JPS5841941B2 - Casting equipment for light alloys - Google Patents

Casting equipment for light alloys

Info

Publication number
JPS5841941B2
JPS5841941B2 JP110079A JP110079A JPS5841941B2 JP S5841941 B2 JPS5841941 B2 JP S5841941B2 JP 110079 A JP110079 A JP 110079A JP 110079 A JP110079 A JP 110079A JP S5841941 B2 JPS5841941 B2 JP S5841941B2
Authority
JP
Japan
Prior art keywords
cooling
wall thickness
temperature
permanent mold
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP110079A
Other languages
Japanese (ja)
Other versions
JPS5594774A (en
Inventor
雅行 原田
誠 佃
敏夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP110079A priority Critical patent/JPS5841941B2/en
Publication of JPS5594774A publication Critical patent/JPS5594774A/en
Publication of JPS5841941B2 publication Critical patent/JPS5841941B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は軽合金用鋳造装置に関し、特に、鋳造用金属溶
湯を冷却液で強制冷却して鋳造する際の溶湯の凝固条件
を厳密に制御する為の軽合金用鋳造装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a casting apparatus for light alloys, and in particular, a casting apparatus for light alloys for strictly controlling the solidification conditions of the molten metal when the molten metal for casting is forcibly cooled with a cooling liquid. It is related to the device.

本明細書中の用語のうち、■溶湯冷却速度とは溶湯の凝
固点よりも10℃高い温度から凝固点温度までの平均冷
却速度を、■凝固区間冷却速度とは溶湯の凝固開始温度
から凝固終了までの平均冷却速度を、■温度勾配とは凝
固点に達した位置の温度と該位置から任意の距離にある
位置の温度との比を、■凝固界面進行速度とは溶湯の凝
固した前面が未凝固部分に向って進行する速度、を夫々
意味する。
Among the terms used in this specification, ■ Molten metal cooling rate refers to the average cooling rate from a temperature 10°C higher than the freezing point of the molten metal to the freezing point temperature, and ■ Solidification section cooling rate refers to the period from the solidification start temperature of the molten metal to the end of solidification. The average cooling rate of Each means the speed at which it progresses toward a certain part.

鋳型内の金属溶湯特に非鉄軽合金溶湯を、融解状態から
凝固区間冷却速度60℃/分以上の速さで冷却して凝固
させると、ガスホールやシュリンケージ等の鋳造欠陥が
少なくなり、健全で優れた強度の鋳物が得られることは
すでに知られており、冷却液による強制凝固鋳造法とし
て実用化が進められている。
If the molten metal, especially the molten non-ferrous light alloy, in the mold is cooled and solidified from a molten state at a cooling rate of 60°C/min or higher in the solidification zone, casting defects such as gas holes and shrinkage will be reduced, resulting in a sound and solid state. It is already known that castings with excellent strength can be obtained, and its practical use is progressing as a forced solidification casting method using a cooling liquid.

しかし鋳物の形状が複雑で肉厚の変動が太きいものでは
、凝固区間冷却速度のみの調整では不十分であって、厚
内部は薄肉部分に比べて欠陥が多く物性殊に靭性が低く
なる傾向があり、鋳物全体の平均的な強度及び靭性につ
いてみれば必ずしも満足な効果を得ているとは言えない
However, if the shape of the casting is complex and the wall thickness fluctuates widely, adjusting only the cooling rate in the solidification zone is insufficient, and the thick interior tends to have more defects than the thinner part, resulting in lower physical properties, especially toughness. Therefore, it cannot be said that a satisfactory effect is necessarily obtained in terms of the average strength and toughness of the casting as a whole.

即ち鋳物の強度・靭性等は、欠陥の多い厚内部の強度・
靭性等に依存しているからである。
In other words, the strength and toughness of a casting are determined by the strength and toughness of the thick interior where there are many defects.
This is because it depends on toughness etc.

従って強制凝固鋳造法の特徴を有効に発揮させる為には
、薄肉部はもとより厚肉部についても欠陥のない鋳物を
提供し得る様な鋳造法の開発が望まれる。
Therefore, in order to effectively utilize the characteristics of the forced solidification casting method, it is desired to develop a casting method that can provide defect-free castings not only in thin-walled portions but also in thick-walled portions.

本発明者等は前述の様な事情に着目し、肉厚変動の大き
い鋳物を製造する場合でも、肉厚の大小に関係なく各部
位の強度・靭性等を確実に高め得る様な鋳造法の開発を
期して、かねてより種々研究を重ねてきた。
The present inventors focused on the above-mentioned circumstances and developed a casting method that can reliably increase the strength and toughness of each part regardless of the wall thickness, even when manufacturing castings with large wall thickness fluctuations. In anticipation of its development, various studies have been conducted for some time.

