JPS5841462B2 - Method for measuring acid concentration in mixed pickling solution of hydrofluoric acid and strong acid - Google Patents

Method for measuring acid concentration in mixed pickling solution of hydrofluoric acid and strong acid

Info

Publication number
JPS5841462B2
JPS5841462B2 JP53112906A JP11290678A JPS5841462B2 JP S5841462 B2 JPS5841462 B2 JP S5841462B2 JP 53112906 A JP53112906 A JP 53112906A JP 11290678 A JP11290678 A JP 11290678A JP S5841462 B2 JPS5841462 B2 JP S5841462B2
Authority
JP
Japan
Prior art keywords
acid
concentration
ions
strong
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53112906A
Other languages
Japanese (ja)
Other versions
JPS5540908A (en
Inventor
正剛 小坂
清 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP53112906A priority Critical patent/JPS5841462B2/en
Publication of JPS5540908A publication Critical patent/JPS5540908A/en
Publication of JPS5841462B2 publication Critical patent/JPS5841462B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】 本発明は、金属材料の酸洗に使用する弗酸と硝酸、硫酸
、塩酸等の強酸との混酸(以下単に混酸と記す)酸洗液
の酸濃度測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the acid concentration of a mixed acid (hereinafter simply referred to as mixed acid) of hydrofluoric acid and a strong acid such as nitric acid, sulfuric acid, or hydrochloric acid used for pickling metal materials. It is.

金属材料の酸洗に使用中の混酸中には、水素イオン、弗
素イオン、強酸の陰イオン、弗酸分子、強酸分子の他、
金属イオン、金属イオンと弗素イオンで作る種々の錯イ
オン、金属と弗素の化合物等が存在している。
The mixed acid used for pickling metal materials contains hydrogen ions, fluorine ions, strong acid anions, hydrofluoric acid molecules, strong acid molecules,
There are metal ions, various complex ions made of metal ions and fluorine ions, and compounds of metals and fluorine.

例えば弗酸と硝酸の混酸で鉄鋼材料を酸洗する場合の酸
洗液中には、次式の反応で生ずるイオンあるいは分子が
存在する。
For example, when pickling steel materials with a mixed acid of hydrofluoric acid and nitric acid, ions or molecules generated by the following reaction are present in the pickling solution.

HNO−+H+HNO3−・・・・・・・・・・・・・
・・・・・・・・・・・(1)HF :H”+F−・
・・・・・・・・・・・・・・・・・・・・・・(2)
HF 十F −:HF−・・・・・・・・・・・・・・
・・・・・・・・・・(3)2Fe+6H+″2Fe3
+2H2↑・・・・・・・・・・・・(4)Fe3”+
HF:FeF”十H” −+−・−+−+++(5
)FeF2”十HF:FeF2”十H+・・・・=(6
)FeF2+HF=FeF3↓+H4−・・・・−・−
・−−−−(7)これらのイオン、分子のうちで酸洗に
有効なのは弗素イオン(F−)、硝酸イオン(NO3−
)およびこれらと平衡する水素イオン(H+)である。
HNO-+H+HNO3-・・・・・・・・・・・・・・・
・・・・・・・・・・・・(1) HF:H"+F-・
・・・・・・・・・・・・・・・・・・・・・・・・(2)
HF 10F −:HF−・・・・・・・・・・・・・・・
・・・・・・・・・(3)2Fe+6H+″2Fe3
+2H2↑・・・・・・・・・・・・(4)Fe3”+
HF: FeF"10H" -+-・-+-+++(5
)FeF2" 10HF: FeF2" 10H+...=(6
)FeF2+HF=FeF3↓+H4−・・・・−・−
・---(7) Among these ions and molecules, fluorine ions (F-) and nitrate ions (NO3-) are effective for pickling.
) and hydrogen ions (H+) in equilibrium with these.

混酸が新しくて、金属イオンが存在しない間は、(1)
As long as the mixed acid is new and there are no metal ions, (1)
.

(2)、(3にの反応のみであるが、酸洗処理の進行と
共に混酸中に鉄イオンが溶解して(4) 、 (5)
、 (6) 、 (7)式の反応が進み、錯イオン(F
eF2”、FeF、i)さらに弗化鉄(FeF3)を生
ずる。
(2), (3) As the pickling process progresses, iron ions dissolve in the mixed acid (4), (5)
, (6), (7) reaction progresses, complex ion (F
eF2'', FeF, i) Further produces iron fluoride (FeF3).

