トランジスタの嬉2の実施例を遮べるに、第!
SwAEて上述せる構成に於て、ゲート絶縁層としての
絶縁層10が、第2のドレイン領域としての半導体領域
2の半導体領域6と導電性層41との間の領域42の表
■上迄延長され、而してその延長部上進ゲート電極とし
ての導電性層11が延長していることを除いては第5図
の場合と同様の構成を有する。
Next, with $1411, we can block the second embodiment of the insulated Dartaki electric boost effect transistor by the device 11, the second!
In the configuration described above for SwAE, the insulating layer 10 as the gate insulating layer extends to above the surface of the region 42 between the semiconductor region 6 of the semiconductor region 2 as the second drain region and the conductive layer 41. The structure is similar to that of FIG. 5, except that the conductive layer 11 serving as the upwardly extending gate electrode is extended.

以上が本発明による絶縁ゲート置電界効果ト2ンジスタ
の嬉2の実施例の構成であるが、斯る構成によれば、そ
れが上述せる事項を除いてls5図の場合と同様の構成
を有するのて、詳細説明はこれを省略するも、ソース電
極としての導電性層1s及びゲート電極としての導電性
層11間に嬉IIIIにて上述せると同様の2値表示で
「1」の制御電圧を与えれば、第S図の場合と同様に、
チャンネル形成領域としての半導体領域6の領域9の表
面側にチャンネルが形成されると共に、嬉2のドレイン
領域としての半導体領域2の領域42の5iii側に8
11層でなる蓄積層が形成されるものである。従って第
S図の場合と同様の電流路が形成されると共に、上述せ
る蓄積層を含む電流路が形成されて、オン状態が得られ
るものである。所で蓄積層は、領域42の斯る蓄積層を
形成せざる領域に比し小なる比抵抗を有するものである
。従ってオン状態に於て、それは殆んど蓄積層を含む電
流路に流れるものである。又導電性層13及び11関に
2値表示で10」の制御電圧を与えれば、上述せるチャ
ンネルが形成されず、オフ状態が得られるものである。
The above is the configuration of the second embodiment of the insulated gate field effect transistor according to the present invention, and according to this configuration, it has the same configuration as the case of ls5 except for the matters mentioned above. Although a detailed explanation will be omitted, a control voltage of "1" is applied between the conductive layer 1s as the source electrode and the conductive layer 11 as the gate electrode in the same binary display as described above in Section III. As in the case of Figure S, if we give
A channel is formed on the surface side of region 9 of semiconductor region 6 as a channel forming region, and a channel is formed on the 5iii side of region 42 of semiconductor region 2 as a drain region of 2.
An accumulation layer consisting of 11 layers is formed. Therefore, a current path similar to that in the case of FIG. S is formed, and a current path including the above-mentioned accumulation layer is also formed, so that an on state is obtained. Incidentally, the accumulation layer has a smaller resistivity than the area of the region 42 where such an accumulation layer is not formed. Therefore, in the on state, it mostly flows in the current path that includes the storage layer. Further, if a control voltage of 10'' in binary representation is applied to the conductive layers 13 and 11, the above-mentioned channel will not be formed and an OFF state will be obtained.

依って、第4図にて上述せる本発明のts2の実施例の
場合、第3図の場合と同様のスイッチング素子としての
機能を有するも、オン状態に於ける導電性層13及び1
2間の等価抵抗即ちオン抵抗が、嬉3図の場合に比し小
なる値を有し、この為第3図の場合に比し大なる電力消
費を伴うことがないという特徴を有する4のである・ 次に第5811を伴なって本発明の第5の実施例を述べ
るに、第3図との対応部分には同一符号を略して詳lI
A説明はこれを省略するも、第3図にて上述せる構成に
於て、その電流路としての導電性層41がIllのドレ
イン領域−としての半導体領域5の表−上迄嬌長して、
それにオー建ツタ接触していることを除いては、嬉3国
の場合と同様の構成を有する。尚導電性層41はこnを
半導体領域5に附された導電性層12に連接する迄延長
せしめても良いものである。
Therefore, in the case of the embodiment ts2 of the present invention described above in FIG. 4, although it has the same function as a switching element as in the case of FIG.
The equivalent resistance between 2 and 3, that is, the on-resistance, has a smaller value than in the case of Figure 3, and therefore, it has the characteristic that it does not involve large power consumption compared to the case of Figure 3. Next, to describe the fifth embodiment of the present invention with reference to No. 5811, the same reference numerals will be omitted for the parts corresponding to those in FIG.
Although the explanation of A is omitted, in the configuration described above in FIG. ,
The structure is similar to that of the Three Kingdoms, except that the ivy is in contact with it. The conductive layer 41 may be extended until it connects to the conductive layer 12 attached to the semiconductor region 5.

