JPS5841333A - Temperature detector - Google Patents

Temperature detector

Info

Publication number
JPS5841333A
JPS5841333A JP14010281A JP14010281A JPS5841333A JP S5841333 A JPS5841333 A JP S5841333A JP 14010281 A JP14010281 A JP 14010281A JP 14010281 A JP14010281 A JP 14010281A JP S5841333 A JPS5841333 A JP S5841333A
Authority
JP
Japan
Prior art keywords
optical fiber
metal tube
temperature
light
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14010281A
Other languages
Japanese (ja)
Inventor
Shuichi Tai
田井 修市
Kazuo Hisama
和生 久間
Masahiro Nunoshita
布下 正宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14010281A priority Critical patent/JPS5841333A/en
Publication of JPS5841333A publication Critical patent/JPS5841333A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/50Measuring temperature based on the expansion or contraction of a material the material being a solid arranged for free expansion or contraction
    • G01K5/52Measuring temperature based on the expansion or contraction of a material the material being a solid arranged for free expansion or contraction with electrical conversion means for final indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To enable temperature measurement without being affected by a strong magnetic or electric field by detecting temperature variation from the amount of of light transmission due to variation in the spaces between optical fibers. CONSTITUTION:Optical fibers 7 and 8 are located coaxially in a metal tube 6 are opposed to each other at a space 10 to form a U-shaped curve. When with this construction, the temperature around the metal tube 6 within a member 1 under measurement increases so that the temperatur of the metal tube 6 and the fibers 7, 8 rise, the space 10 between the fibers 7 and 8 is expanded due to a difference between the thermal expansion coefficient of the fibers 7, 8 and that of the metal tube 6. With the space 10 increasing, the amount of light entering from fiber 7 through the space 10 into the fiber 8 is reduced, whereby the temperature can be measured by detecting the variation in intensity of light received by the light detecting device 12a.

Description

【発明の詳細な説明】 この発明は光7アイパを用いて温度を検出する温度検出
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature detection device that detects temperature using an optical 7-eyeper.

従来、温度検出装置としては、ゼーベック効果を利用す
るものが多く用いられており、この例をオ1図に示す。
Conventionally, many temperature detection devices have been used that utilize the Seebeck effect, and an example of this is shown in Fig. 1.

図において、(1)は温度が測定される被測定部材、(
!1け熱電対であり、被測定部材に伝熱的に設けられて
いる。ここで、熱電対(!1の熱起電力は、補償鋼線(
3)を介し冷接点補償器(4)を通抄、直流増幅器fi
lに導びかれ、被測定部材111の温度に比例した出力
となるので、被測定部材fi+の温度の測定が実現でき
る。
In the figure, (1) indicates the member to be measured whose temperature is measured, (
! It is a single thermocouple and is installed on the member to be measured for heat transfer. Here, the thermoelectromotive force of the thermocouple (!1) is the compensating steel wire (!
3) Pass the cold junction compensator (4) through the DC amplifier fi
Since the output is proportional to the temperature of the member to be measured 111, it is possible to measure the temperature of the member to be measured fi+.

従来のゼーベック効果を利用する温度検出装置は、以上
のように構成されているので、冷接点補償器が必要であ
ること、また、測定回路に金m専線を用いる必要がある
ため、回転電機の内部のような、高磁界、高電界の存在
する環境下では使用できないという欠点があった。
Conventional temperature detection devices that utilize the Seebeck effect are configured as described above, so they require a cold junction compensator and use a dedicated wire in the measurement circuit, making them difficult to use in rotating electrical machines. The drawback was that it could not be used in environments with high magnetic fields and high electric fields, such as inside a car.

この発明は以上のような従来のものの欠点を除去するた
めになされたもので、光ファイバとその支持部材の熱膨
張率の差を利用して、高磁界、高電界の影響を受けずに
温度測定ができる温度検出装置の提供を目的としている
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and utilizes the difference in thermal expansion coefficient between an optical fiber and its supporting member to increase temperature without being affected by high magnetic fields and high electric fields. The purpose is to provide a temperature detection device that can perform measurements.

以下、この発明の一実施例を図によって説明する。第1
図において、(6)は支持部材であり、銅製のU字形に
成形された金属管である。一端からオlの光ファイバけ
)が挿入され、他端から第3の光ファイバ(81が挿入
されている。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. 1st
In the figure, (6) is a support member, which is a U-shaped metal tube made of copper. A third optical fiber (81) is inserted from one end, and a third optical fiber (81) is inserted from the other end.

金属管(6)の両端部において、オlの光ファイバ(7
)およびオBの光ファイバillはそれぞれ接着部材(
9)で金属管(6)に固着されている。
Two optical fibers (7) are connected at both ends of the metal tube (6).
) and the optical fiber ill of OB are each attached with an adhesive member (
9) is fixed to the metal tube (6).

オlの光ファイバ(7)とysの光ファイバ(81とけ
金属管(6)内で同軸上に位置し、聞隙叫を介して各々
の端面がU字形の曲線部で対向している。
The optical fiber 7 and the optical fiber 81 are located coaxially within the metal tube 6, and their end faces face each other at a U-shaped curved portion with a gap between them.

