JPS5841672B2 - Sealed carbon dioxide laser oscillator - Google Patents

Sealed carbon dioxide laser oscillator

Info

Publication number
JPS5841672B2
JPS5841672B2 JP2682081A JP2682081A JPS5841672B2 JP S5841672 B2 JPS5841672 B2 JP S5841672B2 JP 2682081 A JP2682081 A JP 2682081A JP 2682081 A JP2682081 A JP 2682081A JP S5841672 B2 JPS5841672 B2 JP S5841672B2
Authority
JP
Japan
Prior art keywords
laser
sealed
gas
tube
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2682081A
Other languages
Japanese (ja)
Other versions
JPS57141981A (en
Inventor
信明 家久
規夫 軽部
幸雄 坂本
時夫 山田谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2682081A priority Critical patent/JPS5841672B2/en
Publication of JPS57141981A publication Critical patent/JPS57141981A/en
Publication of JPS5841672B2 publication Critical patent/JPS5841672B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 本発明は封止形成酸ガス(以下CO2と記す)レーザ発
振器に関するもので、封止形CO2レーザ発振器におい
てレーザ励起のための放電開始後に発生するCO2分子
の解離を防止してレーザ出力を増大させることを目的と
する。
Detailed Description of the Invention The present invention relates to a sealed-forming acid gas (hereinafter referred to as CO2) laser oscillator, and prevents the dissociation of CO2 molecules generated after the start of discharge for laser excitation in a sealed CO2 laser oscillator. The purpose of this is to increase the laser output.

CO2レーザガス中の主要分子であるCO2は解離エネ
ルギーが3.75eVと結合力の弱いもであり放電開始
後約1秒後に封入量の約70%は解離をしてしまうので
出力もそれに応じて低下してしまう。
CO2, which is the main molecule in the CO2 laser gas, has a dissociation energy of 3.75 eV and a weak binding force, and about 70% of the enclosed amount will dissociate about 1 second after the start of discharge, so the output will decrease accordingly. Resulting in.

このため従来のCO2レーザでは放電管内へは常時ガス
ボンベより新鮮なガスを補給しつづけ、一方散電管を通
過したガスは油回転ポンプなどの排気装置によって排出
を行っていた。
For this reason, in conventional CO2 lasers, the interior of the discharge tube is constantly supplied with fresh gas from a gas cylinder, while the gas that has passed through the diffuser tube is exhausted by an exhaust device such as an oil rotary pump.

この場合出力の低下は避けられるが、レーザ装置の寸法
、形状、重量、価格、操作メインテナンスの諸点におい
て不利になるのでCO2レーザ応用分野の展開の妨げに
なって来た。
In this case, a decrease in output can be avoided, but there are disadvantages in the size, shape, weight, cost, and operation and maintenance of the laser device, which has hindered the development of the CO2 laser application field.

CO2分子の解離を防止する触媒を封入した封止形CO
2レーザ発振器開発の試みは従来固体触媒、気体触媒の
双方を用いて発表されてきているがその触媒性能、レー
ザ出力、封入時間などの諸点を同時に満足するものは末
だ開発されるに至っていない。
Sealed CO containing a catalyst that prevents the dissociation of CO2 molecules
2 Attempts to develop a laser oscillator have been announced using both solid catalysts and gas catalysts, but no one that simultaneously satisfies various aspects such as catalyst performance, laser output, and encapsulation time has yet to be developed. .

気体触媒は室温動作であることと非局所作用性の故に封
止形レーザに適しておりW 、 J 、 Wittem
anの報告したH2またはH2Oがよく知られている(
Phys、Lett、26A、454 。
Gaseous catalysts are suitable for sealed lasers because they operate at room temperature and have nonlocal action.
H2 or H2O reported by an is well known (
Phys, Lett, 26A, 454.

1968)が、その触媒能力に限界があることと、触媒
として封入したこれらのガスが吸着などによって消滅し
てしまい、封入時間に上限をもたらす(通常は1000
時間程度)と言う欠点がある。
(1968), but there is a limit to its catalytic ability, and these gases sealed as catalysts disappear due to adsorption, etc., which puts an upper limit on the charging time (usually 1000
There is a drawback that (about time).

