JPS5842030A - Display element - Google Patents
Display elementInfo
- Publication number
- JPS5842030A JPS5842030A JP13973881A JP13973881A JPS5842030A JP S5842030 A JPS5842030 A JP S5842030A JP 13973881 A JP13973881 A JP 13973881A JP 13973881 A JP13973881 A JP 13973881A JP S5842030 A JPS5842030 A JP S5842030A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- electrodes
- display element
- dielectric constant
- crystal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
Landscapes
- Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal Display Device Control (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は表示素子に係り、特に低電圧、高速応答に優れ
た表示素子に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a display element, and particularly to a display element that is excellent in low voltage and high-speed response.
通常、表示素子は、例えば僅少間隙を有して対向する一
対の基板と、側基板の対向面に電極を設けて、側基板間
に表示体+1保持し、電極の対向する部分とそれらの間
に位置する表示体に1って画素が形成される。そして、
両電極間に付与する電圧の大きさく実効値)を変えるこ
とによって表示素子の駆動が行なわれる。Normally, a display element has a pair of substrates that face each other with a slight gap between them, electrodes are provided on the opposing surfaces of the side substrates, the display body +1 is held between the side substrates, and the opposing portions of the electrodes and the space between them. A pixel 1 is formed on the display body located at . and,
The display element is driven by changing the magnitude (effective value) of the voltage applied between both electrodes.
その−例として、表示体として相転移ゲスト・ホスト型
液晶を用いた表示素子を第1図に示す。As an example, FIG. 1 shows a display element using a phase change guest-host type liquid crystal as a display material.
一対の透明な基板1の対向面に電極2を形成し、その上
に水平配向処理膜3が形成されている。Electrodes 2 are formed on opposing surfaces of a pair of transparent substrates 1, and a horizontally aligned film 3 is formed thereon.
第1図(a)に示すように液晶はNp (ポジ形ネマチ
ック)液晶にコレステリック液晶全混入したコレステリ
ック構造(螺旋構造)を示すカイラルネマチック液晶4
に、二色性色素5を混入したものである。色素分子5は
液晶分子の螺旋構造に沿って配列し、色素分子の長軸方
向(光の吸収方向)が基板1の面に平行になるため、入
射光7は吸収され着色(色素の色)してみえる。上下電
極2間にかかる電界Eが臨界電圧Ec以上になると第1
ツj構造に相変化し、液晶分子および色素分子が基板、
1の面に垂直になるため入射光7は液晶層で吸収されず
、透過光8として出てゆく。すなわち、電圧印加により
画素は着色状態から無色状態へと変化する。As shown in Fig. 1(a), the liquid crystal is a chiral nematic liquid crystal 4 which has a cholesteric structure (helical structure) in which cholesteric liquid crystal is completely mixed in Np (positive nematic) liquid crystal.
In this case, dichroic dye 5 was mixed. The dye molecules 5 are arranged along the helical structure of the liquid crystal molecules, and the long axis direction (light absorption direction) of the dye molecules is parallel to the surface of the substrate 1, so the incident light 7 is absorbed and colored (the color of the dye). It looks like it does. When the electric field E applied between the upper and lower electrodes 2 exceeds the critical voltage Ec, the first
The phase changes to a TJ structure, and the liquid crystal molecules and dye molecules are attached to the substrate,
1, the incident light 7 is not absorbed by the liquid crystal layer and exits as transmitted light 8. That is, the pixel changes from a colored state to a colorless state by applying a voltage.
°臨界電界EcはLesl ieの論文(Molec。°The critical electric field Ec is from Leslie's paper (Molec.
CrySt、 1iquid、 Cryst、yot1
2.1970 )よりコレステリック構造の輝線のピッ
チをP。とすれば次の関係がある。CrySt, 1iquid, Cryst, yot1
2.1970), the pitch of the emission line of the cholesteric structure is P. Then, we have the following relationship.
ココでK 、1+ K 22はそれぞれ5play、
Bendの弾性定数である。K here, 1 + K 22 is 5 plays each,
It is Bend's elastic constant.
また、素子のギャップ長dが一定の場合、輝線のピッチ
Poが小さくなる程、すべての振動方向の光が色素によ
って吸収されるためコント2スト比が向上する。臨界電
界Ecとコントラスト比CCと輝線のピッチP0の関係
は第2図に示すようになり、コントラスト比CCを高く
すれば、逆に臨界゛成田が高くなり、すなわち駆動成田
を高くする必要がある。また、電圧印加時の応答時間(
立上り時間tr、立下り時間1 f、)は次式のように
なる。Further, when the gap length d of the element is constant, the smaller the pitch Po of the bright lines, the more light in all vibration directions is absorbed by the dye, so the contrast ratio improves. The relationship between the critical electric field Ec, the contrast ratio CC, and the bright line pitch P0 is as shown in Figure 2. If the contrast ratio CC is increased, the critical Narita becomes higher, which means that it is necessary to raise the driving Narita. . Also, the response time when voltage is applied (
The rise time tr, the fall time 1f,) are given by the following equation.