以上が本発明の第3の実施例の構成であるが、斯る構成
によれば、それが上述せる事項を除いては第3図の場合
と同様てあり、一方導電性層41が半導体領域5上迄延
長していることは。
The above is the configuration of the third embodiment of the present invention. According to this configuration, it is the same as the case of FIG. The fact that it has been extended to above 5.

その導電性層41によって、半導体領域2の領域43も
又翅絡されていることを意味するものである。
This means that the region 43 of the semiconductor region 2 is also interconnected by the conductive layer 41.

依って第SWJ&c示す本発明の纂3の実施例の場合、
第3IIIの場合と同様のスイッチング素子としての機
能が得られるも、オン状態に於ける導電性層13及び1
2間のオン抵抗がIE31Elの場合に比し小であり、
又この為第3図の場合に比し小なる消費電力を呈すると
いう大なる特徴を有する本のである。
Therefore, in the case of the third embodiment of the present invention shown in SWJ&c,
Although the same function as a switching element as in the case of the third III can be obtained, the conductive layers 13 and 1 in the on state
The on-resistance between 2 is smaller than that of IE31El,
Furthermore, this book has the great feature of consuming less power than the case shown in FIG.

次に第6図を伴なって本発明の第4の実施例を述べるK
 * @ a図との対応部分には同一符号を附して示す
4.第4図にて上述せる構成に於て、その導電性層41
が嬉5図の場合と同4Il&c第1のドレイン領域とし
ての半導体領域s1迄延長してオーミックに接触してい
ることを除いては第4図の場合と同様の構成を有する。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
* Parts corresponding to those in Figure a are indicated with the same reference numerals 4. In the configuration described above in FIG. 4, the conductive layer 41
It has the same structure as the case of FIG. 4 except that it extends to the semiconductor region s1 as the first drain region and is in ohmic contact with the semiconductor region s1.

以上が本発明の第4の実施例の構成であるが。The above is the configuration of the fourth embodiment of the present invention.

斯る構成によれば、それが上述せる事項を除いては嬉4
図に上述せると同様の構成を有し、そして導電性層41
が第5図の場合と同様にgillのドレイン領域として
の半導体領域s上迄嬌長しているので、詳細説明はこれ
を省略するも。
According to such a structure, it is good except for the matters mentioned above.
The conductive layer 41 has a similar configuration as described above in the figure.
As in the case of FIG. 5, it extends to above the semiconductor region s serving as the gill drain region, so a detailed explanation thereof will be omitted.

第4図の楊倉と同様のスイッチング素子としての機能が
得られるも、オン状態に於ける導電性層13及び12間
のオン抵抗が第4図の場合に比し小であり、又この為I
s4図の場合に比し大なる消費電力を伴うことがないと
いう大なる特徴を有するものである。
Although the function as a switching element similar to the one shown in FIG. 4 can be obtained, the on-resistance between the conductive layers 13 and 12 in the on state is smaller than that shown in FIG. I
This has the great feature that it does not involve large power consumption compared to the case of the s4 diagram.

次に第7図を伴なって本発明の第5の実施例を述べるに
、第3図との対応部分には同一符号を附して詳細説明は
これを省略するも、第3WAにて上述せる構成に於て、
その電流路としての導電性層41が、チャンネル形成領
域としての半導体領域6及び第1のドレイン領域として
の半導体領域5を結ぶ方向に並置された互に連接せる導
電性層4La及び41bでなることを除いてはwts図
の場合と同様の構成を有する。但しこの場合導電性層4
1m及び41bが夫々半導体領域6及び5側であるとし
た場合、導電性層411は、半導体領域2の領域7との
間のオーム接触により、導電性層41烏側を正とする電
位障壁が形成されるか又は負とする電位障壁が形成され
るとしてもその電位障壁が低いものとして形成される材
料でなり、又導電性層41bは、領域7との閣のオーム
接触により、導電性層4Ib側を負とする電位障壁が形
成されるか又は正とする電位障壁が形成されるとしても
その電位障壁が低いものとして形成される材料でなり、
従って第3図にて上述せるオン状態が得られるべく電流
路が形成される場合に於て、可動荷電子が領域7:IP
ら導電性層41@に流れ異い様に構成され、又可動荷電
子が導電性層41bから領域7に流れ易い様に構成され
ている。
Next, a fifth embodiment of the present invention will be described with reference to FIG. 7. Parts corresponding to those in FIG. 3 will be given the same reference numerals and detailed explanation will be omitted. In the configuration where
The conductive layer 41 serving as the current path is composed of conductive layers 4La and 41b that are juxtaposed and connected to each other in the direction connecting the semiconductor region 6 as the channel forming region and the semiconductor region 5 as the first drain region. It has the same configuration as the wts diagram except for. However, in this case, the conductive layer 4
When 1m and 41b are on the sides of semiconductor regions 6 and 5, respectively, the conductive layer 411 has a potential barrier with the opposite side of the conductive layer 41 being positive due to the ohmic contact with the region 7 of the semiconductor region 2. The conductive layer 41b is formed of a material having a low potential barrier, if any, or a negative potential barrier is formed, and the conductive layer 41b is formed by ohmic contact with the region 7. A material in which a potential barrier is formed with the 4Ib side being negative, or even if a potential barrier is positive, the potential barrier is low,
Therefore, when a current path is formed to obtain the on-state described above in FIG.
The conductive layer 41b is configured to flow differently from the conductive layer 41@, and the mobile charged electrons are configured to easily flow from the conductive layer 41b to the region 7.