その結果、キャビティー内の溶湯をその凝固点より20
〜75℃高温に維持しておき、凝固方向を一方向として
凝固区間冷却速度を1〜b 秒に夫々設定すると共に、キャビティー内の溶湯各部位
の温度勾配と凝固界面進行速度との比を0.5〜2に設
定するという風に、溶湯各部位の降温・凝固条件を微分
的且つ計画的に設定してやれば、上記の目的が達成でき
ることを知った。
As a result, the molten metal in the cavity is heated by 20° below its freezing point.
The temperature was maintained at ~75°C, and the solidification direction was set to one direction, and the cooling rate of the solidification section was set to 1 to b seconds, respectively, and the ratio of the temperature gradient of each part of the molten metal in the cavity to the solidification interface advancement speed was set. I learned that the above objective can be achieved by differentially and systematically setting the temperature lowering and solidifying conditions for each part of the molten metal, such as setting the temperature to 0.5 to 2.

上記数値限定の根拠は夫々以下に示す通りである。The grounds for the above numerical limitations are as shown below.

■ 冷却開始時の温度を溶湯の凝固点より20〜75℃
高温側に設定したのは、冷却液による冷却効率を可及的
一定に維持するうえで上記温度範囲が最適だったことに
よる。
■ Set the temperature at the start of cooling to 20 to 75 degrees Celsius below the freezing point of the molten metal.
The temperature was set on the high temperature side because the above temperature range was optimal for maintaining the cooling efficiency of the coolant as constant as possible.

■ 溶湯冷却速度を凝固点以上10℃から凝固点温度ま
での冷却速度としたのは、凝固物の金属組織は、凝固直
前乃至凝固点通過時における溶湯の冷却速度による影響
を強(受けるという、本発明者等の知見に基づいて定め
たものである。
■ The cooling rate of the molten metal was set from 10°C above the freezing point to the freezing point temperature because the metal structure of the solidified material is strongly influenced by the cooling rate of the molten metal from just before solidification to when passing through the freezing point. This was determined based on the knowledge of

■ 溶湯冷却速度を1〜b 鋳造物の金属組織を判別したときマクロ結晶粒、ミクロ
結晶粒、デンドライト主軸間隔、デンドライト第2枝間
隔、金属間化合物等のすべてを微細化するうえで、冷却
速度を1℃/秒以上にすべきこと、また引張り強さや耐
力の向上効果は1〜b 伸び改善効果は4〜b おり、冷却速度の上限は5℃/秒程度にすべきである、
等の実験結果による。
■ Cooling rate of molten metal from 1 to b When determining the metallographic structure of the casting, the cooling rate is important for refining all of the macrocrystal grains, microcrystalline grains, dendrite main axis spacing, dendrite secondary branch spacing, intermetallic compounds, etc. The cooling rate should be 1°C/sec or more, the tensile strength and yield strength improvement effect should be 1-b, the elongation improvement effect should be 4-b, and the upper limit of the cooling rate should be about 5°C/sec.
Based on experimental results such as

■ 凝固区間冷却速度を1〜b たのは、これが鋳物各部位の引張り強さ、耐力、伸び等
に著しく影響するからである。
(2) The cooling rate in the solidification zone was set at 1-b because this significantly affects the tensile strength, yield strength, elongation, etc. of each part of the casting.

即ちこれらの物性を優れたものにするためには、凝固区
間冷却速度を少なくとも1℃/秒以上にすべきである。
That is, in order to make these physical properties excellent, the cooling rate in the solidification section should be at least 1° C./second or higher.

そして引張り強さ及び耐力の向上効果は2〜b 向上効果は5〜b 従って好ましい凝固区間冷却速度は1〜b秒で、より好
ましいのは5〜b ■ 更に温度勾配と凝固界面進行速度との比を0.5〜
2に設定したのは、前記条件部ち冷却開始温度、溶湯冷
却速度及び凝固区間冷却速度の各設定条件だけでは当初
の目的が達成できないという本発明者等の実験結果によ
る。
The improvement effect of tensile strength and yield strength is 2-b. The improvement effect is 5-b. Therefore, the preferable solidification zone cooling rate is 1-b seconds, more preferably 5-b. Ratio 0.5~
2 was set based on the experimental results of the present inventors that the original objective could not be achieved only by setting the cooling start temperature, molten metal cooling rate, and solidification zone cooling rate in the above-mentioned condition sections.