ここで、ηは液晶の粘度、Δεは液晶分子の調心異方性
、Kは液晶材料の弾性定数である。高いコントラスト比
を有する表示素子を得るために、ネマチック液晶に対す
るコレステリック液晶の添加量を増して#、線ピッチP
。を小さくするが、第2図や(3)式かられかるように
表示素子の駆動電圧が高くなり1、式(3)に於いてP
oが小さくなると、立上り時間t、も長くなる。すなわ
ち表示素子としての応答速度が遅くなるという問題があ
る。Here, η is the viscosity of the liquid crystal, Δε is the alignment anisotropy of the liquid crystal molecules, and K is the elastic constant of the liquid crystal material. In order to obtain a display element with a high contrast ratio, the amount of cholesteric liquid crystal added to nematic liquid crystal is increased to increase # and line pitch P.
. However, as shown in Figure 2 and Equation (3), the drive voltage of the display element becomes higher1, and P in Equation (3) increases.
As o becomes smaller, the rise time t also becomes longer. That is, there is a problem that the response speed of the display element becomes slow.
また、TN型液晶表示素子は相転移型液晶表示素子に比
べて低電圧駆動や応答性は優れているが、他の表示方式
、例えば螢光表示管やCRTに比べて応答性は劣る。液
晶素子のTVへの応用、自動車用計器盤への応用を考え
る時、高速応答化をはかる必要がある。Furthermore, although TN type liquid crystal display elements are superior in low voltage driving and responsiveness compared to phase change type liquid crystal display elements, their responsiveness is inferior to other display systems such as fluorescent display tubes and CRTs. When considering the application of liquid crystal elements to TVs and automobile instrument panels, it is necessary to achieve high-speed response.
TN液晶表示素子の応答時間t・、tfは次式%式%
式(3)9式(5)から電極間にかかる電界Et−大き
くすると、立上り時間t、が短くなり、かつコントラス
ト比が向上することが分る。The response time t・, tf of a TN liquid crystal display element is determined by the following formula % Formula % Formula (3) 9 From formula (5), as the electric field Et applied between the electrodes is increased, the rise time t becomes shorter and the contrast ratio improves. I know what to do.
電極間にかかる電界Eを大きくする手段としては、駆動
電圧を高くするか、電極間のギヤツブ長d′ff:短く
する等の手段がある。Means for increasing the electric field E applied between the electrodes include increasing the driving voltage or shortening the gear length d'ff: between the electrodes.
駆動電圧を高くすることは、消費電力が高くなり、液晶
表示素子の低電圧駆動、低消費電力という利点を減殺し
てしまい、また、電極間のギヤツブ長d6短くすると、
dを一様に一定にするということが技術的に難しくなシ
、色ムラが発生し易くなるという問題がある。Increasing the drive voltage increases power consumption, which negates the advantages of low voltage drive and low power consumption of the liquid crystal display element. Also, if the gear length d6 between the electrodes is shortened,
There is a problem in that it is technically difficult to make d uniformly constant, and color unevenness is likely to occur.
本発明の目的は上記欠点を除去し、ある程度のギャップ
長を有していても、低電圧で駆動することができ、かつ
、高速応答が可能で、コントラスト比が高い表示素子を
提供することにある。An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a display element that can be driven at a low voltage, has a high-speed response, and has a high contrast ratio even if it has a certain gap length. be.
上記目メヲ達成する本発明表示素子の特徴とするところ
は、対向する電極間に駆動電圧が印加されないときの上
記表示体の誘電率より大きい誘電を設けることにある。The display element of the present invention that achieves the above goals is characterized by providing a dielectric constant greater than the dielectric constant of the display body when no driving voltage is applied between the opposing electrodes.
ここで、「表示体」とは電界効果型の表示体であり、液
晶が好ましいがこれに限定するものでは11\
ない。また、「微IP物体」とは金属、有機物、無機物
、さらには、これら二鴇以上の材料からなるものであり
、誘電率が電圧印加前の表示体より大きければ他に限定
されるものではない。Here, the "display" refers to a field-effect display, and is preferably a liquid crystal, but is not limited thereto. In addition, "fine IP objects" include metals, organic materials, inorganic materials, and materials made of two or more of these materials, and are not limited to other materials as long as the dielectric constant is greater than that of the display material before voltage is applied. .
さらに本発明表示装置の特徴とするところは、表示体金
相転移液晶としたとき、対向する電極の間に、上記対向
する電極方向の長さが上記対向する電極間の相転移液晶
層の厚さより小さい微少物体釜設けることにある。Furthermore, the display device of the present invention is characterized in that when the display body is a gold phase change liquid crystal, the length in the direction of the opposite electrodes is the thickness of the phase change liquid crystal layer between the opposite electrodes. The purpose is to provide a container for minute objects smaller than the above.
第3図は本発明の要点を示す図である。電極2が対向面
に形成された基板1によりサンドインチされた表示体で
ある液晶層4があって、電極面上に外径りの微少物体で
ある粒±9が分散している。FIG. 3 is a diagram showing the main points of the present invention. There is a liquid crystal layer 4 which is a display body sandwiched between substrates 1 having electrodes 2 formed on opposing surfaces, and particles ±9 which are minute objects having an outer diameter are dispersed on the electrode surfaces.
液晶の誘電率をε11粒子の誘電率をε誠とする。The dielectric constant of the liquid crystal is ε11, and the dielectric constant of the particles is εMakoto.
(イ) ε鋪〉ε、の時 11.91
010.(7)第3図(a)に示すように液晶層内の等
電位[10は粒子9の近傍Aで密になり、電界が高くな
る。(b) When ε〉ε, 11.91
010. (7) As shown in FIG. 3(a), the equipotential [10] in the liquid crystal layer becomes dense in the vicinity A of the particle 9, and the electric field becomes high.
