JPS5841842A - Preparation of chloroalkylamine hydrochloride - Google Patents

Preparation of chloroalkylamine hydrochloride

Info

Publication number
JPS5841842A
JPS5841842A JP14135681A JP14135681A JPS5841842A JP S5841842 A JPS5841842 A JP S5841842A JP 14135681 A JP14135681 A JP 14135681A JP 14135681 A JP14135681 A JP 14135681A JP S5841842 A JPS5841842 A JP S5841842A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
reaction
hydrochloride
hydrochloric acid
alkanolamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14135681A
Other languages
Japanese (ja)
Other versions
JPS6325577B2 (en
Inventor
Akio Egawa
江川 章雄
Masayuki Okada
正之 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp, Daicel Chemical Industries Ltd filed Critical Daicel Corp
Priority to JP14135681A priority Critical patent/JPS5841842A/en
Publication of JPS5841842A publication Critical patent/JPS5841842A/en
Publication of JPS6325577B2 publication Critical patent/JPS6325577B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare the titled compound useful as a synthetic intermediate of the raw material of pharmaceuticals, etc., in high yield and efficiency, using a low-cost chlorinating agent, by reacting a molten alkanolamine salt with hydrogen chloride as a chlorinating agent while removing water from the system. CONSTITUTION:The objective compound is prepared by (1) reacting an alkanolamine with hydrochloric acid to obtain molten alkanolamine hydrochloride (DAAE.HCl) and (2) introducing hydrogen chloride into the molten DAAE.HCl at a rate of 0.05-0.5mol/Hr based on 1mol of DAAE.HCl at 140-150 deg.C for 35-40hr while removing water from the reaction system. The unreacted hydrogen chloride is reused after dehydration or recovered as hydrochloric acid by dissolving in water. EFFECT:The objective compound can be prepared easily with simplified apparatus and operations, and the unreacted hydrogen chloride can be reused as it is to the reaction. USE:A starch modifier, etc.

Description

【発明の詳細な説明】 この発明は医薬、農薬の原料など合成°中間体として有
用なりロロアルキルアミンを塩酸塩の形で製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing loloalkylamine in the form of a hydrochloride, which is useful as a synthetic intermediate for raw materials for pharmaceuticals and agricultural chemicals.

R1 クロロアルキルアミンは一般弐Cg−A−N\R2(A
はアルキレン基)で表わされ、3−クロロプロピルアミ
ンの如きNに置換基のないもの(R1=R2=H)とジ
エチルアミノエチルクロライド(A=エチレン基、R’
=R”=エチル基)の如きN−置換アミノアルキルクロ
リ゛ドとがあるが本発明はそのいずれのものを得るのに
も適用できる。本発明ではクロロアルキルアミンは塩酸
塩の形で得られ、通常そのま\の形で、又はしばしば水
溶液として用いられる。もちろん必要に応じ塩型から遊
離型に変えて用いることもできる。
R1 Chloroalkylamine is a general 2Cg-A-N\R2(A
is represented by an alkylene group), and those without a substituent on N such as 3-chloropropylamine (R1=R2=H) and diethylaminoethyl chloride (A=ethylene group, R'
=R''=ethyl group), and the present invention can be applied to obtain any of them.In the present invention, the chloroalkylamine is obtained in the form of a hydrochloride. It is usually used in its original form or often as an aqueous solution.Of course, it can also be used by changing from the salt form to the free form if necessary.

ジエチルアミンエチルクロライド塩酸塩(以下DEAC
−HC#と略す)は本発明の目的物のうち代表的なもの
で、澱粉変性剤として有用である。
Diethylamine ethyl chloride hydrochloride (DEAC)
-HC#) is a typical object of the present invention and is useful as a starch modifier.