以上が本発明の第5の実施例の構成であるが。The above is the configuration of the fifth embodiment of the present invention.

斯る構成によれば、それが上述せる事項をIm&%では
第S図の場合と同様であり、一方電流路としての導電性
層41が上述せる性質を有する導電性層41m及び41
bでなり、この為可動荷電粒子が導電性層41及び領域
7閣で容易に授受されるので、嬉3図の場合と同様のス
イッチング素子として機能が得られるも、オフ状−に於
ける導電性層13及び12間のオン抵抗が鎮火なる峙黴
を有するものである・ 次8c、第8図を伜なって本発明のlE4の実施例を述
べるに、第2WJにて上述せる構成に1にてその嬉2の
ドレイン領域としての半導体領域2のアイランド状の領
域27に、その主EI!4側よす、ll11ノ)”L’
イン領域としての半導体領域1ネル形成領域としての半
導体領域6に連接することなしに、電流路として形成さ
れてなる仁とを除いては、第2図の場合と同様の構成を
有する。但しこの場合導電性層51が半導体領域6及び
1に出来得る限り近い位置迄延長している様<、凹所5
0の太いさ及び深さを大にするを可とする。
According to such a configuration, the matters described above are the same as in the case of FIG.
b, and for this reason, movable charged particles can be easily transferred between the conductive layer 41 and the area 7, so that it can function as a switching element similar to the case of the 3rd layer, but the conductivity in the OFF state is The on-resistance between the conductive layers 13 and 12 is such that it suppresses fire and mold. Next, with reference to FIG. In this case, the main EI! 4th side, ll11ノ) "L'
The structure is similar to that of the case shown in FIG. 2, except for the semiconductor region 1 serving as the in-region, which is formed as a current path without being connected to the semiconductor region 6 serving as the channel-forming region. However, in this case, the conductive layer 51 extends as close as possible to the semiconductor regions 6 and 1.
It is possible to increase the thickness and depth of 0.

以上が本発明の第6の実施例であるが、斯る構成によれ
ば、それが上述せる事項を除いて第2図の場合と同様で
あるので、詳1ml説明はこれ御電圧を与えれば、嬉2
図の場合と同様に、チャンネル形成領域としての半導体
領域6の領域9にチャンネルが形成されるので、嬉2図
にて上述せると同様の電流路が形成されると共に。
The above is the sixth embodiment of the present invention, and according to this configuration, it is the same as the case of FIG. 2 except for the matters mentioned above. , happy 2
As in the case shown in the figure, since a channel is formed in the region 9 of the semiconductor region 6 serving as a channel forming region, a current path similar to that described above in FIG. 2 is formed.

導電性層13.半導体領域8.半導体領域6の領域9に
形成せるチャンネル、半導体領域2の領域27の、領域
9及び導電性層51関の領域52.1導JIL+−ML
tNk 51 、 半導体領m 2 gF)領1112
7の、導電性層51及び半導体領域1間の領域55.半
導体領域1.及び導電性層s2による電流路が形成され
、依ってそれ等電流路によるオン状態が得られる。又導
電性層1s及び11間に2億表示で「0」の制御電圧を
与えれば、上述せるチャンネルが形成されず、この為オ
フ状態が得られるものである。*つで縞21Elの場合
と同様のスイッチング素子としての機能を呈するもので
ある。
Conductive layer 13. Semiconductor area 8. A channel formed in the region 9 of the semiconductor region 6, a region 52.1 of the region 27 of the semiconductor region 2, and the region 9 of the conductive layer 51.
tNk 51 , semiconductor region m 2 gF) region 1112
7, the region 55 between the conductive layer 51 and the semiconductor region 1. Semiconductor area 1. A current path is formed by the conductive layer s2 and the conductive layer s2, so that an on state is obtained by these current paths. Furthermore, if a control voltage of "0" is applied between the conductive layers 1s and 11 at a value of 200,000,000, the above-mentioned channel will not be formed, and therefore an off state will be obtained. * exhibits the same function as a switching element as in the case of the stripe 21El.