(ロ) εM:εiの時 ・・・・・
・・・・(8)第3図(b)に示すように液晶層内の等
電位線10は粒子9の存在にかかわらず、均一となり、
粒子の存在は液晶層内の電界分布に影響を及ぼさない。(b) When εM: εi...
(8) As shown in FIG. 3(b), the equipotential lines 10 in the liquid crystal layer are uniform regardless of the presence of particles 9,
The presence of particles does not affect the electric field distribution within the liquid crystal layer.
(ハ) ε舗〈ε1の時 ・・・・・
・・・・(9)第3図(C)に示すように液晶層内の等
電位線1゜は粒子9の近傍Aで粗になシ、電界は緩和さ
れる。(c) ε store〈When ε1...
(9) As shown in FIG. 3(C), the equipotential line 1° in the liquid crystal layer becomes rough in the vicinity A of the particle 9, and the electric field is relaxed.
従って、駆動電圧が印加されない時の液晶の誘ノド−
電率より誘電率が高い微少物体を、対向する電極間に少
なくとも一つ設けることにより、第3図(a)に示す様
に心界集中が発生しみかけ上の電界が高くなり、立上シ
時間が短くなり、液晶表示素子を低電圧で駆動出来、か
つ高速応答が可能となる。Therefore, by providing at least one minute object between opposing electrodes with a dielectric constant higher than the dielectric constant of the liquid crystal when no driving voltage is applied, the center field can be concentrated as shown in Fig. 3(a). As a result, the electric field on the surface becomes higher, the start-up time becomes shorter, the liquid crystal display element can be driven with a lower voltage, and high-speed response becomes possible.
また、表示体が例えばコレステリック・ネマチック相転
移液晶あるいはカイラル・ネマチック液晶に二色性色素
を添加したゲスト・ホスト型相転移液晶等の場合、ヒス
テリシス現象を有する。この現象を第4図に示す。表示
素子に印加する電圧の実効値v全上昇させてゆく時■と
降下させてゆく時■とで光透過量Bの変化が異なる。積
極的にこのヒステリシス現象を利用する以外は、表示素
子の時分割駆動を困難にする。Furthermore, when the display material is, for example, a cholesteric nematic phase change liquid crystal or a guest-host type phase change liquid crystal obtained by adding a dichroic dye to a chiral nematic liquid crystal, a hysteresis phenomenon occurs. This phenomenon is shown in FIG. The change in the amount of light transmission B differs between when the effective value v of the voltage applied to the display element is completely raised (2) and when it is lowered (2). Unless this hysteresis phenomenon is actively utilized, time-division driving of the display element becomes difficult.
そこで、第3図に於いて、粒子の誘電率上εv1駆動電
圧が印加されないときの液晶の誘電率を61で、駆動電
圧が印加されたときの液晶の誘電率をε8とし、
ε1〈εV〈εS ・・・・・・・・・
1101とする。Therefore, in Fig. 3, on the dielectric constant of the particles, the dielectric constant of the liquid crystal when the driving voltage εv1 is not applied is 61, and the dielectric constant of the liquid crystal when the driving voltage is applied is ε8, and ε1〈εV〈 εS・・・・・・・・・
1101.
表示素子に印加する電圧の実効値を上昇させてゆくとき
、ε気〈εVなので、液晶層内に電界集中が発生し、見
かけ上の電界が強くなるので、第4図−■は■′のよう
になる。また、表示素子に印加する電圧の実効値を降下
させてゆくとき、ε輩〈ε8なので〜液晶層内の電界は
緩和され、見かけ上の電界が弱くなるので第4図■はO
′のようになり、ヒステリシス・ループは小さくなり、
低電圧で時分割駆動が可能となる。When the effective value of the voltage applied to the display element is increased, since ε is εV, electric field concentration occurs in the liquid crystal layer, and the apparent electric field becomes stronger. It becomes like this. Furthermore, when the effective value of the voltage applied to the display element is lowered, the electric field in the liquid crystal layer is relaxed because ε is <ε8, and the apparent electric field becomes weaker.
′, the hysteresis loop becomes smaller, and
Time-division driving is possible with low voltage.
また、表示体が液晶の場合、式(4)9式(6)かられ
かるように、その立下り時間1.は液晶材料の物性値に
よってほぼ決ってしまう。しかし、本発明者等の実験の
結果、相転移型液晶素子の場合、立上り、立下シ時間は
、上記パラメータの他にも支配因子の存在することがわ
かった。これは液晶層に存在するダスト粒子やコレステ
リック−ネマチック相転移から取り残されたdiscl
ination1ineテ8ル。コ(7)discli
nation 1ineは、はとんど、液晶!−内のダ
スト粒子のまわりに存在する。従って液晶層内に人工的
に異物粒子を設けることにより、これらと同じ効果をも
たらすことができる。E、 P、 aAYNEsの文献
(N onem iss iveE !ectroop
tic 、Display、1975 )によれば、こ
れらの欠陥は゛電圧印加時のコレステリック−ネマチッ
ク相転移時の「核点」としての振舞いをし、これらの欠
陥の存在は液晶表示素子の応答時間を短くすると述べて
いる。In addition, when the display is a liquid crystal, as can be seen from equations (4) and (6), the falling time is 1. is almost determined by the physical property values of the liquid crystal material. However, as a result of experiments conducted by the present inventors, it has been found that, in the case of a phase change type liquid crystal element, there are other controlling factors in addition to the above-mentioned parameters for the rise and fall times. This is caused by dust particles existing in the liquid crystal layer and discs left behind from the cholesteric-nematic phase transition.
ination1inete8ru. Ko (7) discli
Nation 1ine is basically a liquid crystal! − Exists around dust particles within. Therefore, by artificially providing foreign particles in the liquid crystal layer, the same effects as described above can be brought about. E, P, aAYNEs literature
tic, Display, 1975), these defects behave as "nucleus points" during the cholesteric-nematic phase transition when voltage is applied, and the presence of these defects shortens the response time of the liquid crystal display element. Says.