このような酸洗液の酸濃度を測定するために、従来滴定
法が一般に行われているが、金属イオンの影響により、
電導度滴定の場合は電導度変化の変曲点が、指示薬滴定
の場合は色の変化点が不明確となり、濃度測定に支障を
きたしている。
In order to measure the acid concentration of such pickling solutions, titration method is generally used, but due to the influence of metal ions,
In the case of conductivity titration, the point of inflection of conductivity change is unclear, and in the case of indicator titration, the point of color change is unclear, causing problems in concentration measurement.

弗素イオン(F−)、水素イオン(H+)を直接簡単に
測定する方法として、イオン選択性電極を使用する方法
が提案されている(特開昭49−83492)(このよ
うなイオン選択性電極を使用する方法においても、金属
イオンの影響によって(4)〜(7)式で示されるH4
をも測定するので真の酸濃度を得ることができない。
As a method for directly and easily measuring fluorine ions (F-) and hydrogen ions (H+), a method using an ion-selective electrode has been proposed (Japanese Patent Application Laid-open No. 83492-1983). Even in the method using
It is not possible to obtain the true acid concentration because it also measures

また通常対象とする酸洗液中の水素イオン濃度が高いた
め、弗酸の解離が零に近く、弗素イオン濃度は弗酸濃度
に比して非常に小さい。
Furthermore, since the hydrogen ion concentration in the target pickling solution is usually high, the dissociation of hydrofluoric acid is close to zero, and the fluorine ion concentration is very small compared to the hydrofluoric acid concentration.

従って弗素イオンのみを選択するイオン選択性電極では
測定困難である。
Therefore, measurement is difficult with an ion-selective electrode that only selects fluorine ions.

又このために混酸を希釈したり中和したりして弗酸を解
離させると、前記(4)〜(7)式のバランスをくずす
ので測定が困難となる。
Furthermore, if the mixed acid is diluted or neutralized to dissociate hydrofluoric acid for this purpose, the balance of equations (4) to (7) will be disrupted, making measurement difficult.

本発明は混酸酸洗液中の酸洗に有効な弗素イオン、強酸
の陰イオンのみを、確実精確に測定する方法を提供する
ことを目的とする。
An object of the present invention is to provide a method for reliably and accurately measuring only fluorine ions and strong acid anions effective for pickling in a mixed acid pickling solution.

本発明の方法は、陰イオン交換膜により混酸酸洗液中の
弗素イオンおよび強酸の陰イオンを透析させて回収し、
さらに弱酸と強塩基の中和によつて生じた塩溶液にて希
釈したのち、弗素イオン、強酸の陰イオンそれぞれのイ
オン選択性電極によりそれぞれのイオン濃度を測定し、
この値を基に混酸の酸濃度を求めることを特徴とする。
The method of the present invention involves dialyzing and recovering fluorine ions and strong acid anions in a mixed acid pickling solution using an anion exchange membrane.
Furthermore, after diluting with a salt solution generated by neutralizing a weak acid and a strong base, the ion concentrations of each of the fluorine ions and strong acid anions were measured using ion-selective electrodes.
The method is characterized in that the acid concentration of the mixed acid is determined based on this value.

以下に本発明を図面により詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図において、1は金属イオンを含んだ混酸を金属イ
オンを含まない新混酸(以下回収酸と記す)として回収
する回収槽である。
In FIG. 1, reference numeral 1 denotes a recovery tank that recovers a mixed acid containing metal ions as a new mixed acid (hereinafter referred to as recovered acid) that does not contain metal ions.

回収槽は陰イオン交換膜2により仕切られている。The recovery tank is partitioned by an anion exchange membrane 2.

左側には酸洗に使用中の混酸を入れ、右側には水を入れ
ておく。
Put the mixed acid used for pickling on the left side, and water on the right side.

この回収槽の容量は、右側に比べ左側を充分に大きくし
ておく。
The capacity of this recovery tank is made sufficiently larger on the left side than on the right side.

こうすることによって左側の混酸中の弗素イオン(F−
)および強酸の陰イオンが、陰イオン交換膜2中を拡散
透析して右側の水中に移行する。
By doing this, the fluorine ion (F-
) and strong acid anions undergo diffusion dialysis through the anion exchange membrane 2 and migrate into the water on the right.