また、特公昭29−2434、同36−21342など
には医薬として用いられるフェノチアジン化合物を合成
するために第3級アミノアルキルハライドが用いられる
ことが記されている。こ\で用いられている化合物は上
記一般式においてAが炭素数2〜6、なるべくは3.〜
4の2価の低級アルキレン基であり、睨R2とは鼻ルキ
ル基、なるべくはメチル基、エチル基またはイソプロピ
ル基で、RとRか窒素原子と結合して複素環、なるべく
ピロリジノ基またはピペリジノ基を形成することもある
ようなものである(特公昭36−21342 )。
Furthermore, Japanese Patent Publications No. 29-2434 and No. 36-21342 describe the use of tertiary aminoalkyl halides to synthesize phenothiazine compounds used as medicines. In the above general formula, A has 2 to 6 carbon atoms, preferably 3. ~
4 is a divalent lower alkylene group, and R2 is a nasal alkyl group, preferably a methyl group, an ethyl group, or an isopropyl group, and R and R are bonded to a nitrogen atom to form a heterocyclic ring, preferably a pyrrolidino group or a piperidino group. (Japanese Patent Publication No. 36-21342).

クロロアルキルアミン(塩酸塩)の合成法としては対応
するアミノアルコールの塩素化法が一般的に知られてい
る。以下DEAC−H(lの合成を例にとって先行技術
と対比しつつ本発明を説明する。
As a method for synthesizing chloroalkylamine (hydrochloride), a method for chlorinating the corresponding amino alcohol is generally known. The present invention will be explained below by taking the synthesis of DEAC-H(l as an example and comparing it with the prior art).

ジエチルアミノエタノール(以下DEAEと略す)の塩
素化法としてはチオニルクロライドを用いる方法(米国
特許2163181.同245.8823等)が古くか
ら知られ、比較的低温で容易に反応し高収率が得られる
が、反応にノ・ロゲン化炭化水素などの溶媒を必要とし
、脱溶媒工程で着色する欠点がある。DEAEと三塩化
リンの反応(Fel’dman。
As a method for chlorinating diethylaminoethanol (hereinafter abbreviated as DEAE), a method using thionyl chloride (U.S. Pat. No. 2,163,181, U.S. Pat. No. 2,45,8823, etc.) has been known for a long time, and it reacts easily at a relatively low temperature and provides a high yield. However, it requires a solvent such as a halogenated hydrocarbon for the reaction, and has the disadvantage of coloring during the solvent removal process. Reaction of DEAE and phosphorus trichloride (Fel'dman.

1949)もハロゲン化炭化水素などの溶媒を必要とし
、副生ずるリン化合物とDEAC−HCβを分離するた
めアルカリ中和、蒸溜などの精製工程が必要で、工業的
製法としては不利益がある。更に塩素化剤として比較的
高価なチオニルクロライド及び三塩化リンを使用する場
合、得られる・・クロルアルキルアミン塩酸塩がコスト
高になることはまぬがれがたい。
1949) also requires a solvent such as a halogenated hydrocarbon, and requires purification steps such as alkali neutralization and distillation to separate by-product phosphorus compounds and DEAC-HCβ, which is disadvantageous as an industrial production method. Furthermore, when relatively expensive thionyl chloride and phosphorus trichloride are used as chlorinating agents, it is inevitable that the resulting chloralkylamine hydrochloride will be expensive.

本発明者はこれら公知の方法が工業的に種々の困難を伴
うことから、より安価な塩素化剤を用いて効率よくクロ
ルアルキルアミン塩酸塩を得るべく鋭意検討した結果、
アルカノールアミンをその塩酸塩の形で用い、塩素化剤
としては塩化水素を選び、アルカノールアミン塩酸塩を
加熱溶融した状態で反応により生ずる水を除去しつつ反
応させ−る(とによって容易に前記目的を達成し得るこ
とを見出し、本発明を完成するに至った。
Since these known methods involve various industrial difficulties, the present inventor conducted intensive studies to efficiently obtain chloralkylamine hydrochloride using a cheaper chlorinating agent.
Alkanolamine is used in the form of its hydrochloride, hydrogen chloride is selected as the chlorinating agent, and the alkanolamine hydrochloride is reacted in a heated and molten state while removing water produced by the reaction (by which the above-mentioned purpose can be easily achieved). The present inventors have discovered that the following can be achieved, and have completed the present invention.