従来、液晶l−内には異物を設けないことが素)製造上
の第一条件であった。これは異物の存在により導電性イ
オンが混入して寿命の低、−ヲ起こさせたり1表示品質
の低下を招くのを恐れたためである。しかし、異物の種
類および混入ti考慮すれば上記問題は回避できること
が実験により確認された。Conventionally, the first condition for manufacturing has been to avoid foreign matter within the liquid crystal. This is because there is a fear that the presence of foreign matter may cause conductive ions to be mixed in, resulting in a shortened lifespan or a deterioration in display quality. However, it has been confirmed through experiments that the above problem can be avoided if the type of foreign matter and the amount of contamination are considered.
したがつて、液晶層内の電界を高めるような微小物体を
液晶層内に設けることにより上で述べた理由により液晶
表示素子の低電圧駆動、高速応答が可能となる。Therefore, by providing a minute object in the liquid crystal layer that increases the electric field within the liquid crystal layer, it becomes possible to drive the liquid crystal display element at a low voltage and achieve high-speed response for the reasons stated above.
第5図は本発明の第1の実施例を示す図である。FIG. 5 is a diagram showing a first embodiment of the present invention.
ポリアミド系樹脂の有機溶媒(シクロヘキサノン、DM
F等)溶液に酸化チタン(’riot、誘電率113)
の粒子を混入させ、これを基板1上に塗布する。次に1
20C付近の温度で溶媒を乾燥させミ 「微よ物体」で
ある粒子が樹脂膜と一体となって電極上に約700個/
crn2の割合で分散される。この場合、少なくとも一
つの微少物体が設けられれば良い。その後、この膜面を
配向処理して配向膜3を設ける。周辺のシール材11の
なかにスペーサ12を分散させて素子のギャップ出しを
行ない、基板間に液晶4を封入する。この場合、ギャッ
プ長dは10μmであるが、これに限定されるものでは
ない。Organic solvent for polyamide resin (cyclohexanone, DM
Titanium oxide ('riot, dielectric constant 113) in solution
particles are mixed in and applied onto the substrate 1. Next 1
After drying the solvent at a temperature around 20C, approximately 700 particles, which are "microscopic objects", are integrated with the resin film and formed on the electrode.
distributed at the rate of crn2. In this case, it is sufficient that at least one minute object is provided. Thereafter, this film surface is subjected to an orientation treatment to provide an orientation film 3. Spacers 12 are dispersed in the surrounding sealing material 11 to create a gap between the elements, and liquid crystal 4 is sealed between the substrates. In this case, the gap length d is 10 μm, but is not limited to this.
表示体である液晶4は、例えばE、 MerCk社のP
CH系液晶ZLI−1132に、コレステリック液晶C
B−15を3%、二色性色素GB−10を3%添加した
螺旋構造をもつゲスト・ホスト型相転移液晶である。螺
旋のピッチは10μmで、d/P0二10である。この
液晶層の初期配向状態での誘電率ε量は4.5.1[圧
を充分高くしてネマチック状態にある時の液晶層の誘電
率εBは17.5であシε−9εs < T iOt
の誘電率ε皺という式(7)の条件を満足する。表示
素子の電圧印加時に於ける液晶層同の電位分布は第3図
(a)のようになり、TiO2粉末近傍での電界は強め
られる。Ti01の粒径を3μm(なお、配向膜厚み0
.1μm)とした時、TiO2粒子9近傍での電界は平
等電界の約3倍となる。従って、低電圧で駆動でき、立
上がり時間が短縮される。The liquid crystal 4 which is a display body is, for example, E, P of MerCk.
CH-based liquid crystal ZLI-1132, cholesteric liquid crystal C
This is a guest-host type phase change liquid crystal with a helical structure containing 3% B-15 and 3% dichroic dye GB-10. The pitch of the spiral is 10 μm and d/P0210. The dielectric constant ε of this liquid crystal layer in its initial alignment state is 4.5.1 [The dielectric constant εB of the liquid crystal layer when the pressure is sufficiently high and it is in a nematic state is 17.5. ε−9εs < T iOt
satisfies the condition of Equation (7) that the dielectric constant ε wrinkles. The potential distribution in the liquid crystal layer when voltage is applied to the display element is as shown in FIG. 3(a), and the electric field near the TiO2 powder is strengthened. The grain size of Ti01 was set to 3 μm (the alignment film thickness was 0).
.. 1 μm), the electric field near the TiO2 particle 9 is about three times the uniform electric field. Therefore, it can be driven with a low voltage and the rise time is shortened.
また、表示体が相転移液晶なので、TiO2粒子9は、
前述したダスト粒子として振舞い、表示素子の応答時間
を短縮する。In addition, since the display body is a phase change liquid crystal, the TiO2 particles 9 are
They behave as the aforementioned dust particles and shorten the response time of the display element.