即ち前記比が0.5未満であると鋳造物各部位の引張り
強さ、伸び及び耐力は共に乏しくなるが、前記比を0.
5以上にすると物性は著しく向上する。
That is, if the ratio is less than 0.5, the tensile strength, elongation, and yield strength of each part of the cast product will be poor.
When the value is 5 or more, the physical properties are significantly improved.

またその物性の向上効果は、前記比が1〜2の範囲でほ
ぼ飽和状態に達する。
Further, the effect of improving the physical properties reaches a nearly saturated state when the ratio is in the range of 1 to 2.

この様に強制凝固鋳造法の効果を最大限有効に発揮させ
る為には、溶湯の冷却開始温度、溶湯冷却速度、凝固区
間冷却速度、及びキャビティー内容部位の溶湯の温度勾
配と凝固界面進行速度との比等を厳密にコントロールし
なげればならず、しかも鋳造物の肉厚が連続的又は断続
的に複雑に変動している場合には、前記したコントロー
ルを微分的に実施しなげればならない。
In order to maximize the effects of the forced solidification casting method, it is necessary to control the cooling start temperature of the molten metal, the cooling rate of the molten metal, the cooling rate of the solidification zone, the temperature gradient of the molten metal within the cavity, and the rate of progress at the solidification interface. It is necessary to strictly control the ratio between No.

本発明の装置は、前述の如き制御凝固鋳造法に有利に適
用される装置であって、前記した溶湯の冷却・凝固条件
のコントロールを確実にしかも自動的に実施し得る様に
構成したものである。
The apparatus of the present invention is advantageously applied to the above-mentioned controlled solidification casting method, and is configured to reliably and automatically control the cooling and solidification conditions of the molten metal. be.

即ち本発明に係る軽合金用鋳造装置とは、肉厚が上下方
向に亘って連続的又は断続的に変動する軽合金鋳物を強
制凝固鋳造するための装置であって、永久鋳型、中子、
加熱装置及び冷却装置を備え、中子には鋳造品の肉厚変
化対応位置に測温器が取り付けられ、また永久鋳型をと
っかこんで形成される加熱装置は、前記測温器取り付は
位置に対応する位置に夫々独立して発熱する加熱体を配
置してなり、且つ前記測温器と加熱装置は、鋳造品の前
記肉厚変動に応じて予め設定記憶された奪熱速度と比較
し、その差に応じて昇温又は降温を指示する奪熱速度制
御装置を介して電気的に接続され、更に、永久鋳型を下
部より順次冷却媒体中に浸漬させてキャビティー内溶湯
の凝固界面を徐徐に上昇させる速度を、鋳造品各部位の
肉厚に反比例させて相対的に調整する調整装置を設けて
なるところに要旨が存在する。
That is, the light alloy casting apparatus according to the present invention is an apparatus for forced solidification casting of light alloy castings whose wall thickness varies continuously or intermittently in the vertical direction, and includes a permanent mold, a core,
The heating device is equipped with a heating device and a cooling device, and a temperature measuring device is attached to the core at a position corresponding to the change in wall thickness of the cast product. Heating elements that generate heat independently are arranged at positions corresponding to the respective positions, and the temperature measuring device and the heating device compare the heat removal rate with a preset and stored heat removal rate according to the wall thickness variation of the cast product. , is electrically connected via a heat removal rate control device that instructs temperature increase or decrease according to the difference, and furthermore, the permanent mold is immersed in the cooling medium sequentially from the bottom to cool the solidification interface of the molten metal in the cavity. The gist is that an adjustment device is provided to relatively adjust the rate of gradual increase in inverse proportion to the wall thickness of each part of the cast product.

以下実施例たる図面に基づいて本発明の構成及び作用効
果を説明するが、下記は代表的な例示にすぎず、前・後
記の趣旨に沿って適宜設計を変更して実施することはす
べて本発明の範囲に含まれる。
The configuration and effects of the present invention will be explained below based on the drawings which are examples, but the following are only representative examples, and all modifications to the design and implementation in accordance with the spirit of the preceding and subsequent descriptions are entirely within the scope of the present invention. within the scope of the invention.

第1図は本発明の鋳造装置を例示する概略縦断面説明図
で、冷却液槽1の上部には加熱装置2が配置され、且つ
永久鋳型3がチェーン4等を介して昇降駆動源(例えば
無段変速サーボモータ)5によって昇降可能に配置され
る。
FIG. 1 is a schematic vertical cross-sectional view illustrating the casting apparatus of the present invention, in which a heating device 2 is disposed above a cooling liquid tank 1, and a permanent mold 3 is connected to a lifting drive source (e.g. It is arranged so that it can be moved up and down by a continuously variable speed servo motor (5).