然し乍ら嬉8図に示す本発明の第6の実施例の構成の場
合、上述せるオフ状態の得られる電流路が、嬉2図の場
合と同様の半導体領域2の領域27を含む電流路の外、
導電性層51を含む電流路が形成されて得られ、*t、
てその後者の電流路の等価抵抗即ちオン抵抗は、領域叩
7の導電性層51が連接せる領域が、導電性層51にて
短絡されているので、前者の電流路に比し格段的に小な
るオン抵抗を有するものである。従って上述せるオン状
態に於て、それは殆んど導電性層51を含む後者の電流
路に流れるものである・ 依って第8図にて上述せる本発明の第6の実施例の場合
、オン状態に於ける導電性層13及び32間のオン抵抗
が、112図の場合に比し格段的に小なる値を有し、又
この為嬉2図の場合に比し大なる電力消費を伴うことが
ないという大なる特徴を有するものである。
However, in the case of the configuration of the sixth embodiment of the present invention shown in Fig. 8, the current path that provides the above-mentioned off state is outside the current path including the region 27 of the semiconductor region 2 similar to the case of Fig. 2. ,
A current path including the conductive layer 51 is formed and obtained, *t,
The equivalent resistance, that is, the on-resistance, of the latter current path is significantly higher than that of the former current path, since the area where the conductive layer 51 of the region contact 7 is connected is short-circuited by the conductive layer 51. It has a small on-resistance. Therefore, in the on-state described above, most of the current flows in the latter current path including the conductive layer 51.Therefore, in the case of the sixth embodiment of the present invention shown in FIG. In this state, the on-resistance between the conductive layers 13 and 32 has a much smaller value than in the case of Fig. 112, and for this reason, power consumption is greater than in the case of Fig. 2. It has the great feature that it never happens.

次に519図を伴なって本発明の第7の実施例を述べる
に、菖8図との対応部分には同一符号を附して詳細説明
はこれを省略するも、嬉8図にて上述せる構成E於て、
第4図にて上述せるに準じて、ゲート絶縁層としての絶
縁層10が。
Next, the seventh embodiment of the present invention will be described with reference to Figure 519. Parts corresponding to those in Figure 8 will be given the same reference numerals and detailed explanations will be omitted. In configuration E,
As described above in FIG. 4, an insulating layer 10 is provided as a gate insulating layer.

第2のドレイン領域としての半導体領域2の半導体領域
6及び導電性層51間の領域52の表向1迄延長され、
而してその延長部上迄ダート電極としての導電性層11
が延長していることを除いては11118図の場合と同
様の構成を有する。
extended to the surface side 1 of the region 52 between the semiconductor region 6 of the semiconductor region 2 and the conductive layer 51 as a second drain region,
Then, the conductive layer 11 as a dirt electrode extends over the extended portion.
It has the same configuration as the case shown in Fig. 11118 except that it is extended.

以上が本発明の第7の実施例の構成であるが。The above is the configuration of the seventh embodiment of the present invention.

斯る構成によれば、それが上述せる事項を除いてはIE
8図の場合と同様であるのて、詳細説明はこれを省略す
るも、第8WAの場合と同様のスイッチング素子として
のIl′#lAを有するも、ゲート絶縁層としての絶縁
層10が領域52上迄延長し、又その延長部上にゲート
電極としての導電性層11が延長しているので、嬉4図
にて上述せると同様の進出で、オン状態に於ける導電性
層13及び32間のオン抵抗がgsmの場合に比し小な
る値を有し、この為gasの場合に比し大なる消費電力
を伴うことがないという特徴を有するものである。
According to such a configuration, it is IE except for the matters mentioned above.
Since this is the same as in the case of FIG. 8, a detailed explanation thereof will be omitted, but although it has Il'#lA as a switching element similar to the case of the 8th WA, the insulating layer 10 as a gate insulating layer is in the region 52. Since the conductive layer 11 as a gate electrode extends above the extended portion, the conductive layers 13 and 32 in the on state extend in the same manner as described above in Figure 4. The on-resistance between them has a smaller value than that of GSM, and therefore, it does not consume much power compared to GSM.