さらに、ε量くεyなので、ヒステリシス効果を小さく
出来、時分割駆動が容易になる。Furthermore, since ε is smaller than εy, the hysteresis effect can be reduced and time-division driving becomes easier.
表1は本発明者等が確認した本発明の第1の実施例の効
果を示す表である。従来素子に比べて動作電圧は約1v
低く、立上シ、立下り時間は1/2以下に短縮される。Table 1 is a table showing the effects of the first embodiment of the present invention confirmed by the inventors. Operating voltage is approximately 1V compared to conventional elements
The start-up and fall times are reduced to less than 1/2.
本発明の実施例では3μm径の粒末を用いたが、粒子近
傍電界は粒子間距離によって影響される。Although particles with a diameter of 3 μm were used in the examples of the present invention, the electric field near the particles is influenced by the distance between the particles.
第6図に示すように粒子間距離の大きい(a)図よりも
粒子間距離の短い(b)図の方が粒子近傍13の電界は
高くなり、本発明の効果は増大する。As shown in FIG. 6, the electric field near the particles 13 is higher in the figure (b) where the distance between particles is shorter than in the figure (a) where the distance between particles is larger, and the effect of the present invention is increased.
誘電率の大きい材料の代表的なものが金属であり、誘電
率は理論的には無限大である。従って、Cu、Fe、A
t、SUS などすべての金属材料の粉末を用いるこ
とが出来る。A typical material with a high dielectric constant is a metal, and the dielectric constant is theoretically infinite. Therefore, Cu, Fe, A
Powders of all metal materials such as T, SUS, etc. can be used.
第7図は本発明の第2の実施例を示す図である。FIG. 7 is a diagram showing a second embodiment of the present invention.
第7図では、第5図の微少物体がAttosに代わつ九
だけで、他は第5図と同一構造である。In FIG. 7, the minute object in FIG. 5 is 9 instead of Attos, and the other structures are the same as in FIG. 5.
A t t Osの誘電率εVは9.7であるから、ε
+ < A At Os の誘電率εw (t Bとな
り、弐〇〇の条件を満足する。Since the dielectric constant εV of A t t Os is 9.7, ε
The dielectric constant εw (t B) of + < A At Os satisfies the condition 2〇〇.
本実施例に於いても、表示素子に電圧印加する時には液
晶層の誘電率よシも粒子の方の誘電率が大きいから液晶
層内の電界は第3図(a)に示されるように強められる
ため第1の実施例と同様に駆動電圧は低くまた、応答時
間も短縮される。In this example, when voltage is applied to the display element, the electric field in the liquid crystal layer is strengthened as shown in Figure 3(a) because the permittivity of the particles is larger than that of the liquid crystal layer. Therefore, as in the first embodiment, the driving voltage is low and the response time is also shortened.
さらに本実施例に於いては、コレステリック−ネマチッ
ク相転移が生じ、ネマチック相になると液晶ノーの誘電
率の方が粒子の誘電率よりも大きくなり第3図(e)に
示すように液晶層の電界は逆に弱められる。その結果、
ヒステリシスループは小さくなる。表2にその効果を示
す。第4図において定義したVl 、VtおよびV r
V tを比較すると、液晶層に印加される電圧Vt
Vtは約172に小さくなる。Furthermore, in this example, a cholesteric-nematic phase transition occurs, and when the liquid crystal layer becomes a nematic phase, the dielectric constant of the liquid crystal layer becomes larger than that of the particles, as shown in FIG. 3(e). On the contrary, the electric field is weakened. the result,
The hysteresis loop becomes smaller. Table 2 shows the effects. Vl, Vt and Vr defined in FIG.
Comparing Vt, the voltage applied to the liquid crystal layer Vt
Vt is reduced to about 172.
以上の説明は正の誘電異方性を有するコレステリック液
晶を用いたネガ型のゲストホスト型相転移液晶を用いた
表示素子に関するものであるが、負の誘電異方性を有す
るコレステリック液晶を用いたポジ型のゲストホスト型
相、転移液晶を用いた表示素子の場合にも適用出来、ま
た、カイラル・ネマチック液晶に二色性色素を添加した
相転移液晶にも適用出来ることは言うまでもない。更に
は、ヒステリシス現象を有するスメチツク液晶にも本発
明は適用できる。The above explanation relates to a display element using a negative guest-host type phase change liquid crystal using a cholesteric liquid crystal with positive dielectric anisotropy. Needless to say, the present invention can be applied to display elements using positive guest-host type phase and transition liquid crystals, and can also be applied to phase transition liquid crystals in which dichroic dyes are added to chiral nematic liquid crystals. Furthermore, the present invention can also be applied to smectic liquid crystals having a hysteresis phenomenon.
第8図は本発明をTN液晶表示素子に適用した場合の立
上がり時間の温度特性(駆動電圧6V)を示す図である
。FIG. 8 is a diagram showing the temperature characteristics of the rise time (driving voltage 6V) when the present invention is applied to a TN liquid crystal display element.