一方固体触媒は触媒能力がすぐれているがその活性度は
通常は300℃程度のかなりな高温において高まりCO
2レーザ管のように水冷を行っている領域では不十分で
あることと、触媒能力が触媒近傍と言う局所作用的であ
るという欠点があるので従来第1図に示す如く触媒炉を
レーザ管の外側に設置しレーザ管と触媒炉を含むガス再
生装置間をレーザガスを強制循環して用いるものであっ
た(軽部規夫他、機械と工具、1977年11月号)。
On the other hand, solid catalysts have excellent catalytic ability, but their activity usually increases at a fairly high temperature of about 300°C, and CO
2.As shown in Fig. 1, the catalytic furnace has been conventionally installed in the laser tube as shown in Fig. 1. It was used by forcing laser gas to circulate between a gas regeneration device that was installed outside and included a laser tube and a catalytic furnace (Norio Karube et al., Machinery and Tools, November 1977 issue).

第1図において、1はレーザ管、2,3は共振器を構成
する反射鏡、4は励起電源でありそれらの動作原理は公
知である。
In FIG. 1, 1 is a laser tube, 2 and 3 are reflecting mirrors constituting a resonator, and 4 is an excitation power source, the operating principles of which are known.

5は触媒炉、ガス循環ポンプ、各種フィルターを含むガ
ス再生装置であリレーザ管1とガス再生装置5の間では
ガス循環が行はれている。
Reference numeral 5 denotes a gas regeneration device including a catalyst furnace, a gas circulation pump, and various filters, and gas circulation is performed between the laser tube 1 and the gas regeneration device 5.

6はガスボンベであり、レーザ管1に封入を行う時のガ
ス源である。
A gas cylinder 6 is a gas source when the laser tube 1 is filled.

7,8はガス系路、9は排出されるガスを示し、10は
レーザビームである。
7 and 8 are gas system paths, 9 is a gas to be discharged, and 10 is a laser beam.

この方式は触媒能力は十分でレーザ出力はガスフローレ
ーザと同一である(軽部規夫他、機械工具、1977年
11月号)が、ガス再生装置5が可動部分を含むため大
型となり、保守を要することと、ガス封入時間が最長i
o時間程度に限られると言う欠点を有する。
This method has sufficient catalytic ability and the laser output is the same as a gas flow laser (Norio Karube et al., Machinery Tools, November 1977 issue), but the gas regeneration device 5 is large and requires maintenance because it includes moving parts. Also, the gas filling time is the longest i
It has the disadvantage that it is limited to about 1 hour.

本発明では触媒能力の点から固体触媒を採用し、その局
所作用性の欠点を克服するためにレーザ管の内壁全体に
触媒層を設は触媒としてはPt−M n 02間のスピ
ルオーバ効果(酸化物担体上に担持されている金属触媒
に吸着した気体原子が酸化物担体上に移動する効果)に
よる室温動作を用いかつ触媒層の作製方法としてはレー
ザ管の量産を可能ならしめる無電解析出法及イオン交換
法などの化学処理法を用いている。
In the present invention, a solid catalyst is adopted from the viewpoint of catalytic ability, and in order to overcome the drawback of its local action, a catalyst layer is provided on the entire inner wall of the laser tube. An electroless deposition method that uses room temperature operation due to the effect of gas atoms adsorbed on a metal catalyst supported on a metal support moving onto an oxide support, and enables mass production of laser tubes as a method for manufacturing the catalyst layer. chemical treatment methods such as ion exchange and ion exchange methods are used.

その結果触媒は封止形CO2レーザ管に内蔵せられ、外
部のガス再生装置が不要になるので装置の大巾な簡略化
が行はれ、レーザ発振装置全体の寸法形状、価格、操作
メインテナンス、所要電力を大巾に改善できる他、レー
ザ管の封止時間にも大巾な増大をもたらすのでCO2レ
ーザの応用分野が一段と拡大されることが期待できる。
As a result, the catalyst is built into the sealed CO2 laser tube, eliminating the need for an external gas regeneration device, which greatly simplifies the device. Not only can the required power be greatly improved, but the sealing time of the laser tube can also be greatly increased, so it is expected that the field of application of CO2 lasers will be further expanded.