すなわち、本発明の方法において使用する塩化水素は安
価な塩素化剤であり、きわめて簡略化された設備及び操
作により従来の製造法に比較して好収率で目的物質を製
造することができ、その経済的利益はきわめて大きい。
That is, the hydrogen chloride used in the method of the present invention is an inexpensive chlorinating agent, and the target substance can be produced with a higher yield than conventional production methods using extremely simplified equipment and operations. The economic benefits are enormous.

特に有機塩素化合物製造工業にセいては反応工程で塩化
水素を副生ずる場合が多く、本発明はこの塩化水素をそ
のまま反応に用いることができ、その点においても重要
な工業的意義を有しているd アルコール性水酸基を塩酸又は塩化水素で塩素化する方
法は公知である。例えば、塩化亜鉛触媒を用いてブタノ
ールを濃塩酸と反応させれば76〜78%収率で塩化ブ
チルが得られ(OrganicSynthesis C
o11.Vol、  l、 142頁)、トリメチレン
グリコールと塩化水素とから3−クロロ−1−プロパツ
ールが収率50〜60チで得られる(同533頁)。
In particular, in the organic chlorine compound manufacturing industry, hydrogen chloride is often produced as a by-product in the reaction process, and the present invention allows this hydrogen chloride to be used as is in the reaction, which also has important industrial significance. A method of chlorinating an alcoholic hydroxyl group with hydrochloric acid or hydrogen chloride is known. For example, if butanol is reacted with concentrated hydrochloric acid using a zinc chloride catalyst, butyl chloride can be obtained with a yield of 76-78% (OrganicSynthesis C
o11. Vol. 1, p. 142), 3-chloro-1-propatol can be obtained from trimethylene glycol and hydrogen chloride in a yield of 50-60% (p. 533).

アミン基をもつアルコールをこのような方法で塩素化し
た例は上記文献には示されていないが、本発明者の実験
によるとDEAEと3モル倍の塩酸との混合物を120
〜130℃で反応してもジエチルアミンエタノールの塩
酸塩(DEAE@HC/?)が得られるのみで目的物は
ほとんど得られなかった。塩酸の代りに塩化水素で反応
したところ、高温では着色が著しく、又副生物の生成が
多く、目的とするDEAC−HC/Itを高収率で得る
ことはできなかった。
Although the above-mentioned literature does not show an example of chlorinating an alcohol having an amine group by such a method, according to the experiments of the present inventor, a mixture of DEAE and 3 moles of hydrochloric acid was chlorinated at 120
Even if the reaction was carried out at ~130°C, only the hydrochloride of diethylamine ethanol (DEAE@HC/?) was obtained, and the target product was hardly obtained. When the reaction was carried out using hydrogen chloride instead of hydrochloric acid, coloring was significant at high temperatures and a large amount of by-products were produced, making it impossible to obtain the desired DEAC-HC/It in a high yield.

本発明はアルカノールアミンの塩化水素による塩素化に
おけるこのような困難を解決するものであり、アルカノ
ールアミンを一旦塩酸塩の形にし、これを溶融状態で塩
化水素と反応させる点で従来技術と異なる。溶融塩と塩
化水素の反応を用いるという方法はこの反応の分野では
新規なものである。
The present invention solves these difficulties in the chlorination of alkanolamines with hydrogen chloride, and differs from the prior art in that the alkanolamines are first converted into a hydrochloride form and then reacted with hydrogen chloride in a molten state. The method of using a reaction between molten salt and hydrogen chloride is new in the field of this reaction.