配向膜はポリアミド樹脂膜をラビングしたもので、液晶
はビフェニール系の液晶E7である。また、素子ギャッ
プは10μmである粒子として3μm径のTie、粉末
を用いた。第8図に示す様に赦晶層の温度が低くなると
表示素子の応答時間は急激に長くなる。しかし、本発明
の表示素子では、微少物体であるTiO□粒子の存在に
より液・晶層内の電界強度が高められるから、(5)式
からも裏づけられるように、第8図■に示す様に低温で
も、第8図■の従来例に比べてかなり速い応答が得られ
る。The alignment film is a rubbed polyamide resin film, and the liquid crystal is biphenyl liquid crystal E7. Further, the device gap was 10 μm, and Tie powder with a diameter of 3 μm was used as the particles. As shown in FIG. 8, when the temperature of the crystalline layer decreases, the response time of the display element increases rapidly. However, in the display element of the present invention, the electric field strength in the liquid/crystal layer is increased due to the presence of TiO□ particles, which are minute objects, so as shown in Figure 8 (■), as supported by equation (5), Even at low temperatures, a considerably faster response can be obtained compared to the conventional example shown in FIG.
第9図は本発明の他の実施例を示す図である。FIG. 9 is a diagram showing another embodiment of the present invention.
微少゛物体は電極面上に限らず第9図(a)に示す様に
基板1上に形成した配向処種した樹脂膜3面上に微少物
体である粒子を入れた溶媒(イソプロピルアルコール等
)をスピンナーにより分散し、溶媒を・乾燥させてとば
す等の公知の手段によって、配向膜3上に設けても良く
、−′さらには、第9図Φ)に示す様に、配向膜3に接
しなくとも良い。The minute object is not limited to the electrode surface, but as shown in FIG. 9(a), a solvent (such as isopropyl alcohol) containing particles as the minute object is placed on the surface of the oriented resin film 3 formed on the substrate 1. may be provided on the alignment film 3 by known means such as dispersing it with a spinner and drying the solvent. It's fine even if you don't have it.
まえ、微!′、オ。形、は実力力にオ、えゎ子つに限定
されずに、ファイバー状、角柱状等、如何なる形状でも
良く、微少物体の大きさも対向する電極方向の長さが、
対向する電極間の表示体の厚さより小さければ任意であ
り、・第9図(b)に示す様在ケイ、C□い。但い微少
物体ヵ8゜性を有するものの場“合、上下−極間が短絡
しない様に、ギャップ長dより径が小さい物質を一方の
基板にのみ設けるか、ギャップ長dの半分より径が小さ
い微書物体を側基板に設ける事が望ましい。Mae, fine! ', O. The shape is not limited to actual strength, but may be any shape such as fiber, prismatic, etc., and the size of the minute object is determined by the length in the direction of the opposing electrodes.
It is arbitrary as long as it is smaller than the thickness of the display body between the opposing electrodes, and the shape shown in FIG. 9(b) is C□. However, if the minute object has an 8° property, in order to prevent a short circuit between the upper and lower electrodes, either provide a material with a diameter smaller than the gap length d only on one substrate, or provide a material with a diameter smaller than half of the gap length d. It is desirable to provide a small writing object on the side substrate.
また、第9図(C)に示す様に、ギャップ長dを一定に
保持するスペーサ11と微沙物体を混在させて、設けて
も良い。Further, as shown in FIG. 9(C), a spacer 11 for keeping the gap length d constant and a microshape object may be provided in combination.
さらに、「微少物体を設ける」とは、第9図(d)に示
す様に、電極2の一部に凸状(凸状の形状は任意である
)の突起物を備える場合をも含む概念であり、電極の対
向部の表示体の厚さを局部的に薄くする手段であれば良
い。Furthermore, "providing a minute object" is a concept that includes the case where a part of the electrode 2 is provided with a convex (the shape of the convex is arbitrary) as shown in FIG. 9(d). Any means that locally reduces the thickness of the display body in the area facing the electrodes may be used.
なお、本発明の実施例に於いて、表示体はゲスト・ホス
ト型相転移液晶、TN型液晶等の液晶を例にとって説明
したが、電界効果型の表示体であれば本発明は適用でき
うる。In the embodiments of the present invention, liquid crystals such as guest-host type phase change liquid crystals and TN type liquid crystals are used as examples of display bodies, but the present invention can be applied to any field effect type display body. .
以上説明した様に本発明によれば、ある程度のギャップ
長を有していても、低電圧で駆動することができ、かつ
、高速応答が可能でコントラスト比が高い表示素子を得
ることができる。As described above, according to the present invention, it is possible to obtain a display element that can be driven at a low voltage, has a high-speed response, and has a high contrast ratio even if it has a certain gap length.