このとき陽イオンである水素イオン(H” )もイオン
半径が小さいため移行する。
At this time, hydrogen ions (H''), which are positive ions, also migrate because their ionic radius is small.

陰イオン交換膜2の左右で弗素イオン、強酸の陰イオン
および水素イオンの各濃度が等しくなったところで平衡
に達する。
Equilibrium is reached when the concentrations of fluorine ions, strong acid anions, and hydrogen ions become equal on the left and right sides of the anion exchange membrane 2.

このときの濃度は、左側の容積を■A1右側の容積を特
徴とする請 求まる。
The concentration at this time is characterized by the volume on the left side and the volume on the right side of A1.

また右側の濃度が時間(1)とともに増力口する割合f
(t)は で求まる。
Also, the ratio f of the concentration on the right side increasing with time (1)
(t) can be found by

(8)式を(9)式に代入しとなる。Substituting equation (8) into equation (9) yields.

従って使用中の混酸中の錯イオンのバランスをくずすこ
となく、混酸の濃度と(10)式に示す関係をもった酸
濃度を有する金属イオンを含まない回収酸を回収槽の右
側に得ることができる。
Therefore, without disturbing the balance of complex ions in the mixed acid being used, it is possible to obtain recovered acid free of metal ions and having an acid concentration that has the relationship shown in equation (10) with the concentration of the mixed acid on the right side of the recovery tank. can.

なお陰イオン交換膜中のイオンの拡散透析に時間を要す
る場合には、超音波振動を付与して時間短縮することが
できる。
Note that if it takes time to perform diffusion dialysis of ions in the anion exchange membrane, the time can be shortened by applying ultrasonic vibration.

以−にのようにして得られた回収酸も弗酸と強酸の混酸
であるため弗素イオンの量に比して水素イオンの量が多
く弗酸はほとんど解離していない為このままでは弗素イ
オン選択性電極による弗酸の濃度測定は困難である。
The recovered acid obtained in the above manner is also a mixed acid of hydrofluoric acid and a strong acid, so the amount of hydrogen ions is large compared to the amount of fluorine ions, and the hydrofluoric acid is hardly dissociated, so fluorine ions cannot be selected as is. Measuring the concentration of hydrofluoric acid using a polar electrode is difficult.

この為第1図に示すように回収酸を混合槽3に導き希釈
溶液用クンク4に入っている希釈液で希釈する。
For this purpose, as shown in FIG. 1, the recovered acid is introduced into a mixing tank 3 and diluted with a diluent contained in a dilute solution tank 4.

希釈液は回収酸の水素イオンを中和させ弗酸を解離させ
るとともにイオン強度バッファとしても作用するもので
なければならない。
The diluent must neutralize hydrogen ions in the recovered acid and dissociate hydrofluoric acid, and must also act as an ionic strength buffer.

水素イオンを中和させるために、加水分解して微アルカ
リとなる塩つまり、弱酸を強塩基で中和して得られる塩
の水溶液である必要がある。
In order to neutralize hydrogen ions, it is necessary to use an aqueous solution of a salt that becomes slightly alkaline through hydrolysis, that is, a salt obtained by neutralizing a weak acid with a strong base.

またイオン強度バッファとしても使えるために電離して
電価の多い塩であることが必要である。
In addition, since it can be used as an ionic strength buffer, it needs to be a salt with a high charge when ionized.

このような希釈液の一例としてくえん酸すトリウムを使
用した場合について説明する。
A case where thorium citrate is used as an example of such a diluent will be described.

弗酸は水素イオン濃度が10−5モル/l以−F程度に
なると、はぼ完全に解離する為、回収酸をくえん酸すl
−IJウム溶液で希釈して水素イオン濃度が1O−5モ
ル/l以下になるように、希釈率とくえん酸ナトIJウ
ム溶液の濃度を決めておく。
Hydrofluoric acid dissociates almost completely when the hydrogen ion concentration reaches 10-5 mol/l or more, so the recovered acid is diluted with citric acid.
- The dilution rate and the concentration of the sodium citrate solution are determined so that the hydrogen ion concentration becomes 10-5 mol/l or less when diluted with the sodium citrate solution.