なお、臭化水素酸によるエタノールアミンの臭素化反応
の例が知られているが(OrganicSynthes
is Co11. Vol、 U、 91)、エタノー
ルアミンを−Hハロゲン化水素酸塩になし、それを溶融
状態にして更にハロゲン化水素を加えつつ反応させると
いう方法は全く示されていない。
Incidentally, an example of the bromination reaction of ethanolamine with hydrobromic acid is known (OrganicSynthes
is Co11. Vol. U, 91), there is no disclosure of a method in which ethanolamine is converted into -H hydrohalide salt, which is then brought into a molten state and further reacted while adding hydrogen halide.

本発明で用□いるアルカノールアミン塩酸塩はアルカノ
ールアミンと塩酸又は塩化水素との反応で得られる。こ
の反応で得たアルカノールアミン塩酸塩は同一反応器中
で加熱溶融し、塩化水素との反応によるクロロアルキル
アミン塩酸塩の製造に供することができる。この場合ア
ルカノールアミンから2段階の反応に□よりクロ占アル
キルアミン塩酸塩を製造することになる。
The alkanolamine hydrochloride used in the present invention can be obtained by reacting an alkanolamine with hydrochloric acid or hydrogen chloride. The alkanolamine hydrochloride obtained in this reaction can be heated and melted in the same reactor and subjected to reaction with hydrogen chloride to produce chloroalkylamine hydrochloride. In this case, a chloroalkylamine hydrochloride is produced from an alkanolamine through a two-step reaction.

以下DEAEから2段階ノ反応−r DEAC−HCn
を製する場合を例にとり、本発明の詳細な説明する。
The following two-step reaction from DEAE-r DEAC-HCn
The present invention will be explained in detail by taking as an example the case of manufacturing a .

反応装置としては攪拌機、塩化水素の導入管、溶出物コ
ンデンサー、未反応塩酸吸収塔などを備えた加熱用ジャ
ケット付耐塩酸性反応器が使用される。
As the reaction apparatus, a hydrochloric acid-resistant reactor with a heating jacket equipped with a stirrer, a hydrogen chloride inlet pipe, an eluate condenser, an unreacted hydrochloric acid absorption tower, etc. is used.

塩酸を用いてDEAEの塩をつくる場合、例えば反応器
に塩酸を仕込んでおき、等モルのDEAE%(重量)の
水分を加え塩化水溝を導入する方法をとれば、より小さ
な消費熱量でDEAE−HCeを得ることができる。い
ずれの方法をとる場合も中和反応温度が100 ’C以
上では著しく着色するため、100℃以下でDEAE 
−HCl3を作る必要がある。しかしDEAE・HCA
の融点が134℃であるため、DEAEと塩化水素とを
反応させる場合、途中から結晶を析出し、反応は続行で
きなくなる、そこで100℃以下で液状を保って反応を
可能するために、DEAEに対し少くとも10重量%の
水をあらかじめ加えておくことが好塘しい。
When making DEAE salt using hydrochloric acid, for example, if you charge hydrochloric acid in a reactor, add water of equimolar DEAE% (weight) and introduce a chloride water groove, DEAE can be produced with less heat consumption. -HCe can be obtained. Regardless of which method is used, if the neutralization reaction temperature is 100'C or higher, coloring will occur significantly, so if the neutralization reaction temperature is 100'C or lower, DEAE
- It is necessary to make HCl3. However, DEAE・HCA
Since the melting point of DEAE and hydrogen chloride is 134°C, when DEAE and hydrogen chloride are reacted, crystals will precipitate in the middle and the reaction cannot continue. Preferably, at least 10% by weight of water is added beforehand.