次に第10図を伴なって本発明の第8の実施例を述べる
に、第8図との対応部分には同一符号を附して詳細説明
はこれを省略するも、ga図にて上述せる構成に於て、
その第2のドレイン領域としての半導体領域2の領域2
7に形成せる凹所が、第1のドレイン領域としての半導
体領域1内に達する#!さに形成され、従って凹所50
の内表aik形成せる電流路としての導電性層51が半
導体領域1に連接していることを除いては1gemの場
合と同様の構成を有する。
Next, the eighth embodiment of the present invention will be described with reference to FIG. 10. Parts corresponding to those in FIG. In the configuration where
Region 2 of semiconductor region 2 as its second drain region
The recess formed in #7 reaches into the semiconductor region 1 as the first drain region #! is formed in the recess 50.
The structure is similar to that of 1gem except that a conductive layer 51 as a current path formed on the inner surface of the semiconductor region 1 is connected to the semiconductor region 1.

以上が本発明の嬉8の実施例であるが、斯る構成によれ
ば、それが上述せる事項を除いては1g8図の場合と同
様であるので、詳細説明はこれを省略するも、第8図の
場合と同様のスイッチング素子としての機能を有するも
、導電性層51が第1のドレイン領域としての半導体領
域1#c連接しているので、オン状態に於ける導電性層
13及び52間のオン抵抗が第8図の場合に比し小なる
値を有し、この為第8図の場合に比し大なる消費電力を
伴なうことがないという%値を有するものである。
The above is the embodiment of the present invention in Fig. 8. According to this configuration, it is the same as the case of Fig. 1g8 except for the matters mentioned above, so a detailed explanation thereof will be omitted. Although it has the same function as a switching element as in the case of FIG. 8, since the conductive layer 51 is connected to the semiconductor region 1#c as the first drain region, the conductive layers 13 and 52 in the on state The on-resistance between them has a smaller value than that in the case of FIG. 8, and therefore has a percentage value that does not involve large power consumption compared to the case of FIG.

例を述べるに、謝10図との対応部分には同一符号を附
して詳細説明はこれを省略するも、第10図にて上述せ
る構成に於て、第9図にて上述せると同様に、ゲート絶
縁層としての絶縁層10が、第2のドレイン領域として
の半導体領域2の領域52の表面1迄延長され、その嬌
長部上迄ゲート電極としての導電性層11が1lLjk
していることを除いては、第10mの場合と同様の構成
を有する。
To give an example, parts corresponding to those in Figure 10 are given the same reference numerals and detailed explanations are omitted, but in the configuration described above in Figure 10, the same parts as described above in Figure 9 The insulating layer 10 as a gate insulating layer is extended to the surface 1 of the region 52 of the semiconductor region 2 as the second drain region, and the conductive layer 11 as a gate electrode is extended to the top of the elongated part.
It has the same configuration as the 10th m-th case except for the following.

以上が本発明のjllll?の実施例の構成であるが、
斯る構成によれば、それが上述せる事項を除いては第1
0図の場合と同様であるので、詳細説明は仁れを省略す
るも% @ 10図の場合と1iilljのスイッチン
グ素子としての機能を有するも、ゲート絶縁層としての
絶縁層10及びゲート電極としての導電性層11が第2
のドレイン領域としての半導体領域2の領域52上迄延
長しているので、オン状態に於ける導電性層13及び3
2間のオン抵抗が第10図の場合に比し小なる値を有し
、この為第10図の場合に比し大なる電力消費を伴なう
ことがないという大なる特徴を有するものである。
Is this all about the invention? The configuration of the embodiment is as follows.
According to such a configuration, except for the matters mentioned above, the first
Since it is the same as the case of Figure 0, the detailed explanation will be omitted. The conductive layer 11 is the second
conductive layers 13 and 3 in the on state.
The on-resistance between 2 and 2 has a smaller value than that in the case shown in Fig. 10, and therefore it has the great feature that it does not involve large power consumption compared to the case shown in Fig. 10. be.

崗上述に於ては本発明の僅かな実施例を示したに留まり
、本発明の精神を脱することなしに種々の変型変更をな
し得るてあろう。
The above description merely shows a few embodiments of the present invention, and various modifications and changes may be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

jlII図及び第2図は従来の絶縁ゲート型電界効釆ト
ランジスタを示す路線的断面図、第3図、第4図、第5
図、第4!IQ及び第7図は夫々本発明による絶縁ゲー
ト型電界効果トランジスタの第1、!112、#!3、
第4及び第5の実施例を示す路線的断面図、第8FjA
%jIt図、第10図、及びlR11図は夫々本発明に
よる絶縁ゲート型電界効果トランジスタの第6、第7、
JII8及び第9の実施例を示す一纏的断面図である。 図中、1.2.5.6及び8は半導体領域、3は半導体
基板、4は主面、7.9.27.42.45.52及び
53は領域、10は絶縁層、11.12.13.15.
52.41及びF 51は導電性層、50は凹所を示す。 出願人 日本電信電話公社 同  日本電気株式金社 6
Figure jlII and Figure 2 are line cross-sectional views showing conventional insulated gate field effect transistors, Figures 3, 4, and 5.
Figure, 4th! IQ and FIG. 7 respectively show the first insulated gate field effect transistor according to the present invention! 112,#! 3,
Route sectional view showing the fourth and fifth embodiments, No. 8FjA
%jIt diagram, FIG.
FIG. 7 is a general cross-sectional view showing JII8 and a ninth embodiment. In the figure, 1.2.5.6 and 8 are semiconductor regions, 3 is a semiconductor substrate, 4 is a main surface, 7.9.27.42.45.52 and 53 are regions, 10 is an insulating layer, 11.12 .13.15.
52.41 and F 51 are conductive layers, and 50 is a recess. Applicant Nippon Telegraph and Telephone Public Corporation NEC Kinsha 6