オlの光ファイバ())の、金属管(6)側と反対側の
端部は光源(11)に接続されている。また第3の光7
アイパ(81の金属管(6)側と反対側の端部は光検出
手段Ofiの光検出器(l[1に接続されていも以上の
構成において、被測定部材+11内に設置される金属管
(6)の周囲の温度が上昇し、金属管(6)の温度およ
びオlの光ファイ/4’ +7)および第1の光ファイ
バ(81の温度が上昇すると、牙lの光ファイバ(〕)
および第1の光ファイバ(81の熱膨張係数と金属管1
6)の熱膨張係数との差異により1オlの光ファイバ(
7)と第1の光ファイ/41岨との闇の間11(Mmが
広がる。間隙叫の大きさの変化#′i。
The end of the second optical fiber () on the side opposite to the metal tube (6) is connected to a light source (11). Also the third light 7
The end of the Aiper (81 on the opposite side to the metal tube (6) side is connected to the photodetector (l[1) of the photodetection means Ofi. In the above configuration, the metal tube installed in the member to be measured +11 When the temperature around (6) increases, the temperature of the metal tube (6) and the temperature of the optical fiber /4' +7) and the first optical fiber (81) increases, )
and a first optical fiber (with a thermal expansion coefficient of 81 and a metal tube 1
6) Due to the difference in thermal expansion coefficient, 1 ol optical fiber (
7) and the first optical fiber/41 岨 11 (Mm widens. Change in the size of the gap scream #'i.

仁の実施例において、金属管(61の全長がaosmの
ときに約* 4zigであった・したがって、間隙11
αの大傘さが拡大すると、オlの光ファイバけ)2オ1
の光ファイバ181との間の光通路の結合効率の低下、
すなわちオlの光ファイノ((〕)から間Q(2)を介
して牙1の光ファイバ(@1に入射する光の光量の減少
が起る。このような性質を利用することによって、光検
出器(ljla)で受光される光の強度の変化から温度
の測定が実現できる。なお間障叫の大きさの変化による
光ファイバ(γ)(81間の光の伝達量の変eは、光フ
ァイバの端面での最大受光角(最大入射角であり、また
光の出る場合の最大広がり角でもある)の大きい光ファ
イバはど大きくなるので、金属管telの全長を短くす
るためには、できるだけ最大受光角の大きい光ファイバ
を用いれば良い、また、金属管(61の形状をU字形に
しているので、光ファイバ+?) +81は、自らの弾
性によって曲率を有する金属管(6)内壁外周に押えつ
けられて第1の光ファイバ(7)の光軸と第3の光ファ
イバ(81の光軸とを常に一致させることができる。
In the example of Jin, the total length of the metal tube (61 was about *4zig when aosm; therefore, the gap 11
When the large umbrella of α expands, the optical fiber of
a reduction in the coupling efficiency of the optical path between the optical fiber 181 and the optical fiber 181;
In other words, the amount of light that enters the optical fiber (@1) of Fang 1 from the optical fiber (()) of OI via the gap Q(2) decreases. Temperature can be measured from changes in the intensity of light received by the detector (ljla).The change e in the amount of light transmitted between the optical fibers (γ) (81) due to changes in the magnitude of the interference is as follows: An optical fiber with a large maximum acceptance angle (maximum incident angle and maximum spread angle when light is emitted) at the end face of the optical fiber will be large, so in order to shorten the total length of the metal tube tel, It is sufficient to use an optical fiber with a maximum acceptance angle as large as possible.In addition, a metal tube (the shape of 61 is U-shaped, so it is an optical fiber +?) +81 is the inner wall of the metal tube (6) which has a curvature due to its own elasticity. Being pressed against the outer periphery, the optical axis of the first optical fiber (7) and the optical axis of the third optical fiber (81) can always be aligned.

次にこの発明の他の実施例を牙3図に示す。Next, another embodiment of the present invention is shown in Fig. 3.