そして永久鋳型3の内部には砂型や金属型等で構成され
る中子6が配置され、永久鋳型3と中子6の隙間には目
的とする鋳造品の形状に応じたキャビティー1を構成ス
ル。
A core 6 made of a sand mold, a metal mold, etc. is arranged inside the permanent mold 3, and a cavity 1 is formed in the gap between the permanent mold 3 and the core 6 according to the shape of the intended cast product. Sur.

中子6には、キャビティー7の体積変動部即ち鋳造品の
肉厚変動部に対応する位置に、熱電対等の測温器8a、
8b、・・・・・・を多数配置して、キャビティー同各
部位の溶湯温度を測定し得る様に構成する。
The core 6 is provided with a temperature measuring device 8a such as a thermocouple at a position corresponding to the volume varying portion of the cavity 7, that is, the wall thickness varying portion of the cast product.
A large number of 8b, . . . are arranged to measure the temperature of the molten metal at each part of the cavity.

また加熱装置2は、前記測温器8a。8b、−・・・・
・の配置部位に極力対応する様、夫々独立して発熱する
発熱体9a、9b、・・・・・・が配置される。
Further, the heating device 2 is the temperature measuring device 8a. 8b, -...
Heat generating elements 9a, 9b, .

そして測温器8a、8b、・・・・・・と発熱体9a
j 9b t・・−・・は、奪熱速度制御装置〔例えば
3位置(高・低・止)制御機構を備えたもので発熱体9
a、・・・・・・としてガスバーナを用いたときは、該
バーナにおける電動バルブを全開・半開・閉の様に自動
制御できる装置〕10を介して電気的に接続される。
And temperature measuring devices 8a, 8b,... and heating element 9a
j 9b t...- is a heat removal rate control device [for example, a device equipped with a 3-position (high, low, stop) control mechanism, which controls the heating element 9
When a gas burner is used as a, . . . , it is electrically connected via a device 10 that can automatically control the electric valve in the burner to fully open, half open, or close.

奪熱速度制御装置10には、目的とする鋳造品に応じて
設定された各部位の最適降温条件のプログラムが記憶さ
れており、前記測温器8a、8b、・・・・・・により
感知されたキャビティー同各部位の溶湯温度と前記プロ
グラムで設定された温度とを対比し、溶湯温度が低すぎ
るときは対応位置の発熱体の加熱出力を増し、また溶湯
温度が高すぎるときは対応位置の発熱体の加熱出力を低
下し、これによってキャビティー同各部位の溶湯が常時
最適温度となる様に奪熱速度を調節する。
The heat removal rate control device 10 stores a program of optimal temperature lowering conditions for each part set according to the target cast product, and the temperature is sensed by the temperature measuring devices 8a, 8b, . . . Compare the molten metal temperature at each part of the same cavity with the temperature set in the program, and if the molten metal temperature is too low, increase the heating output of the heating element at the corresponding position, and if the molten metal temperature is too high, take appropriate action. The heating output of the heating element at the position is lowered, thereby adjusting the heat removal rate so that the molten metal at each part of the cavity is always at the optimum temperature.

従って目的とする鋳造品に上下方向の肉厚変動があって
も、各部位の冷却開始温度及び奪熱速度をその肉厚に応
じて正確に制御することができる。
Therefore, even if the target cast product has wall thickness variations in the vertical direction, the cooling start temperature and heat removal rate of each part can be accurately controlled according to the wall thickness.

尚加熱装置2としては、都市ガス、プロパンガス、天然
ガス等のガス体燃料、軽油、重油等の液体燃料を使用す
るもの、抵抗体、高周波・中周波・低周波の誘導電磁気
による電気加熱等を採用することができ、直接加熱及び
間接加熱の如何は問わない。
The heating device 2 may be one that uses gaseous fuel such as city gas, propane gas, or natural gas, or liquid fuel such as light oil or heavy oil, a resistor, or electric heating using induced electromagnetism at high, medium, or low frequencies. It does not matter whether direct heating or indirect heating is used.

しかし図ではガス体による直接加熱法を採用した例を示
した。
However, the figure shows an example in which a direct heating method using a gas body is adopted.

即ち加熱装置2には、ベンチュリー構造等の混合器11
を介してガス供給管12及び空気供給管13が接続され
ており、バルブ14を開閉してガス供給量を調節するこ
とによって、混合器11部分では適量の空気が吸引供給
される。
That is, the heating device 2 includes a mixer 11 such as a venturi structure.
A gas supply pipe 12 and an air supply pipe 13 are connected through the valve 14, and by opening and closing a valve 14 to adjust the gas supply amount, an appropriate amount of air is sucked and supplied to the mixer 11 portion.