第2図に本発明による封止形CO2レーザ装置の一構成
例を示す。
FIG. 2 shows an example of the configuration of a sealed CO2 laser device according to the present invention.

11は封止形CO2レーザ管、12および13は共振器
を構成する反射鏡で、本実症例では出力結合鏡12も全
反射鏡13も直接レーザ管11の端に設置された内部鏡
方式であるが、これはレーザ管の両端を光学窓で封じた
外部鏡方式であってもよい。
11 is a sealed CO2 laser tube, 12 and 13 are reflecting mirrors that constitute a resonator, and in this actual case, both the output coupling mirror 12 and the total reflection mirror 13 are internal mirrors installed directly at the end of the laser tube 11. However, this may also be an external mirror system in which both ends of the laser tube are sealed with optical windows.

14および14′は水冷管15の冷却水導入および排出
口である。
14 and 14' are cooling water inlet and outlet ports of the water cooling pipe 15.

16は放電管であり、17はその内壁上に層状に設けら
れた触媒である。
16 is a discharge tube, and 17 is a catalyst provided in layers on its inner wall.

18は陰電極、19は陽電極でありそれらにはレーザ励
起電源20より高電圧が印加される。
18 is a negative electrode, and 19 is a positive electrode, to which a high voltage is applied from a laser excitation power source 20.

21はレーザビームを示す。CO2レーザはよく知られ
ているように放電ガスを冷却する必要があり同図に示す
如く放電管16は水冷二重管構造になっているので放電
管16の内壁はほぼ冷却水と同温度になっている。
21 indicates a laser beam. As is well known, in a CO2 laser, it is necessary to cool the discharge gas, and as shown in the figure, the discharge tube 16 has a water-cooled double tube structure, so the inner wall of the discharge tube 16 is at almost the same temperature as the cooling water. It has become.

従って同所に設けられた触媒層は通常は触媒活性能力を
示さない。
Therefore, the co-located catalyst layer usually does not exhibit any catalytic activity.

本発明は室温で高い活性度を示す量産性に富んだ触媒層
を使用することが要旨であり、以下その製造方法につい
て説明する。
The gist of the present invention is to use a catalyst layer that exhibits high activity at room temperature and is easily mass-produced, and the manufacturing method thereof will be described below.

室温動作の触媒層としては放電管内壁上に触媒担体とし
てMnO2などの酸化物を形成せしめた後にイオン交換
により、−ヒ記酸化物表面に白金を担持させるものを用
いる。
The catalyst layer for room temperature operation is one in which an oxide such as MnO2 is formed as a catalyst carrier on the inner wall of the discharge tube, and then platinum is supported on the surface of the oxide by ion exchange.

M n 02は室温においてCO酸化触媒能力を有する
ことは公知であるが、更に白金を担持することによりP
t MnO2スピルオーバ触媒となり室温に於ける触
媒活性度が一段と増大することになる。
It is known that M n 02 has CO oxidation catalytic ability at room temperature, but by further supporting platinum, P
t MnO2 becomes a spillover catalyst, and the catalyst activity at room temperature increases further.

ガラス製放電管内壁へのM n 02層の作製は無電解
析出法によって行った。
The M n 02 layer was formed on the inner wall of the glass discharge tube by electroless deposition.

過硫酸イオン(S208一つ溶液中における金属イオン
Mn++は Mn+++ 2H20+ 820B−9MnO2+ 4
IP+2804− (1) の電解反応により放電管内壁上にM n 02を析出す
る。
Persulfate ion (S208 metal ion Mn++ in one solution is Mn+++ 2H20+ 820B-9MnO2+ 4
Mn 02 is deposited on the inner wall of the discharge tube by the electrolytic reaction of IP+2804- (1).

使用した薬品は酢酸マンガン(Mn(CH3COO)2
)、酢酸アンモニウム(CH3COONH4)、過硫酸
アンモニウム((NH4) 2820g、硝酸銀(Ag
NO3)、酢酸(CH3COOH)である。
The chemical used was manganese acetate (Mn(CH3COO)2).
), ammonium acetate (CH3COONH4), ammonium persulfate ((NH4) 2820g, silver nitrate (Ag
NO3) and acetic acid (CH3COOH).