第1図は従来の表示素子構造を示す図、第2図は従来の
液晶素子の特性を示す図、第3図は本発明の要点を示す
図、第4図はヒステリシスの現象を示す図、第5図は本
発明の第1の実施例の断面図、表1は第1の実施例の効
果を示す図1第6図は粒子径の影響を示す図、第7図は
本発明の第2の実施例の断面図、表2は第2−の実施例
の効果を示す図、第8図はTNW′tL晶素子への本発
明適用の効果を示す図、第9図は本発明の他の実施例を
示す図である。
1・・・基板、2・・・電極、3・・・配向処理膜、4
・・・液晶、5・・・二色性色素、7・・・入射光、8
・・・透過光、9・・・粒子、−10・・・等電位線、
11・・・シール材、12・・・第1回
第2図
0 ピッ+P。
表2
4度(0C)
第9 図
(α)
(4ン手続補正書(方式)
%式%
補正をする者
1す1との関イI 特許出願人
IC所 東京都モ代田区丸の内−下目5番1号名
狛15111)株式会社 日 立 製 作 所代表者
三 1)勝 茂
代 理 人
補正 の 対象明細書の発明の詳細な説明の欄、1、本
願明細書第13頁第12行から第15行の「表1は・・
・短縮される。」を次の様に補正する。
「本発明者等が確認した本発明の@lの実施例の効果を
次表に示す。
従来素子に比べて動作電圧は約IV低く、立上り、立下
り時間は172以下に短縮される。」2、本願明細書第
15頁第1行の「くなる。・・・において」を次の様に
補正する。
「くなる。その効果全次表に示す。
第4図において」
3、本JiA明細畜の図面の簡単な説明の欄を次の様に
補正する。
「第1図は従来の表示素子構造を示す図、第2図は従来
の液晶素子の特性を示す図、第3図は本発明の要点を示
す図、第4図はヒステリシスの現象を示す図、第5図は
本発明の第1の実施例の断面図、第6図は粒子径の影響
を示す図、第7図は本発明の第2図の実施例の断面図、
第8図はTNall液晶素子への本発明適用の効果を示
す図、第9図は本発明の他の実施例を示す図である。
1・・・基板、2・・・電極、3・・・配向処理膜、4
・・・液晶、5・・・二色性色素、7・・・入射光、8
・・・透過光、9・・・粒子、10・・・!電位線、1
1・・・シール材、12・・・スペーサ、13・・・粒
子近傍。」4、本練図面を添付図面の様に補正する。
以上
第 1 図
第2 図
ピッチ20
第 4 図
第5図
第6 口
第7 口
第 8 図
シ星崖(1−)Fig. 1 is a diagram showing the structure of a conventional display element, Fig. 2 is a diagram showing the characteristics of a conventional liquid crystal element, Fig. 3 is a diagram showing the main points of the present invention, and Fig. 4 is a diagram showing the phenomenon of hysteresis. FIG. 5 is a sectional view of the first embodiment of the present invention, Table 1 shows the effects of the first embodiment, FIG. 6 is a diagram showing the influence of particle size, and FIG. Table 2 is a cross-sectional view of the second embodiment, Table 2 is a diagram showing the effects of the second embodiment, FIG. 8 is a diagram showing the effects of the present invention applied to a TNW'tL crystal element, and FIG. 9 is a diagram showing the effects of the present invention It is a figure which shows another Example. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Electrode, 3...Alignment treatment film, 4
...Liquid crystal, 5...Dichroic dye, 7...Incident light, 8
...Transmitted light, 9...Particle, -10...Equipotential line,
11...Sealing material, 12...1st 2nd figure 0 Pip+P. Table 2 4 degrees (0C) Figure 9 (α)
(4-procedural amendment (method) % formula % Relationship between the person making the amendment 1 and 1 Patent applicant IC office Marunouchi, Moyota-ku, Tokyo - Name of lower number 5-1
Koma 15111) Representative of Hitachi, Ltd.
3 1) Detailed explanation of the invention in the subject specification of the amendment by Shigeyo Katsu, 1, "Table 1 is...
・It will be shortened. ” is corrected as follows. "The effects of the @l embodiment of the present invention confirmed by the inventors are shown in the following table. Compared to conventional elements, the operating voltage is approximately IV lower, and the rise and fall times are shortened to 172 or less." 2. In the first line of page 15 of the specification of the present application, "become... in" is amended as follows. "The effect is shown in the table below. In Figure 4." 3. The column for the brief explanation of the drawings in this JiA specification is amended as follows. "Figure 1 is a diagram showing the structure of a conventional display element, Figure 2 is a diagram showing the characteristics of a conventional liquid crystal element, Figure 3 is a diagram showing the main points of the present invention, and Figure 4 is a diagram showing the phenomenon of hysteresis. , FIG. 5 is a cross-sectional view of the first embodiment of the present invention, FIG. 6 is a diagram showing the influence of particle size, and FIG. 7 is a cross-sectional view of the embodiment of the present invention shown in FIG. 2.