例えば硝酸濃度最大1モル/lで弗酸濃度最大1モル/
lの回収酸では1モル/l!のくえん酸ナトリウム溶液
で回収酸の濃度を1/10に希釈すると水素イオン濃度
は10−5モル/l以下になる。
For example, if the maximum concentration of nitric acid is 1 mol/l, the maximum concentration of hydrofluoric acid is 1 mol/l.
1 mol/l of recovered acid! When the concentration of the recovered acid is diluted to 1/10 with a sodium citrate solution, the hydrogen ion concentration becomes less than 10-5 mol/l.

第1図の混合槽3において回収酸を希釈し、希釈された
回収酸について検出槽5で、弗素イオン選択性電極6と
強酸の陰イオン選択性電極1により弗素イオン濃度及び
強酸の陰イオン濃度を検知する。
The recovered acid is diluted in the mixing tank 3 of FIG. Detect.

各イオン濃度はそれぞれの電圧計8,9により電極の起
電力としで測定され、この値から混酸濃度を知ることが
できる。
The concentration of each ion is measured by the electromotive force of the electrode using the respective voltmeters 8 and 9, and the mixed acid concentration can be determined from this value.

また混合槽3は検出槽4をかねてもよい。Further, the mixing tank 3 may also serve as the detection tank 4.

このようにすることにより金属イオンを含んた混酸の濃
度を金属イオンの影響を受けず、しかもイオン選択性電
極を用いて測定することができるため、自動化が容易で
比較的短い時間で正確に硝酸及び弗酸の濃度を測定する
ことができる。
By doing this, the concentration of the mixed acid containing metal ions can be measured without being affected by metal ions and using an ion-selective electrode, making it easy to automate and accurately measure nitric acid in a relatively short time. and the concentration of hydrofluoric acid can be measured.

次に本発明の方法を使っで混酸濃度の測定を自動化した
実施例を第2図により説明する。
Next, an example in which the measurement of mixed acid concentration was automated using the method of the present invention will be described with reference to FIG.

濃度測定を行う必要が生じた場合は、図示しでいない水
源から水シャワー19,20.21に水を一定時間供給
し、液槽4,5.6の内部とこれらを結ぶ導管を洗浄す
る。
When it becomes necessary to measure the concentration, water is supplied from a water source (not shown) to the water showers 19, 20.21 for a certain period of time to clean the insides of the liquid tanks 4, 5.6 and the conduits connecting them.

このとき電磁弁23゜26.27を開いでおき、洗浄水
は、電磁弁23゜2Tを通って排出される。
At this time, the solenoid valve 23°26.27 is kept open, and the wash water is discharged through the solenoid valve 23°2T.

洗浄水が完全に排出された後ポンプ16を1駆動し電磁
弁24を開くと共に電磁弁23.26.27を閉じ、標
準液タンク14より液槽4に濃度のわかっている標準液
を−定量供給し、これと同時に液槽5に水シヤワー20
から水を一定量供給し、この状態で一定時間保持する。
After the wash water is completely drained, pump 16 is driven once to open solenoid valve 24 and close solenoid valves 23, 26, and 27, and a standard solution of known concentration is transferred from standard solution tank 14 to liquid tank 4. At the same time, a water shower 20 is applied to the liquid tank 5.
A certain amount of water is supplied from the tank and maintained in this state for a certain period of time.

すると液槽4と5はその間を陰イオン交換膜28によっ
てしきられでいる為、液槽5の酸濃度が増加する。
Then, since the liquid tanks 4 and 5 are separated by the anion exchange membrane 28, the acid concentration in the liquid tank 5 increases.

こうして一定時間経過した後電磁弁26を開き、液槽5
の液を液槽6に移すとともに、ポンプ17を駆動し電磁
弁25を開き希釈液タンク13から希釈液を一定量供給
し希釈するとともにスターク−22でかくはんしながら
弗素イオン選択性電極Tと、被検液中の強酸の陰イオン
に選択性をもつイオン選択性電極8(例えば硝酸イオン
選択性電極)と、この2つの電極電位の基準となる電圧
を発生する比較電極9により各濃度を検出し電圧計10
にて起電力を測定し演算部11に記憶する。
After a certain period of time has elapsed, the solenoid valve 26 is opened and the liquid tank 5 is opened.
Transfer the liquid to the liquid tank 6, drive the pump 17, open the solenoid valve 25, supply a certain amount of diluent from the diluent tank 13, dilute it, and stir it with the Stark-22 while connecting the fluorine ion selective electrode T. Each concentration is detected by an ion-selective electrode 8 (e.g., a nitrate ion-selective electrode) that is selective for strong acid anions in the test solution, and a comparison electrode 9 that generates a voltage that serves as a reference voltage for these two electrode potentials. Voltmeter 10
The electromotive force is measured and stored in the calculation unit 11.