これらの薬品は酢酸マンガンMn++イオン源、酢酸ア
ンモニウムは支持電解質、過硫酸アンモニウムは酸化剤
、硝酸銀は酸化反応開始用触媒、酢酸はpH調整剤とし
て使用した。
These chemicals were used as a manganese acetate Mn++ ion source, ammonium acetate as a supporting electrolyte, ammonium persulfate as an oxidizing agent, silver nitrate as a catalyst for starting the oxidation reaction, and acetic acid as a pH adjusting agent.

MnO2上へのPt層の作製はMnO2を塗布した放電
管内にテトラアンミン白金クロライド((pt (NH
3)4 〕cz2)水溶液を注入し放置することによっ
て行った。
To prepare a Pt layer on MnO2, tetraammineplatinum chloride ((pt (NH
3) 4]cz2) This was carried out by injecting an aqueous solution and leaving it to stand.

Mn O2の表面では水和によってMn : OH2が
生成する。
Mn:OH2 is generated on the surface of MnO2 by hydration.

この場合水分子の中の酸素原子の電子対はかなりMn’
+に引つけられる結果、その水素原子はH+となって解
離しやすい状態になる。
In this case, the electron pair of the oxygen atom in the water molecule is considerably Mn'
As a result of being attracted to +, the hydrogen atom becomes H+ and becomes easily dissociated.

その結果H+と(P t (NH3)4〕”との間にの
形でイオン交換が行はれ、Ptはアンモニウムの錯体の
形でMnO2の表面に固定される。
As a result, ion exchange takes place between H+ and (P t (NH3)4)'', and Pt is fixed on the surface of MnO2 in the form of an ammonium complex.

NH3は300°C以下の熱処理で除去して最終的にP
tをMn 02上に担持する。
NH3 is removed by heat treatment below 300°C and finally P
t is supported on Mn 02.

以上の方法によって製作された放電管内壁上の触媒層は
放電管にCO2:N2:He=11:27:62の混合
ガスを1O−30Torrの各種圧力まで封入してDC
放電電流30mAにて放電させCO2分子の解離の割合
いをガスフロー質量分析法によって測定したところCO
2の解離が触媒の常温動作によってよく防止されている
ことが確認された。
The catalyst layer on the inner wall of the discharge tube manufactured by the method described above is produced by filling the discharge tube with a mixed gas of CO2:N2:He=11:27:62 up to various pressures of 1O-30Torr.
The rate of dissociation of CO2 molecules was measured by gas flow mass spectrometry after discharging at a discharge current of 30 mA.
It was confirmed that the dissociation of 2 was well prevented by operating the catalyst at room temperature.

放電開始後CO2分子の解離は陽光極の各所ならびに陽
陰極近傍において行われる。
After the start of discharge, CO2 molecules are dissociated at various locations around the anode and near the anode and cathode.

一方触媒の動作領域は放電管内壁近傍ではあるが放電管
は内径6關φであるので、C0分子は平均して1.5醋
移動することにより管壁に到達することができ近似的に
触媒の動作領域は放電全域に及んでおりCO2の解離の
発生場所と重なり合っていると考えてもよい。
On the other hand, the operating area of the catalyst is near the inner wall of the discharge tube, but since the inner diameter of the discharge tube is 6 mm, the C0 molecules can reach the tube wall by moving 1.5 mm on average, and the catalyst can be approximately The operating region extends over the entire discharge region and may be considered to overlap with the location where CO2 dissociation occurs.

従ってガスの撹拌を行わすともCO2の解離は十分に抑
圧され封入形のC02レーザ管を構成させることができ
る。
Therefore, even if the gas is stirred, the dissociation of CO2 is sufficiently suppressed, and an enclosed CO2 laser tube can be constructed.

このため封止形CO2レーザの単位長あたりの出力をガ
スフローCO2レーザと同程度の50 W/ mにする
ことができ、封入形CO2レーザの高出力化を達成する
ことができる。
Therefore, the output per unit length of the sealed CO2 laser can be set to 50 W/m, which is about the same as that of a gas flow CO2 laser, and a high output of the sealed CO2 laser can be achieved.