そしてこの混合ガスは各発熱体9a。9b、・・・・・
・に送られ、永久鋳型の各部を外側から加熱する。
This mixed gas is then supplied to each heating element 9a. 9b...
・Heat each part of the permanent mold from the outside.

ここで各発熱体9a 、 sb 、・・・・・・からの
混合ガス噴出量を調節可能にしておき、前記プログラム
に応じて各部位の加熱出力を調整する様にすれば、キャ
ビティ−7内各部の溶湯体積の犬・小にかかわらず、降
温速度を一定に制御するととができる。
If the amount of mixed gas ejected from each heating element 9a, sb, . . . is made adjustable, and the heating output of each part is adjusted according to the program, Regardless of whether the volume of molten metal in each part is large or small, it is possible to control the cooling rate at a constant rate.

この様にして溶湯の凝固開始温度を適正に調節した後、
昇降駆動源5を作動して永久鋳型3を冷却液槽1内の冷
却液に浸漬し、溶湯を凝固させるが、浸漬速度を一律に
するとキャビティー内各部の体積変動によって冷却・凝
固条件が変わり、高品質の鋳型が得られなくなる。
After properly adjusting the solidification start temperature of the molten metal in this way,
The elevating drive source 5 is operated to immerse the permanent mold 3 in the cooling liquid in the cooling liquid tank 1 to solidify the molten metal. However, if the immersion speed is made constant, the cooling and solidification conditions will change due to volume fluctuations of various parts within the cavity. , it becomes impossible to obtain high-quality molds.

そこで本発明では、永久鋳型3の浸漬速度についても、
キャビティー内各部の体積変動に応じて調整し得る様に
している。
Therefore, in the present invention, regarding the dipping speed of the permanent mold 3,
It is designed to be able to be adjusted according to the volume fluctuations of each part inside the cavity.

即ち永久鋳型3の降下位置を位置検知装置(例えばダイ
ヤルゲージと同様のレベル計が用いられ、高さ位置を電
気信号に変換する装置)15で検知し得る様にし、これ
と昇降駆動源5とは、降下速度調整装置(例えば富士電
機株式会社製のプログラムコントローラが用いられ予め
基準降下速度をプログラムしておき、実際の降下速度と
比較することによって前記昇降駆動源5のサーボモータ
の回転速度を制御する)16を介して電気的に接続され
る。
That is, the lowering position of the permanent mold 3 can be detected by a position detecting device 15 (for example, a level meter similar to a dial gauge is used, and a device that converts the height position into an electrical signal), and this and the lifting drive source 5 A descending speed adjusting device (for example, a program controller manufactured by Fuji Electric Co., Ltd.) is used to program a reference descending speed in advance, and by comparing it with the actual descending speed, the rotational speed of the servo motor of the lifting drive source 5 is determined. control) 16.

降下速度調整装置16には、目的とする鋳造品各部位の
肉厚変動に応じた最適浸漬速度が記憶されており、位置
検知装置15によって検知されるキャビティー内の体積
変動位置に応じて、降下速度を制御しつつ浸漬速度を調
整する。
The descending speed adjusting device 16 stores the optimum immersion speed according to the wall thickness variation of each part of the target cast product, and depending on the position of the volume variation in the cavity detected by the position detecting device 15, Adjust the immersion speed while controlling the descent speed.

これによりキャビティー同各部位の体積変動に関係なく
、各部位の溶湯冷却速度、凝固区間冷却速度及び温度勾
配と凝固界面進行速度の比を、前記した条件に厳密に設
定することができる。
As a result, the molten metal cooling rate, the solidification zone cooling rate, and the ratio of the temperature gradient to the solidification interface advancement speed of each part can be set strictly to the conditions described above, regardless of volume fluctuations in each part of the cavity.

尚冷却液は、冷却液槽1の下方適所から連続的に送給す
ると共に、上方の越流口1aから連続的に排出し、液位
を一定に保持しつつ液温を可及的一定維持し得る様にす
る。
The coolant is continuously supplied from a suitable location below the coolant tank 1, and is also continuously discharged from the overflow port 1a above, keeping the liquid level constant and the liquid temperature as constant as possible. make it possible.

第2図は本発明の他の実施例で、冷却手段を僅かに変更
した他は第1図の例と実質的に同一である。
FIG. 2 shows another embodiment of the invention, which is substantially the same as that of FIG. 1, except for slight changes in the cooling means.