このようにして得たDEAE−HC/?は塩化水素を吹
込みながら加熱脱水し、溶融状態での塩素化反応に移行
する。この反応で得られるDEAC−H(1の融点は2
10℃なので溶融状態を保つ反応温度は200℃程度必
要であると予想される。しかしこのような高温では製品
の着色が著しく、また、DEACとDEAEあるいはD
EAE同志が反応し、ビス−ジエチルアミノエチルエー
テルが生成するなどの副反応のため収率が悪くなる。こ
の点から制約される温度の上限は目的物により異なるが
、DEACの場合約150’Cである。
DEAE-HC/? obtained in this way? is heated and dehydrated while blowing in hydrogen chloride, and the process proceeds to a chlorination reaction in the molten state. The melting point of DEAC-H (1) obtained in this reaction is 2
Since the temperature is 10°C, it is expected that the reaction temperature to maintain the molten state will be about 200°C. However, at such high temperatures, the product becomes noticeably discolored, and DEAC and DEAE or D
The yield deteriorates due to side reactions such as reaction between EAE and formation of bis-diethylaminoethyl ether. The upper limit of the temperature restricted from this point varies depending on the object, but is approximately 150'C in the case of DEAC.

しかし幸いなことに反応系に存在する不純物のため、融
点降下がおこり、現実には反応温度120℃でも凝固し
ないで反応を行うことができることがわかった。実際に
当っては、最適反応温度は約140〜150’Cであり
、副生ずる水が滴量除去されながら塩素化反応が進行す
る。反応温度が低すぎると脱水塩素化反応が遅く不利で
ある。150°C以上では反応は早いが、前述の通り製
品の着色や収率の低下の不利がある。が\る最適反応温
度はアルカノールアミンの種類によって異なり、個々の
場合について実験により決定できる。
Fortunately, however, it was found that the impurities present in the reaction system caused a drop in the melting point, and that the reaction could actually be carried out without solidification even at a reaction temperature of 120°C. In practice, the optimum reaction temperature is about 140 to 150'C, and the chlorination reaction proceeds while the by-product water is removed dropwise. If the reaction temperature is too low, the dehydration and chlorination reaction will be slow and disadvantageous. At 150°C or higher, the reaction is rapid, but as mentioned above, there are disadvantages such as coloring of the product and reduction in yield. The optimum reaction temperature depends on the type of alkanolamine and can be determined experimentally for each individual case.

塩素化反応における塩化水素の吹込速度は大きいほど反
応時間を短縮できるが、その反面未反応HCnも増すの
で、通常DEAE・HCl 1モル当り塩化水素0.0
5〜0.5モル/ Hrの吹込速度が適している。未反
応塩化水素は脱水してリサイクル使用するか、又は水に
吸収せしめ、塩酸として回収できる。
The higher the blowing rate of hydrogen chloride in the chlorination reaction, the shorter the reaction time, but on the other hand, the amount of unreacted HCn increases.
A blowing rate of 5 to 0.5 mol/Hr is suitable. Unreacted hydrogen chloride can be dehydrated and recycled or absorbed into water and recovered as hydrochloric acid.

副生水が溜出しなくなれば塩素化反応の終了と判断する
。通常の場合35〜40時間を要する。
The chlorination reaction is judged to be complete when no by-product water is distilled out. It usually takes 35 to 40 hours.

得られたDEAC−HC,#は120℃以下では結晶化
するため、通常水に溶解し水溶液として使用される。
Since the obtained DEAC-HC, # crystallizes at temperatures below 120°C, it is usually dissolved in water and used as an aqueous solution.

実施例−1 113ガラス製反応器に36%塩酸60817(60モ
ル)を仕込み、攪拌しながらモノエタノールアミン36
6、j9(6,0モル)を32〜81’C30分で滴下
し、塩酸塩水溶液を得た。
Example-1 36% hydrochloric acid 60817 (60 mol) was charged into a 113 glass reactor, and monoethanolamine 36% was added while stirring.
6,j9 (6.0 mol) was added dropwise over 30 minutes from 32 to 81'C to obtain an aqueous hydrochloride solution.

次に塩化水素を毎時27N!の速度で吹込みながら加熱
脱水し4時間で150℃に昇温した。
Next, hydrogen chloride at 27N per hour! The mixture was dehydrated by heating while being blown in at a rate of 150°C, and the temperature was raised to 150°C in 4 hours.