なおスピルオーバー触媒としては、上記PiM n O
2以外にPt PbO2,Pt 5io2.Pt5
n02 y Pd MnO2t P d P b0
2 、P dS io 2 、P d S n O
2等も同様に使用できる。
In addition, as a spillover catalyst, the above-mentioned PiM n O
In addition to 2, Pt PbO2, Pt 5io2. Pt5
n02 y Pd MnO2t P d P b0
2 , P dS io 2 , P dS n O
2nd class can also be used in the same way.

以上述べたように本発明は封入形CO2レーザ管内壁上
にMn 02などの酸化物層触媒担体と白金触媒をそれ
ぞれ無電解析出法とイオン交換法などの化学処理等によ
り担持させ、Pi MnO2間のスピルオーバー媒作
用によって常温においてCO酸化反応を活発に行わしめ
CO2レーザの封止管動作を可能ならしめるものである
As described above, the present invention supports an oxide layer catalyst carrier such as MnO2 and a platinum catalyst on the inner wall of an encapsulated CO2 laser tube by chemical treatments such as electroless deposition and ion exchange, respectively. The spillover medium effect of the CO2 oxidation reaction activates the CO oxidation reaction at room temperature, thereby enabling sealed tube operation of the CO2 laser.

本発明によればレーザ励起のための放電により発生する
CO2分子の解離を防止することができ封止形CO2レ
ーザの単位長出力をガスフロー形の場合と同程度の値に
することができる。
According to the present invention, dissociation of CO2 molecules generated by discharge for laser excitation can be prevented, and the unit length output of a sealed CO2 laser can be made to a value comparable to that of a gas flow type laser.

また封止管の構造を簡単ならしめ真空シールの数を減少
させうるので封止寿命の大巾な延長をはかることができ
る。
Furthermore, since the structure of the sealing tube can be simplified and the number of vacuum seals can be reduced, the life of the seal can be greatly extended.

さらに外部ガス再生装置が不要になるのでレーザ発振装
置の寸法形状、重量、価格、所要電力の大巾な減少をも
たらし、また操作性、メインテナンスも大巾に簡略化さ
れる。
Furthermore, since an external gas regeneration device is not required, the dimensions, weight, price, and power requirements of the laser oscillation device are greatly reduced, and operability and maintenance are also greatly simplified.

加えてレーザ使用場所への大型で重量のあるガスボンベ
の持込も不要になるなどの数数のすぐれた特徴をもたら
すものである。
In addition, it brings about a number of excellent features, such as eliminating the need to bring large and heavy gas cylinders to the place where the laser is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は外部ガス再生装置を用いた従来のCO2レーザ
発振器の構成を示す断面図、第2図は本発明の一実症例
における封止形CO2レーザ発振器の構成を示す断面図
である。 11・・・・・・レーザ管、12・・・・・・出力結合
鏡、13・・・・・・全反射鏡、14,14’・・・・
・・冷却水出入口、15・・・・・・冷却水用二重管、
16・・・・・・放電領域、17・・・・・・触媒層、
18・・・・・・陰極、19・・・・・・陽極、20・
・・・・・レーザ励起電源、21・・・・・・レーザビ
ーム。
FIG. 1 is a sectional view showing the configuration of a conventional CO2 laser oscillator using an external gas regeneration device, and FIG. 2 is a sectional view showing the configuration of a sealed CO2 laser oscillator in an example of the present invention. 11... Laser tube, 12... Output coupling mirror, 13... Total reflection mirror, 14, 14'...
... Cooling water inlet/outlet, 15... Double pipe for cooling water,
16...discharge area, 17...catalyst layer,
18... cathode, 19... anode, 20...
...Laser excitation power supply, 21...Laser beam.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザ管内にレーザ活性媒体を封入させた封止形成
酸ガスレーザ発振器において、前記レーザ管内壁上に、
室温において触媒能力を有する酸化物触媒担体と、この
酸化物触媒担体を覆って設けられた白金触媒層とを設け
たことを特徴とする封止形層酸がスレーザ発振器。
1. In a sealed acid gas laser oscillator in which a laser active medium is sealed in a laser tube, on the inner wall of the laser tube,
A sealed layered laser oscillator characterized by comprising an oxide catalyst carrier having catalytic ability at room temperature and a platinum catalyst layer covering the oxide catalyst carrier.
JP2682081A 1981-02-27 1981-02-27 Sealed carbon dioxide laser oscillator Expired JPS5841672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2682081A JPS5841672B2 (en) 1981-02-27 1981-02-27 Sealed carbon dioxide laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2682081A JPS5841672B2 (en) 1981-02-27 1981-02-27 Sealed carbon dioxide laser oscillator