即ちこの例では、冷却液槽1における冷却液面の上位に
冷却液噴射ノズル17が配置されており、どのノズル1
7から噴射される冷却液によって、永久鋳型3を外周か
ら冷却した後、冷却液に浸漬して溶湯を凝固する様にし
ている。
That is, in this example, the coolant injection nozzle 17 is arranged above the coolant level in the coolant tank 1, and which nozzle 1
After the permanent mold 3 is cooled from the outer periphery by the cooling liquid injected from 7, it is immersed in the cooling liquid to solidify the molten metal.

この方法であれば、冷却開始時の液温を更に一定に保つ
ことができるから、前記した冷却・凝固のための温度制
御を一段と正確に実施できるので好ましい。
This method is preferable because the liquid temperature at the start of cooling can be kept more constant, and the temperature control for cooling and solidification described above can be performed more accurately.

第3図は本発明の更に他の実施例で、大型の鋳造品を得
る場合に有利に使用される装置を例示するものである。
FIG. 3 is a further embodiment of the invention, illustrating an apparatus which may be advantageously used in obtaining large castings.

即ち鋳造品が大型であると、永久鋳型3の昇降に大きな
設備と駆動源が必要になり、経済的な負担が増大する。
That is, if the cast product is large, large equipment and a driving source are required to raise and lower the permanent mold 3, which increases the economic burden.

そこで本例では永久鋳型3(及び加熱装置2)を冷却液
槽1内に固定的に配置し、冷却するときは冷却液を給水
口1bからゴ定速度で供給することによって冷却液槽1
内の液位を高め、永久鋳型3を冷却する様にしている。
Therefore, in this example, the permanent mold 3 (and the heating device 2) is fixedly arranged in the cooling liquid tank 1, and when cooling, the cooling liquid is supplied from the water supply port 1b at a constant rate to the cooling liquid tank 1.
The liquid level inside is raised to cool the permanent mold 3.

この場合は鋳造品の肉厚変動に応じて液位の上昇速度を
正確に制御する必要があるが、その手段としては、たと
えば冷却液槽1の底部に設けた液位検出器(水圧を測定
しこれを圧力に換算して液面高さを検出する様な液面計
)18と冷却液供給ポンプ19(又はバルブ)とを、液
位上昇速度制御装置(例えば前記プログラムコントロー
ラを用い、予め水面上昇速度を線図的に記憶させておき
、前記液面計で検出された液面高さを比較し、差分した
結果に基づいて水配管の電動バルブの開度を自動制御し
水供給量を調節する)20を介して電気的に接続するこ
とによって行なわれる。
In this case, it is necessary to accurately control the rate of increase in the liquid level according to changes in the wall thickness of the cast product. Then, the liquid level rise rate control device (for example, the program controller described above) is used to control the liquid level rise rate control device (for example, the program controller) The water level rise speed is memorized graphically, the liquid level height detected by the liquid level gauge is compared, and the opening degree of the electric valve of the water piping is automatically controlled based on the difference result, and the amount of water supplied is adjustment) 20.

即ち液位検出器18は液位の上昇によって増大する液圧
の変化を利用して液面位置を検知する。
That is, the liquid level detector 18 detects the liquid level position using changes in liquid pressure that increase as the liquid level rises.

また液位上昇速度制御装置20には、目的とする鋳造品
の肉厚変動に応じて予め設定した冷却速度のプログラム
が記憶されており、且つこれと上記検出器18によって
検知される液位の上昇速度を比較演算する機構も備えて
おり、これに応じて供給ポンプ19からの給液速度を適
正に制御し得る様に構成される。
In addition, the liquid level rise rate control device 20 stores a cooling rate program that is preset according to the wall thickness variation of the target cast product, and also stores a cooling rate program that is set in advance according to the wall thickness variation of the target cast product. It is also equipped with a mechanism for comparing and calculating the rising speed, and is configured to appropriately control the liquid supply speed from the supply pump 19 accordingly.

□尚液位検出器18としては、図示した如き液圧を利用
したもののほか、液槽の高さ方向に多数のフロート型液
位検知器を設けて液面を連続的に検知する様にしたもの
等、を利用することもできる。
□In addition to the liquid level detector 18 that uses liquid pressure as shown in the figure, a number of float type liquid level detectors are installed in the height direction of the liquid tank to continuously detect the liquid level. You can also use things, etc.