FIG. 8 is a diagram showing the effect of applying the present invention to a TNall liquid crystal element, and FIG. 9 is a diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Electrode, 3...Alignment treatment film, 4
...Liquid crystal, 5...Dichroic dye, 7...Incident light, 8
...Transmitted light, 9...particles, 10...! potential line, 1
DESCRIPTION OF SYMBOLS 1...Sealing material, 12...Spacer, 13...Particle vicinity. 4. Amend the preliminary drawings as shown in the attached drawings. Above Figure 1 Figure 2 Pitch 20 Figure 4 Figure 5 Figure 6 Mouth 7 Mouth 8 Figure Shi Star Cliff (1-)
Claims (1)
表示体が保持され、上記電極の対向部分及びそれらの間
に位置する表示体によって画素が形成され、対向する電
極間に選択的に印加される駆動電圧によって上記画素の
明暗を制御するものに於いて、上記対向する電極間に駆
動電圧が印加されないときの上記表示体め誘電率より大
きい誘電率を有し、かつ対向する電極方向の長さが上記
対ノ1\ 向する電極間の表示体の厚さより小さい微l物体を設け
ることを特徴とする表示素子。 2、特許請求の範囲第1項に於いて、表示体は液晶であ
ること全特徴とする表示素子。 3、特許請求の範囲第1項に於いて、表示体はヒ小 ステリシス現象を有する液晶であシ、上記微少物体の誘
電率が、駆動電圧が印加されない時の上記ヒステリシス
現象を有する液晶の誘電率より太きく、かつ電圧印加時
の上記ヒステリシス現象を有する液晶の誘電率より小さ
いことを特徴とする表示素子。 4、対向面に電極がそれぞれ設けられる一対の基板間に
相転移液晶が保持され、上記電極の対向部分及びそれら
の間に位置する相転移液晶によって画素が形成され、対
向する電極間に選択的に印加をれる駆動電圧によって上
記画素の明暗を制御するものに於いて、上記対向する電
極の間に、上記対向する電極方向の長さが上記対向する
電極間の小 相転移液晶層の厚さより小さい微l物体を設けることを
特徴とする表示素子。 5.1#許請求の範囲第1項または第4項に於いて、微
少物体はTtOtであることを特徴とする表示素子。 6、特許請求の範囲第1項、第3項または第4項に於い
て J物体はA t20sであることを特徴とする表示
素子。[Claims] 1. A display body is held between a pair of substrates each having electrodes on opposing surfaces, a pixel is formed by the opposing portions of the electrodes and the display body located between them, and the opposing electrodes having a dielectric constant greater than the dielectric constant of the display body when no driving voltage is applied between the opposing electrodes, in which the brightness and darkness of the pixel is controlled by a driving voltage selectively applied between the electrodes; A display element characterized in that a minute object is provided whose length in the direction of the opposing electrodes is smaller than the thickness of the display body between the opposing electrodes. 2. A display element according to claim 1, characterized in that the display body is a liquid crystal. 3. In claim 1, the display body is a liquid crystal having a hysteresis phenomenon, and the dielectric constant of the minute object is equal to the dielectric constant of the liquid crystal having the hysteresis phenomenon when no driving voltage is applied. 1. A display element characterized in that the dielectric constant is larger than that of a liquid crystal and has a dielectric constant smaller than that of a liquid crystal having the above-mentioned hysteresis phenomenon when a voltage is applied. 4. A phase change liquid crystal is held between a pair of substrates each having electrodes on opposing surfaces, and a pixel is formed by the opposing portions of the electrodes and the phase change liquid crystal located between them. The brightness of the pixel is controlled by the driving voltage applied to the pixel, and the length between the opposing electrodes in the direction of the opposing electrodes is greater than the thickness of the small phase transition liquid crystal layer between the opposing electrodes. A display element characterized by providing a small minute object. 5.1# A display element according to claim 1 or 4, wherein the minute object is TtOt. 6. A display element according to claim 1, 3, or 4, wherein the J object is A t20s.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13973881A JPS5842030A (en) | 1981-09-07 | 1981-09-07 | Display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13973881A JPS5842030A (en) | 1981-09-07 | 1981-09-07 | Display element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5842030A true JPS5842030A (en) | 1983-03-11 |
Family
ID=15252219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13973881A Pending JPS5842030A (en) | 1981-09-07 | 1981-09-07 | Display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5842030A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61121087A (en) * | 1984-11-16 | 1986-06-09 | 松下電器産業株式会社 | Liquid crystal display unit |
JPS63225230A (en) * | 1987-03-14 | 1988-09-20 | Fujitsu Ltd | Method for driving liquid crystal |
-
1981
- 1981-09-07 JP JP13973881A patent/JPS5842030A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61121087A (en) * | 1984-11-16 | 1986-06-09 | 松下電器産業株式会社 | Liquid crystal display unit |
JPH027074B2 (en) * | 1984-11-16 | 1990-02-15 | Matsushita Electric Ind Co Ltd | |
JPS63225230A (en) * | 1987-03-14 | 1988-09-20 | Fujitsu Ltd | Method for driving liquid crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920006928B1 (en) | Liquid crystal display device | |
US5223959A (en) | Red, blue and green serial encapsulated liquid crystal display and driving method | |
JP6632626B2 (en) | Liquid crystal display device and driving method thereof | |
KR20020078897A (en) | Ferroelectric liquid crystal display element and fabricating method thereof | |
JPS61137127A (en) | Liquid crystal display element | |
JPH08286176A (en) | Liquid crystal display device | |
US5044733A (en) | Super twisted nematic liquid crystal display device having the standard deviation of the spherical grains being not more than 3% and the dispersion quantity of the spherical grains being 100-200 grains/mm2 | |
JPS6313018A (en) | Liquid crystal display device | |
US5559619A (en) | Liquid crystal electro-optical device and manufacturing method for the same | |
JPS5842030A (en) | Display element | |
US6111632A (en) | Liquid crystalline material operable with low voltage and liquid crystal display panel using the same and liquid crystal display apparatus and manufacturing method of the apparatus | |
KR960705256A (en) | Polymer dispersed ferroelectric liquid crystal display device | |
GB2407645A (en) | Electrophoretic liquid crystal display device | |
US5619353A (en) | Electro-optical device | |
JPS56162722A (en) | Liquid crystal display device | |
JPH07333640A (en) | Liquid crystal display element | |
JP3308071B2 (en) | Liquid crystal element | |
JP3190857B2 (en) | Liquid crystal display device | |
JP3730320B2 (en) | LCD panel | |
JPS63163426A (en) | Ferroelectric liquid crystal element | |
JPH03192324A (en) | Polymer dispersion type liquid crystal display device | |
JPS62153836A (en) | Liquid crystal display device | |
JP2541547Y2 (en) | Particle-dispersed display device | |
KR100648209B1 (en) | Vertical alignment mode lcd | |
JPS62222218A (en) | Liquid crystal display element |