Publications (2)

Publication Number Publication Date
JPS57141981A JPS57141981A (en) 1982-09-02
JPS5841672B2 true JPS5841672B2 (en) 1983-09-13

Family

ID=12203905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2682081A Expired JPS5841672B2 (en) 1981-02-27 1981-02-27 Sealed carbon dioxide laser oscillator

Country Status (1)

Country Link
JP (1) JPS5841672B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111776U (en) * 1983-12-29 1985-07-29 トヨタ自動車株式会社 Automobile lugage door inner reinforcement structure
JPS60111775U (en) * 1983-12-29 1985-07-29 トヨタ自動車株式会社 Automobile lugage door inner reinforcement structure
JPH0125751Y2 (en) * 1984-09-07 1989-08-01

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111776U (en) * 1983-12-29 1985-07-29 トヨタ自動車株式会社 Automobile lugage door inner reinforcement structure
JPS60111775U (en) * 1983-12-29 1985-07-29 トヨタ自動車株式会社 Automobile lugage door inner reinforcement structure
JPH0125751Y2 (en) * 1984-09-07 1989-08-01

Also Published As

Publication number Publication date
JPS57141981A (en) 1982-09-02

Similar Documents

Publication Publication Date Title
Papaconstantinou Photochemistry of polyoxometallates of molybdenum and tungsten and/or vanadium
Beck et al. Table of laser lines in gases and vapors
Harriman et al. Photo-oxidation of water to oxygen sensitised by tris (2, 2′-bipyridyl) ruthenium (II)
Juris et al. Luminescence of ruthenium (II) tris chelate complexes containing the ligands 2, 2'-bipyridine and 2, 2'-biisoquinoline. Behavior of the Ru (bpy) 2+ and Ru (bpy) 22+ emitting units
Kuilya et al. Ligand assisted electrocatalytic water oxidation by a copper (ii) complex in neutral phosphate buffer
JP3941071B2 (en) Semiconductor electrode, manufacturing method thereof, and photovoltaic cell using the semiconductor electrode
JPS5841672B2 (en) Sealed carbon dioxide laser oscillator
WO2023151437A1 (en) Three-dimensional particle electrode, preparation method therefor, and use thereof
JP2005272856A (en) Ammonia synthesizer, ammonia synthesis method and system including combustion apparatus
JPH0226796B2 (en)
JP3793800B2 (en) Method for producing hydrogen and oxygen using iodine compound and semiconductor photocatalyst
JPH0297077A (en) Excimer laser device
Khan et al. Photocatalytic reduction of N2 to NH 3 sensitized by the [RuIII-ethylenediaminetetraacetate-2, 2′-bipyridyl]− complex in a Pt-TiO2 semiconductor particulate system
JPH04279179A (en) Decomposition of fluorocarbons
JPH05258781A (en) Lithium/air cell
JP2005068007A (en) Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
JP3934190B2 (en) Metal vapor laser device
Goodwin et al. Electrocatalytic reactions of dioxygen and nitric oxide with reduced (nitrosyl) cobalt porphyrins—cyclic voltammetry and computational chemistry
JPS6168120A (en) Method and apparatus for removing trace oxygen in gas
JP2024047360A (en) Catalyst, honeycomb structure and exhaust gas purification device
US11850572B2 (en) Activated carbon catalyst for hydrogen peroxide decomposition, method for producing same, and method for decomposing hydrogen peroxide by using same
US5271915A (en) Method for processing nitrogen oxide gas
JPH08770Y2 (en) External mirror type UV output laser resonator
JPS6213435B2 (en)
JPS6022386A (en) Carbonic acid laser sealed tube