引続き145〜150℃で36時間加熱し、副生水を除
きながら溶融状態で塩化水素と反応させ反応液689g
を得た。反応液中の2−クロロエチルアミン塩酸塩は9
85チで、モノエタノールアミンに対する収率は975
俤であった。
Subsequently, the mixture was heated at 145 to 150°C for 36 hours to react with hydrogen chloride in a molten state while removing by-product water, and 689 g of the reaction solution was heated.
I got it. 2-chloroethylamine hydrochloride in the reaction solution is 9
85, the yield based on monoethanolamine is 975
It was a lot.

実施例−2 前記反応器に36係塩酸3.0417 (3,0モル)
を仕込み、攪拌しなからジェタノールアミン315g(
30モル)を25〜60’C130分で滴下し、得られ
た塩酸塩に塩化水素を毎時27N矛の速度で吹込みなが
ら加熱脱水し3時間で150″Cに昇温(7、引続き溶
融状態下146〜151°Cで46Hr塩化水素と反応
した。
Example-2 3.0417 (3.0 mol) of 36% hydrochloric acid was added to the reactor.
and without stirring, add 315 g of jetanolamine (
30 mol) was added dropwise over 25-60'C for 130 minutes, and the resulting hydrochloride was dehydrated by heating while blowing hydrogen chloride at a rate of 27 N per hour, and the temperature was raised to 150'C in 3 hours (7, continued to melt). Reacted with hydrogen chloride for 46 hours at 146-151°C.

反応液520I中のビス(2−クロルエチル)アミン塩
酸塩は98.0%で、ジェタノールアミンに対する収率
は952%であった。
Bis(2-chloroethyl)amine hydrochloride in reaction solution 520I was 98.0%, and the yield based on jetanolamine was 952%.

実施例−3 36チ塩酸406g(40モル)と3−アミノプロパツ
ール3oog(toモル)とかう得た塩の水溶液に塩化
水素毎時28N、I3の速度で吹込みながら加熱脱水し
、3時間で190’Cに昇温し、溶融状態とした。引続
き塩化水素を加えつつ185〜191℃で16時間塩素
化反応し、反応液516gを得た。反応液中の3−クロ
ロプロピルアミン塩酸塩は98.3%で、3−アミノプ
ロパツールに対する収率は978%であった。
Example 3 An aqueous solution of the obtained salts, including 406 g (40 mol) of 36-thihydrochloric acid and 30 g (to mol) of 3-aminopropanol, was dehydrated by heating while blowing hydrogen chloride at a rate of 28 N/hour, I3, and was heated for 3 hours. The temperature was raised to 190'C to bring it into a molten state. Subsequently, while adding hydrogen chloride, chlorination reaction was carried out at 185 to 191°C for 16 hours to obtain 516 g of a reaction liquid. The content of 3-chloropropylamine hydrochloride in the reaction solution was 98.3%, and the yield relative to 3-aminopropatol was 978%.

実施例−4 ジメチルアミンエタノール267J7(3,0モル)と
四モルの塩酸とから得た塩酸塩水溶液に塩化水素を毎時
8N形の速度で吹込みながら加熱、脱水し、3時間で1
40℃に昇温した。
Example 4 An aqueous solution of hydrochloride obtained from dimethylamine ethanol 267J7 (3.0 mol) and 4 mol of hydrochloric acid was heated and dehydrated while blowing hydrogen chloride at a rate of 8 N/hour.
The temperature was raised to 40°C.

引続き137〜143℃の溶融状態下36時間塩化水素
と反応し、反応液466gを得た0反応液中のジメチル
アミノエチルクロライド塩酸塩は878チで、ジメチル
アミノエタノールに対する収率は947チであった。
Subsequently, the mixture was reacted with hydrogen chloride for 36 hours in a molten state at 137 to 143°C to obtain 466 g of a reaction solution.The amount of dimethylaminoethyl chloride hydrochloride in the reaction solution was 878%, and the yield relative to dimethylaminoethanol was 947%. Ta.