また本例では、永久鋳型3と共に加熱装置2も順次液に
浸漬されるから、液位の上昇に応じて各加熱体9a、9
b、・・・・・・の加熱を停止し或は冷却液の浸入を防
止し得る様に、各加熱体9a、9b2.・・・・・・を
液位上昇速度制御装置20にも接続し、各加熱体9a、
9b、・・・・・・の加熱停止等を自動制御し得る様に
することが望ましい。
Further, in this example, since the heating device 2 is sequentially immersed in the liquid together with the permanent mold 3, each heating element 9a, 9 is immersed in the liquid as the liquid level increases.
Each heating element 9a, 9b2. . . . is also connected to the liquid level rise rate control device 20, and each heating element 9a,
It is desirable to be able to automatically control heating stop, etc. of 9b, . . . .

尚この例における冷却前の溶湯の降温速度の利潤及び冷
却開始温度の制御は、第1図の例と同様に行なわれる。
In this example, the profit of the cooling rate of the molten metal before cooling and the control of the cooling start temperature are performed in the same manner as in the example shown in FIG.

また冷却後は、排水口21を開いて冷却液を排出した後
、永久鋳型3を適当な手段で冷却液槽1部分から取り出
せばよい。
After cooling, the drain port 21 is opened to discharge the cooling liquid, and then the permanent mold 3 may be taken out from the cooling liquid tank 1 portion by an appropriate means.

この種の装置であれば、溶湯の冷却・凝固過程で永久鋳
型3を昇降させる必要がないから、大型鋳造品を鋳造す
るのに適している。
This type of device is suitable for casting large-sized castings because it is not necessary to raise and lower the permanent mold 3 during the cooling and solidification process of the molten metal.

本発明は概略以上の様に構成されているが、その具体的
な構成は図例に限定される訳ではなく、永久鋳型及び中
子の形状・構造等は目的とする鋳造品の形状に応じて変
更すべきで、また加熱装置の構造や加熱手段、冷却液槽
の形状等は現場の状況に応じて適宜変更することができ
る。
Although the present invention is roughly configured as described above, the specific configuration is not limited to the illustrated example, and the shape and structure of the permanent mold and core may vary depending on the shape of the intended cast product. The structure of the heating device, the heating means, the shape of the cooling liquid tank, etc. can be changed as appropriate depending on the situation at the site.

また溶湯の降温速度及び冷却開始温度を自動制御する機
構、永久鋳型の降下速度或は冷却液位の上昇速度を自動
制御する機構等については、コンピュータを利用すれば
よい。
Further, a computer may be used for a mechanism for automatically controlling the rate of cooling of the molten metal and the cooling start temperature, a mechanism for automatically controlling the rate of descent of the permanent mold, or the rate of increase of the cooling liquid level.

本発明は以上の様に構成されており、溶湯の冷却前の降
温速度や冷却開始温度、冷却速度、凝固区間冷却速度、
温度勾配と凝固界面進行速度の比等を、目的とする鋳造
品の肉厚変動(即ちキャビティーの体積変動)に応じて
厳密且つ適正に自動制御できるから、極めて複雑な形状
の鋳造品であっても、全体に亘って均質で卓越した物理
的緒特性を有するものを得るこ、とができ、鋳造装置と
して極めて優れたものである。
The present invention is configured as described above, and includes temperature reduction rate, cooling start temperature, cooling rate, solidification zone cooling rate,
The ratio of the temperature gradient to the solidification interface advancement speed can be precisely and appropriately automatically controlled according to the wall thickness variation of the target cast product (i.e. the cavity volume variation), so it is possible to control the ratio of the temperature gradient and the solidification interface progress rate, etc. However, it is possible to obtain a product that is homogeneous throughout and has excellent physical characteristics, making it an extremely excellent casting device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明に係る鋳造装置を例示する概略縦断
面説明図である。 1・・・・・・冷却液槽、2・・・・・・加熱装置、3
・・・・・・永久鋳型、6・・・・・・中子、I・・・
・・・キャビティー、8at8b・・・・・・測1温器
、9a、、9b・・・・・・発熱体、10・・・・・・
奪熱速度制御装置、15・・・・・・降下位置検知装置
、16・・・・・・降下速度制御装置、18・・・・・
・液位検出器、20・−・・・・液位上昇速度制御装置
1 to 3 are schematic vertical cross-sectional explanatory views illustrating a casting apparatus according to the present invention. 1... Cooling liquid tank, 2... Heating device, 3
...Permanent mold, 6... Core, I...
...Cavity, 8at8b...1 temperature measuring device, 9a,,9b...Heating element, 10...
Heat removal rate control device, 15...Descent position detection device, 16...Descent rate control device, 18...
-Liquid level detector, 20---Liquid level rising speed control device.