Claims (1)

【特許請求の範囲】 1、 第1の導電波を有する第1のドレイン領域として
の縞1の半導体領域と。 該第1の半導体領域に連接せる。第1の導電型を有し且
上記第1の半導体領域に比し高い比抵抗を有する1ll
I2のドレイン領域としての第2の半導体領域と。 上記illの半導体領域には連接せざるも上記第2の半
導体領域に連接せる。第1の導電波とは逆の嬉2の導電
波を有するチャy$ル形成領域としての第3の半導体領
域と。 上記第1及び#I2の半導体領域には連接せざるも上記
113の半導体領域に連接せる。嬉1の導電波を有する
ソース領域としての嬉4の半導体領域と。 上記第3の半導体領域の上記第2及び!s4の半導体領
域間の領域の表面上にゲート絶縁層としての絶縁層を介
して配されたゲート電極としての纂1の導電性層とを真
値する絶縁ゲ囁ト銀電界効果トツノジスタに於て。 上記第3の半導゛体領域にはオーム接触せざるも、上記
第2の半導体領域の上記第1及び第3の半導体領域間の
領域にオーム接触せる。 電流路としてのwIt2の導電性層を有する事を特徴と
する絶縁ゲート型電界効果トランジスタ。 2 第1の導電型を有する第1のドレイン領域としての
第1の半導体領域と。 該第1の半導体領域に連接せる。第1の導電波を有し且
上記第1の半導体領域に比し高い比抵抗を有する第2の
ドレイン領域としての嬉2の半導体領域と。 上記第1の半導体領域には連接せざるも上記第2の半導
体領域に連接、せる、tslの導電波とは逆の第2の導
電波を有するチャンネλ形成領域としての*Sの半導体
領域と。 上記l111及び第2の半導体領域には連接せざるも上
記第3の半導体領域に連接せる。第1の導電型を有する
ソース領域としての第4の半導体領域と。 上記第3の半導体領域の上記第2及び第4の半導体領域
間の領域の表面上にゲート絶縁層としての絶縁層を介し
て配されたゲート電極としての第1の導電性層とを具備
する絶縁グー)It電界効果トランジスタに於て。 上記第3の半導体領域にはオーム接触せざるも、上記第
2の半導体領域の上記tlL1及び第3の半導体領域間
の領域にオーム接触せる。 電流路としての第2の導電性層を有し、上記絶縁層が、
上記第2の半導体領域の上記第3の半導体領域及び上記
第2の導電性層間の領域の表面上進延長され。 上記第1の導電性層が、上記絶縁層の上記taSの半導
体領域及び上記第2の導電性層間の領域の表園社延長せ
る延長部1漠長されてなる事を特徴とする絶縁ゲート型
電界効果トランジスタ。 五 第1の導wi型を有する第1のドレイン領域として
の第1の半導体領域と。 腋嬉1の半導体領域に連接せる。第1の導電型を有し且
上記第1の半導体領域に比し高い比抵抗を有する第2の
ドレイン領域としての第2の半導体領域と。 上記第1の半導体領域には連接せざるも上記第2の半導
体領域に連接せる。tIXlの導電型とは逆の第2の導
電型を有するチャンネル形成領域としての館5の半導体
領域と、上記1111及び第2の半導体領域には連接せ
ざるも上記第5の半導体領域に連接せる。第1の導電証
を有するソース領域としてのIIE4の半導体領域と。 上記第3の半導体領域の上記第2及び嬉4の半導体領域
間の領域の表面1番こゲート絶縁層としての絶縁層を介
して配されたゲート電極としての1Ii11の導電性層
とを具備する絶縁ゲート型電界効果トランジスタに於て
。 上記第6の半導体領域にはオーム接触せざるも、上記第
2の半導体領域の上記IE1及び第3の半導体領域間の
領域にオーム接触し且上記litの半導体領域にオーム
接触せる。電流路としての112の導電性層を有する事
を特徴とする絶縁ゲート型電界効果トランジスタ。 4、  illの導電型を有する第1のドレイン領域と
しての嬉1の半導体領域と。 該第1の半導体領域に連接せる。第1の導電型を有し且
上記嬉1の半導体領域に比し高い比抵抗を有する第2の
ドレイン領域としての嬉2の半導体領域と。 上記第1の半導体領域には連接せざるも上記第2の半導
体領域に連接せる。第1の導電型とは逆の第2の導電型
を有するチャンネル形成領域としての第3の半導体領域
と。 上記第1及び第2の半導体領域には連接せざる。も上記
II3の半導体領域に連接せる。第1の導電型を有する
ソース領域としてのII4の半導体領域と。 上記第5の半導体領域の上記第2及び第4の半導体領域
間の領域の#Il!向上(ゲート絶縁層としての絶縁層
を介して配されたゲート電極としての第1の導電性層と
を具備する絶縁ゲート瀧電昇効果トランジスタに於て。 上記第3の半導体領域にはオーム接触せざるも、上記第
2の半導体領域の上記1111及び第3の半導体領域間
の領域にオーム接触し且上記第1の半導体領域にオーム
接触せる。電流路としての第2の導電性層を有し。 上記絶縁層が、上記第2の半導体領域の上記第5の半導
体領域及び上記第2の導電性層間の領域の表面上迄嬌長
さn。 上記第1の導電性層が、上記絶縁層の上記第3の半導体
領域及び上記112の導電性層間の領域の表向1迄延長
せる延長部1漠長されてなる事を特徴とする絶縁グー)
mill界効果ト2yジスタ。
Claims: 1. A semiconductor region of stripe 1 as a first drain region having a first conductive wave. connected to the first semiconductor region. 1ll having a first conductivity type and having a higher resistivity than the first semiconductor region;
a second semiconductor region as a drain region of I2; Although it is not connected to the ill semiconductor region, it is connected to the second semiconductor region. and a third semiconductor region as a channel forming region having a second conductive wave opposite to the first conductive wave. Although it is not connected to the first and #I2 semiconductor regions, it is connected to the 113th semiconductor region. A semiconductor region of 4 degrees as a source region having a conductive wave of 1 degrees. The second and! of the third semiconductor region! In a true insulating silver field effect transistor, a conductive layer as a gate electrode is disposed on the surface of the region between the semiconductor regions of s4 with an insulating layer as a gate insulating layer interposed therebetween. Although the third semiconductor region is not in ohmic contact, the second semiconductor region is in ohmic contact with a region between the first and third semiconductor regions. An insulated gate field effect transistor characterized by having a wIt2 conductive layer as a current path. 2 a first semiconductor region as a first drain region having a first conductivity type; connected to the first semiconductor region. A second semiconductor region as a second drain region that has a first conductive wave and has a higher resistivity than the first semiconductor region. A semiconductor region of *S as a channel λ forming region having a second conductive wave opposite to the conductive wave of tsl, which is not connected to the first semiconductor region but is connected to the second semiconductor region. . Although it is not connected to the above-mentioned l111 and the second semiconductor region, it is connected to the above-mentioned third semiconductor region. a fourth semiconductor region as a source region having a first conductivity type; a first conductive layer serving as a gate electrode disposed on a surface of a region between the second and fourth semiconductor regions of the third semiconductor region with an insulating layer serving as a gate insulating layer interposed therebetween; (Insulating Goo) In It field effect transistor. Although not in ohmic contact with the third semiconductor region, it is brought into ohmic contact with a region between the tlL1 and the third semiconductor region of the second semiconductor region. The insulating layer has a second conductive layer as a current path,