この測定が完了すると電磁弁27を開き液槽6の液を排
出する。
When this measurement is completed, the electromagnetic valve 27 is opened and the liquid in the liquid tank 6 is discharged.

以上で標準液の濃度が測定されたことになり続いて被検
液の濃度測定を行う。
Now that the concentration of the standard solution has been measured, the concentration of the test solution is then measured.

まず水シャワー18,19,20,21に水を一定時間
供給し液槽1、フィルター2、温度調整器3、液槽4,
5,6及びこれらを結ぶ導管を洗浄する。
First, water is supplied to the water showers 18, 19, 20, 21 for a certain period of time, and the liquid tank 1, filter 2, temperature regulator 3, liquid tank 4,
Clean 5, 6 and the conduit connecting them.

このときポンプ15を駆動するとともに電磁弁23,2
6.27を開いておき、洗浄水は電磁弁23.27を通
して排出する。
At this time, the pump 15 is driven and the solenoid valves 23, 2
6.27 is left open and the wash water is discharged through the solenoid valve 23.27.

洗浄が一定時間続き洗浄水が完全に排出された後電磁弁
23゜26.27を閉じ図示しでいないサンプリング装
置で被検液をサンプリングし液槽1に入れフィルター2
、温度調整器3を通って液槽4に一定量供給する。
After the cleaning continues for a certain period of time and the cleaning water is completely drained, the solenoid valves 23, 26, and 27 are closed, and the sample liquid is sampled with a sampling device (not shown) and put into the liquid tank 1 and then filtered into the filter 2.
, a constant amount is supplied to the liquid tank 4 through the temperature regulator 3.

これと同時に水シヤワー20から液槽5に水を一定量供
給する。
At the same time, a certain amount of water is supplied from the water shower 20 to the liquid tank 5.

後は前に説明した標準液の濃度測定と同じ方法で濃度を
検出し、演算部11にこの結果を入力する。
After that, the concentration is detected by the same method as the concentration measurement of the standard solution described above, and this result is input to the calculation section 11.

演算部11では標準液を測定した時の電圧をVS、被検
液を測定した時の電圧をViとし を計算する。
The calculation unit 11 calculates the voltage when the standard solution is measured as VS, and the voltage when the test solution is measured as Vi.

この演算結果を表示部12で表示し測定を全て終了する
This calculation result is displayed on the display section 12, and all measurements are completed.

なお係数には前もつで濃度のわかっている混酸で実験に
より求めておくか、濃度の異なる標準液を2つ用意しで
おき片方の標準液の濃度をO8t、この標準液の濃度を
測定した時のイオン選択性電極の起電圧を■s1とし、
もう一方の標準液の濃度を082sこの標準液の濃度を
測定した時のイオン選択性電極の起電力をvs2として を計算しで求めでも良い。
The coefficient can be determined by experiment using a mixed acid with a known concentration, or by preparing two standard solutions with different concentrations and measuring the concentration of one standard solution with O8t. Let the electromotive force of the ion-selective electrode be ■s1,
The concentration of the other standard solution may be determined by calculating the electromotive force of the ion-selective electrode at the time when the concentration of this standard solution is measured as vs2.

以上の流れをリレーシーケンス又はシーケンサ−又はマ
イクロコンピュータ−等で制御することにより自動的に
混酸濃度測定を行うことができる。
By controlling the above flow using a relay sequence, a sequencer, a microcomputer, etc., the mixed acid concentration can be automatically measured.