Claims (1)

【特許請求の範囲】[Claims] 1 肉厚が上下方向に亘って連続的又は断続的に変動す
る軽合金鋳物を強制的に凝固鋳造するための装置であっ
て、永久鋳型、中子、加熱装置及び冷却装置を備え、中
子には鋳造品の肉厚変化対応位置に測温器が取り付けら
れ、また永久鋳型をどっかこんで形成される加熱装置は
、前記測温器域り付は位置に対応する位置に夫々独立し
て発熱する加熱体を配置してなり、且つ前記測温器と加
熱装置は、鋳造品の前記肉厚変動に応じて予め設定記憶
された奪熱速度と比較しその差に応じて昇温又は降温を
指示する奪熱速度制御装置を介して電気的に接続され、
更に永久鋳型を下部より順次冷却媒体中に浸漬させてキ
ャビティー内溶湯の凝固界面を徐々に上昇させるときの
該上昇速度を、鋳造品各部位の肉厚に反比例させて相対
的に調整する調整装置、を設げてなることを特徴とする
軽合金用鋳造装置。
1. A device for forcibly solidifying and casting light alloy castings whose wall thickness varies continuously or intermittently in the vertical direction, and is equipped with a permanent mold, a core, a heating device, and a cooling device, and includes a permanent mold, a core, a heating device, and a cooling device. A temperature measuring device is attached to a position corresponding to the change in wall thickness of the cast product, and a heating device formed by inserting a permanent mold somewhere has a temperature measuring device attached at a position corresponding to the position of the temperature measuring device. A heating element that generates heat is arranged, and the temperature measuring device and the heating device compare the heat removal rate set and stored in advance according to the variation in the wall thickness of the cast product, and raise or lower the temperature according to the difference. electrically connected via a heat removal rate controller that directs the
Furthermore, when the permanent mold is sequentially immersed in a cooling medium from the bottom to gradually raise the solidification interface of the molten metal in the cavity, the rising speed is relatively adjusted in inverse proportion to the wall thickness of each part of the cast product. A casting device for light alloy, characterized in that it is equipped with a device.
JP110079A 1979-01-08 1979-01-08 Casting equipment for light alloys Expired JPS5841941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP110079A JPS5841941B2 (en) 1979-01-08 1979-01-08 Casting equipment for light alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP110079A JPS5841941B2 (en) 1979-01-08 1979-01-08 Casting equipment for light alloys

Publications (2)

Publication Number Publication Date
JPS5594774A JPS5594774A (en) 1980-07-18
JPS5841941B2 true JPS5841941B2 (en) 1983-09-16

Family

ID=11492055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP110079A Expired JPS5841941B2 (en) 1979-01-08 1979-01-08 Casting equipment for light alloys

Country Status (1)

Country Link
JP (1) JPS5841941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334013Y2 (en) * 1985-07-31 1991-07-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334013Y2 (en) * 1985-07-31 1991-07-18

Also Published As

Publication number Publication date
JPS5594774A (en) 1980-07-18

Similar Documents

Publication Publication Date Title
RU2533221C1 (en) Method to eliminate shrinkage cavity in ingot being cast
EP1110645B1 (en) Liquid metal bath furnace and casting method
KR890001609B1 (en) Molten metal level control in continuous casting
JPS6038228B2 (en) Manufacturing method of thin metal wire
US4567935A (en) Molten metal level control in continuous casting
US5355937A (en) Method and apparatus for the manufacture of a metal strip with near net shape
JP5831806B2 (en) Continuous casting apparatus and continuous casting method
JPS5841941B2 (en) Casting equipment for light alloys
JPH04506934A (en) Method and apparatus for controlling and regulating mold filling rate and casting pressure in low-pressure chill casting machines
SE430766B (en) PROCEDURE AND APPARATUS FOR CONTINUOUSLY CASTING A RODFORMED PRODUCT
GB2109723A (en) Controlling the molten metal level in DC or EM continuous casting
JPS6333153A (en) Cast starting method for multi-connecting electromagnetic casting
JPH0426935B2 (en)
JPH11197796A (en) Ingot-making apparatus for molten steel
JP3085493B2 (en) Gutter type hot water supply method and apparatus
US637120A (en) Manufacture of electrical fuses.
JPS61226157A (en) Method for continuous casting of molten metal
JPH07236958A (en) Device for controlling position of molten metal surface in continuous molding equipment
KR820001360B1 (en) Process for the continuous casting of tubular products
JP2000202599A (en) Continuous casting method
JPS58110169A (en) Charging method
JP2021087959A (en) Method for detecting floating matter on surface of molten metal in low pressure casting
JPS5831045A (en) Vacuum degassing method of molten metal and its device
JP2000015402A (en) Method for controlling flow rate of molten metal in casting machine, and controller therefor
JPH06269921A (en) Trough type molten metal supplying device