A surface of a region between the third semiconductor region and the second conductive layer of the second semiconductor region is extended upwardly. The first conductive layer is an insulated gate type, characterized in that the first conductive layer is formed by extending an extension portion 1 of the insulating layer between the TAS semiconductor region and the second conductive layer. Field effect transistor. (v) a first semiconductor region as a first drain region having a first conductivity type; Can be connected to the semiconductor area of armpit 1. a second semiconductor region serving as a second drain region having a first conductivity type and having a higher resistivity than the first semiconductor region; Although it is not connected to the first semiconductor region, it is connected to the second semiconductor region. The semiconductor region of the building 5 as a channel forming region having a second conductivity type opposite to the conductivity type of tIXl is not connected to the above 1111 and the second semiconductor region, but is connected to the fifth semiconductor region. . a semiconductor region of IIE4 as a source region having a first conductivity region; A conductive layer 1Ii11 as a gate electrode is provided on the surface of the region between the second and fourth semiconductor regions of the third semiconductor region through an insulating layer as a gate insulating layer. In insulated gate field effect transistors. Although it is not in ohmic contact with the sixth semiconductor region, it is in ohmic contact with a region between the IE1 and third semiconductor regions of the second semiconductor region, and is in ohmic contact with the lit semiconductor region. An insulated gate field effect transistor characterized by having 112 conductive layers as current paths. 4. A semiconductor region as a first drain region having a conductivity type of ill. connected to the first semiconductor region. A second semiconductor region serving as a second drain region having a first conductivity type and having a higher resistivity than the first semiconductor region. Although it is not connected to the first semiconductor region, it is connected to the second semiconductor region. a third semiconductor region as a channel forming region having a second conductivity type opposite to the first conductivity type; It is not connected to the first and second semiconductor regions. It can also be connected to the semiconductor region II3 above. a semiconductor region II4 as a source region having a first conductivity type; #Il! of the region between the second and fourth semiconductor regions of the fifth semiconductor region! In an insulated gate electric boost effect transistor comprising a first conductive layer as a gate electrode disposed through an insulating layer as a gate insulating layer.The third semiconductor region has an ohmic contact. If not, the second semiconductor region is in ohmic contact with the region between the 1111 and the third semiconductor region, and is also in ohmic contact with the first semiconductor region. The insulating layer extends over the surface of the fifth semiconductor region of the second semiconductor region and the second conductive layer, and the first conductive layer extends over the surface of the fifth semiconductor region and the second conductive layer. an insulating goo characterized by an extended portion (1) that extends to the surface (1) of the third semiconductor region of the layer and the region between the (112) conductive layers;
mill world effect to2y dista.
JP56140803A 1981-09-07 1981-09-07 Insulation gate type field-effect transistor Pending JPS5842275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140803A JPS5842275A (en) 1981-09-07 1981-09-07 Insulation gate type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140803A JPS5842275A (en) 1981-09-07 1981-09-07 Insulation gate type field-effect transistor