実施例−5 ジエチルアミノエタノール3609 (3,1モル)と
同モルの塩酸とを29〜82℃で反応して得たDEAE
・H(l水溶液に塩化水素を毎時15tUtの速度で吹
込みながら加熱、脱水し、3時間で140℃に昇温した
。引続き138〜143℃の溶融状態で37Hr塩化水
素と反応し、反応液537gを得た。反応液中のジエチ
ルアミノエチルクロライド塩酸塩(pEAE−Hc−1
は902%、ビスジエチルアミノエチルエーテル塩酸塩
1.6チで、DEAEに対するDEAC−HCl3の反
応収率は938チであった。
Example-5 DEAE obtained by reacting diethylaminoethanol 3609 (3.1 mol) and the same mol of hydrochloric acid at 29 to 82°C
・H(1) Aqueous solution was heated and dehydrated while blowing hydrogen chloride at a rate of 15 tUt per hour, and the temperature was raised to 140°C in 3 hours.Subsequently, it was reacted with hydrogen chloride for 37 hours in a molten state at 138-143°C, and the reaction solution was Diethylaminoethyl chloride hydrochloride (pEAE-Hc-1) was obtained in the reaction solution.
was 902%, bisdiethylaminoethyl ether hydrochloride was 1.6%, and the reaction yield of DEAC-HCl3 with respect to DEAE was 938%.

実施例−6 11ガラス製反応器にジエチルアミノエタノール360
 i (3,1モル)と水3611を仕込み塩化水素を
毎時67Npの速度で吹込みながら26〜81℃で1時
間反応し、DEAE−HC4を得た。
Example-6 11 360 ml of diethylaminoethanol in a glass reactor
i (3.1 mol) and water 3611 were charged and reacted at 26 to 81° C. for 1 hour while blowing hydrogen chloride at a rate of 67 Np/hour to obtain DEAE-HC4.

次に、塩化水素を毎時15N8の速度で吹込みながら加
熱、脱水し、1時間で140℃に昇温した。引続き溶融
状態下137〜141℃で35)(r塩化水素と反応し
、反応液552gを得た。
Next, heating and dehydration were carried out while blowing hydrogen chloride at a rate of 15 N8 per hour, and the temperature was raised to 140° C. in 1 hour. Subsequently, the mixture was reacted with hydrogen chloride (35)(r) at 137-141° C. in a molten state to obtain 552 g of a reaction solution.

反応液中のDEAC−HCeは896%、ビスジエチル
アミノエチルエーテル塩酸塩21%で、DEAEに対す
るDEAC−HCeの反応収率は928%であった。
The DEAC-HCe in the reaction solution was 896%, the bisdiethylaminoethyl ether hydrochloride was 21%, and the reaction yield of DEAC-HCe with respect to DEAE was 928%.

特許出願人 ダイセル化学工業株式会社patent applicant Daicel Chemical Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 溶融状態のアルカノールアミン塩酸塩と塩化水素とを水
を除きつつ反応させることを特徴とするクロロアルキル
アミン塩酸塩の製造法
A method for producing chloroalkylamine hydrochloride, which comprises reacting alkanolamine hydrochloride in a molten state with hydrogen chloride while removing water.
JP14135681A 1981-09-07 1981-09-07 Preparation of chloroalkylamine hydrochloride Granted JPS5841842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14135681A JPS5841842A (en) 1981-09-07 1981-09-07 Preparation of chloroalkylamine hydrochloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14135681A JPS5841842A (en) 1981-09-07 1981-09-07 Preparation of chloroalkylamine hydrochloride

Publications (2)

Publication Number Publication Date
JPS5841842A true JPS5841842A (en) 1983-03-11
JPS6325577B2 JPS6325577B2 (en) 1988-05-26