以上述べたごとく本発明方法により、弗酸と硝酸、硫酸
、塩酸等の強酸との混酸を用いて金属材料を酸洗する際
に、酸濃度を随時精確に測定でき、混酸の濃度管理を的
確に行うことができる。
As described above, according to the method of the present invention, when pickling metal materials using a mixed acid of hydrofluoric acid and a strong acid such as nitric acid, sulfuric acid, or hydrochloric acid, the acid concentration can be accurately measured at any time, and the concentration of the mixed acid can be precisely controlled. can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法を行うための原理図、第2図は本
発明方法の一実施例を示す装置の系統図である。
FIG. 1 is a principle diagram for carrying out the method of the present invention, and FIG. 2 is a system diagram of an apparatus showing an embodiment of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 陰イオン交換膜により酸洗液中の弗素イオンおよび
強酸の陰イオンを透析させて回収し、ざらに弱酸と強塩
基の中和によって生じた塩溶液にて希釈したのち、イオ
ン選択性電極によりそれぞれのイオンの濃度を測定する
ことを特徴とする弗酸と強酸の混酸酸洗液の酸濃度測定
方法。
1. Fluoride ions and strong acid anions in the pickling solution are dialyzed and recovered using an anion exchange membrane, diluted with a salt solution generated by neutralizing a weak acid and a strong base, and then collected using an ion-selective electrode. A method for measuring the acid concentration of a mixed pickling solution of hydrofluoric acid and strong acid, characterized by measuring the concentration of each ion.
JP53112906A 1978-09-16 1978-09-16 Method for measuring acid concentration in mixed pickling solution of hydrofluoric acid and strong acid Expired JPS5841462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53112906A JPS5841462B2 (en) 1978-09-16 1978-09-16 Method for measuring acid concentration in mixed pickling solution of hydrofluoric acid and strong acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53112906A JPS5841462B2 (en) 1978-09-16 1978-09-16 Method for measuring acid concentration in mixed pickling solution of hydrofluoric acid and strong acid

Publications (2)

Publication Number Publication Date
JPS5540908A JPS5540908A (en) 1980-03-22
JPS5841462B2 true JPS5841462B2 (en) 1983-09-12

Family

ID=14598446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53112906A Expired JPS5841462B2 (en) 1978-09-16 1978-09-16 Method for measuring acid concentration in mixed pickling solution of hydrofluoric acid and strong acid

Country Status (1)

Country Link
JP (1) JPS5841462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194052U (en) * 1987-05-31 1988-12-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194052U (en) * 1987-05-31 1988-12-14

Also Published As

Publication number Publication date
JPS5540908A (en) 1980-03-22

Similar Documents

Publication Publication Date Title
Khoshkbarchi et al. Measurement and correlation of ion activity in aqueous single electrolyte solutions
Pungor Theory and application of anion
Akretche et al. Donnan dialysis of copper, gold and silver cyanides with various anion exchange membranes
JP2001021548A (en) Analytical method and device for free fluorine in solution containing hydrofluoric acid
JPS5841462B2 (en) Method for measuring acid concentration in mixed pickling solution of hydrofluoric acid and strong acid
JP3321289B2 (en) Mixed acid analysis method and pickling solution management method
MXPA03009174A (en) Pickle liquor acid analyzer.
JPS6235059B2 (en)
Essington Formation of calcium and magnesium molybdate complexes in dilute aqueous solutions
JPH0526853A (en) Method for measuring main constituent concentration of neutral salt electrolytic bath for descaling stainless steel band
MXPA01005464A (en) Device and method to control steel pickling processes.
US5286358A (en) Method of analyzing the complexing power of a pickling liquor
Rodil et al. Determination of the activity of H+ ions within and beyond the pH meter range
Buckley et al. The Potential of the Ruthenium (II)—Ruthenium (III) Couple1
JPH05263279A (en) Controlling method for bath of nitric acid and hydrofluoric acid for descaling stainless steel strip and continuously descaling equipment
Kawai et al. A thermodynamic study on hydrolytic reactions of lead (II) ion in an aqueous solution and dioxane-water mixtures. I. A potentiometric study.
Peshkova et al. Ion-selective electrodes under galvanostatic polarization conditions
Lindroos Determination of free hydrofluoric and nitric acids in pickling bath liquors using a fluoride-selective electrode and alkalimetric titration
JP4470075B2 (en) Method for measuring component concentration of sulfuric acid-hydrofluoric acid type pickling solution
Bozhikov et al. Electrophoretic method for the determination of diffusion coefficients of ions in aqueous solutions
Tanaka et al. Modified diffusion cell and its application to the determination of activity coefficients
Wagner et al. Kinetics of ion exchange accompanied by irreversible reaction. III. Film diffusion controlled neutralization of a strong acid exchanger by a weak base
Medley The diffusion of acid ions in keratin. Part 1. The “chemical” diffusion coefficient for sulphuric acid
Cukrowski et al. Pulse polarography study of the complexes of lead with azacrown [2, 2, 2] cryptand in the presence of an excess of competing sodium ion
Gedraite et al. Experimental investigation about the milk protein based deposit removal kinetics