Publications (1)

Publication Number Publication Date
JPS5842275A true JPS5842275A (en) 1983-03-11

Family

ID=15277099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140803A Pending JPS5842275A (en) 1981-09-07 1981-09-07 Insulation gate type field-effect transistor

Country Status (1)

Country Link
JP (1) JPS5842275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231862A (en) * 1983-06-13 1984-12-26 Nissan Motor Co Ltd Vertical type metal oxide semiconductor transistor
US4962411A (en) * 1986-03-21 1990-10-09 Nippondenso Co., Ltd. Semiconductor device with current detecting function
US5365085A (en) * 1990-07-30 1994-11-15 Nippondenso Co., Ltd. Power semiconductor device with a current detecting function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915911A (en) * 1972-06-06 1974-02-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915911A (en) * 1972-06-06 1974-02-12

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231862A (en) * 1983-06-13 1984-12-26 Nissan Motor Co Ltd Vertical type metal oxide semiconductor transistor
JPH056354B2 (en) * 1983-06-13 1993-01-26 Nissan Motor
US4962411A (en) * 1986-03-21 1990-10-09 Nippondenso Co., Ltd. Semiconductor device with current detecting function
US5365085A (en) * 1990-07-30 1994-11-15 Nippondenso Co., Ltd. Power semiconductor device with a current detecting function

Similar Documents

Publication Publication Date Title
US20200273858A1 (en) Semiconductor device and semiconductor package
JPS58212168A (en) Mos-fet gate bipolar transistor and thyristor capable of turning on and off with unipolar gate input signal
JP2002134756A5 (en)
JP4797225B2 (en) Semiconductor device
JPS5998557A (en) Mos transistor
MY131061A (en) Semiconductor storage device
KR960026768A (en) Insulated Gate Semiconductor Device
US8546800B2 (en) Thin film transistor
CN106033750B (en) Semiconductor device
US9806197B1 (en) Display device having back gate electrodes
JPS5842275A (en) Insulation gate type field-effect transistor
CN106784015B (en) A kind of thin film transistor and its manufacturing method, display base plate and display device
KR970067930A (en) Semiconductor devices
US6982461B2 (en) Lateral FET structure with improved blocking voltage and on resistance performance and method
US6133591A (en) Silicon-on-insulator (SOI) hybrid transistor device structure
TWI445181B (en) Thin film transistor
US4942444A (en) Thyristor
US11127826B2 (en) Semiconductor device
JP2000311957A (en) Semiconductor device
JPH0690001A (en) Thin-film transistor for liquid-crystal display device
JPH09246545A (en) Semiconductor element for power
KR100295450B1 (en) Thin film transistor
JPS63205963A (en) Thin-film transistor
JPS5842274A (en) Insulated gate field effect transistor
JPH07307463A (en) Mos field-effect transistor for electric power