Family

ID=15290068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14135681A Granted JPS5841842A (en) 1981-09-07 1981-09-07 Preparation of chloroalkylamine hydrochloride

Country Status (1)

Country Link
JP (1) JPS5841842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108003036A (en) * 2017-12-29 2018-05-08 山东泰和水处理科技股份有限公司 A kind of preparation method of 2-chloroethyl amine hydrochloride

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934646A (en) * 1972-08-04 1974-03-30
JPS50129505A (en) * 1974-03-27 1975-10-13
JPS5113710A (en) * 1974-07-22 1976-02-03 Seitetsu Kagaku Co Ltd N*n11 jiarukiru 22 kuroroechiruaminensanensuiyoekino seizoho
JPS56133247A (en) * 1980-03-21 1981-10-19 Teijin Ltd Production of 2-chloroethylamine hydrochloride
JPS57176933A (en) * 1981-04-24 1982-10-30 Mitsui Toatsu Chem Inc Improved method for preparation of chloroalkylamine hydrochloride
JPS57179135A (en) * 1981-04-28 1982-11-04 Mitsui Toatsu Chem Inc Preparation of chloroalkylamine hydrochlorides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934646A (en) * 1972-08-04 1974-03-30
JPS50129505A (en) * 1974-03-27 1975-10-13
JPS5113710A (en) * 1974-07-22 1976-02-03 Seitetsu Kagaku Co Ltd N*n11 jiarukiru 22 kuroroechiruaminensanensuiyoekino seizoho
JPS56133247A (en) * 1980-03-21 1981-10-19 Teijin Ltd Production of 2-chloroethylamine hydrochloride
JPS57176933A (en) * 1981-04-24 1982-10-30 Mitsui Toatsu Chem Inc Improved method for preparation of chloroalkylamine hydrochloride
JPS57179135A (en) * 1981-04-28 1982-11-04 Mitsui Toatsu Chem Inc Preparation of chloroalkylamine hydrochlorides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108003036A (en) * 2017-12-29 2018-05-08 山东泰和水处理科技股份有限公司 A kind of preparation method of 2-chloroethyl amine hydrochloride

Also Published As

Publication number Publication date
JPS6325577B2 (en) 1988-05-26

Similar Documents

Publication Publication Date Title
PT773923E (en) METHOD FOR PREPARING A HALOSUBSTITUTED AROMATIC ACID
JPS5841842A (en) Preparation of chloroalkylamine hydrochloride
JP3159614B2 (en) Method for producing chloroalkylamine hydrochloride
JPH07112986B2 (en) Process for producing carboxylic acid chloride and its catalyst
US5847205A (en) Method for producing homocystine
JPS5830308B2 (en) Triacetone amino acid
JP3126834B2 (en) Method for producing 2,6-dichlorobenzoyl chloride
JPS62103049A (en) Production of alpha-amino acid
JP2657641B2 (en) Method for producing chloroalkylamine hydrochlorides
JPH0217544B2 (en)
JPS63424B2 (en)
JPH0395163A (en) Production of 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine
JP3814944B2 (en) Process for producing dialkyl carbonate
JPH0243734B2 (en)
JPH03188066A (en) Production of 2,2,6,6-tetramethyl-4-oxomethyl-piperidine
JPS5843392B2 (en) triacetone amino
JPH054957A (en) Production of 2,6-diisopropylphenylcarbodiimide
JP2657642B2 (en) Method for producing chloroalkylamine hydrochlorides
JP2000053650A (en) Production of fluorinating agent
JP3547497B2 (en) Method for producing benzothiazolone compound
JPS6039070B2 (en) Method for producing 3,5-dichloroaniline
JPS63250353A (en) Production of terephthalic acid dianilides
JPS6312465B2 (en)
JPS62129267A (en) Production of 2,2,6,6-tetramethyl-4-oxopiperidine
KR20050034794A (en) Ionic liquid and method for preparing other ionic liquid using the same