図において、U字形の金属管(6)には、一端から第1
の光ファイバ())が挿入されている。一方金屓管(6
)内にはオlの光ファイバ())が挿入された端部と反
対側の端部から第1の光ファイバ(8)が設けられてい
る。flの光ファイバ())とオ露の光ファイバts+
とけ、U字形の曲線部において間II fl(1を介し
て対向し、各々の光軸が一致するように配れ、金属管(
61の両端部で接着部材(9)により金属管(6)に固
着されている。オ8の光ファイバ(81の金属管(6)
の端部側の端面には反射鏡(lit))が設けられてい
る。光源(!りと第1の光7アイパ(7)との間には光
ファイバQ1を介してビームスビリツタ(Igo)が設
けられ、ビームスビリツタ(1310)には光7アイノ
401を介して光検出器(IIll)が接続されてrる
。以上の構成において、光1lA(Il+から出た光は
、光ファイバーを介してビームスビリツタ(116)に
入シ、ビームスビリツタ(llo)からオlの光ファイ
バ(7)を通り、金属管(6)内で闇11QIを通って
第3の光ファイノ((81に入光する。第3の先ファイ
バ園に入光した光Fi、反射鏡(■1)で反射し、再び
第1の光7アイパ(81を通り1間w−を通ってオlの
光ファイノ((7)へ入光し、ビームスビリツタ(11
16)によって光ファイバ01を介して光検出器(ll
a)に入光する。したがって、金属管+61と光ファイ
バ!61 (71との熱膨張率の差異によって生じる闇
隙叫の大きさの変化によって、上記この発明の一実施例
と同様に温度の測定が実施できる。第8図の実施例では
金属管(61と光源(11)および光検出器(19o)
との間が、1本の光ファイバ、すなわち第1の光ファイ
バ(1)のみで行なうことができるので、光ファイバを
回転電機の筐体をガスシールIを介して貫通させる内部
の温度測定を行なう場合には、ガスシールを施す箇所が
1ケ所のみでよくなシ被測定体側の信頓性、安全性を向
上できる。
In the figure, the U-shaped metal tube (6) has a first
Optical fiber ()) is inserted. On the other hand, the metal tube (6
), a first optical fiber (8) is provided from the end opposite to the end into which the second optical fiber ()) was inserted. fl optical fiber ()) and optical fiber ts+
They are arranged so that the optical axes of the metal tubes (
Both ends of 61 are fixed to the metal tube (6) with adhesive members (9). 8 optical fibers (81 metal tubes (6)
A reflecting mirror (lit) is provided on the end face of the end portion. A beam stabilizer (Igo) is provided between the light source (!) and the first optical 7 eyeper (7) via an optical fiber Q1, and a beam stabilizer (Igo) is provided via an optical 7 eyer 401 to the beam stabilizer (1310). A photodetector (IIll) is connected to it.In the above configuration, the light emitted from the light 11A (Il+) enters the beam stabilizer (116) via the optical fiber, and is output from the beam stabilizer (llo). 1 optical fiber (7), passes through the dark 11QI in the metal tube (6), and enters the third optical fiber ((81). (■1), the first light passes through the 7-eyeper (81), passes through the 1-way w-, enters the optical fiber optic ((7)), and enters the beam stabilizer (11).
16) through the optical fiber 01 to the photodetector (ll
Light enters a). Therefore, metal tube +61 and optical fiber! 61 (71) Temperature measurement can be carried out in the same manner as in the embodiment of the present invention described above, by changing the size of the dark gap caused by the difference in thermal expansion coefficient between the metal tube (61 and light source (11) and photodetector (19o)
Since the measurement can be carried out with only one optical fiber, that is, the first optical fiber (1), it is possible to measure the internal temperature by passing the optical fiber through the casing of the rotating electrical machine via the gas seal I. If this is done, only one place is required to provide a gas seal, and reliability and safety on the part of the object to be measured can be improved.

次に、この発明の別の他の実施例を第4図に示す。図に
おいて、鋼管(6)内には光7アイパ(テ)と光7アイ
ノ4(岨とが挿入され、鋼管(6′Iの一端部に接着側
tillを介して接合されでいる。・舅管(6)の他端
部には、光ファイバ(7)園の端面と間隙−をおいて対
向する位置にミラー04が投けられている。このような
構成においても、鋼管(6)と光ファイバfi+ +1
1の熱膨張係数の差から光7アイパ(7)から光プアイ
パ(81へ入射する光量は、周囲の温度変化に対応して
変化するので、上記オ雪図の実施例と同様の効果を奏し
、周囲の電界、磁界の影響を受けないで温度の測定が可
能となる。
Next, another embodiment of the present invention is shown in FIG. In the figure, a light 7 eye hole and a light 7 eye hole 4 are inserted into the steel pipe (6), and are joined to one end of the steel pipe (6'I) via the adhesive side till. A mirror 04 is provided at the other end of the pipe (6) at a position facing the end face of the optical fiber (7) with a gap in between.In such a configuration, the steel pipe (6) and optical fiber fi+ +1
Due to the difference in thermal expansion coefficient of 1, the amount of light incident from the light 7 eyeper (7) to the light eyelet (81) changes in response to changes in the surrounding temperature, so the same effect as in the example of the snow chart described above is produced. , temperature can be measured without being affected by surrounding electric or magnetic fields.

また、第5図にこの発明のさらに他の実施例を示す。図
において、鋼管(6)内にFi、光7アイハ(7)が挿
入され、鋼管(6)の一端部において銅管(6)と光プ
アイパ(7)とけ接着材(91で接合されている。@管
te+の他端部には、光ファイバ(7)の端面に間隙を
おいてミラーHが設けられている。このようなIIft
Kよっても第2図の実施例と同様の効果を奏し%周囲の
電界、磁界の影響を受けないで温度の測定が可能となる
Further, FIG. 5 shows still another embodiment of the present invention. In the figure, Fi, Hikari 7 Aiha (7) is inserted into the steel pipe (6), and the copper pipe (6) and the Hikari 7 Aiha (7) are joined at one end of the steel pipe (6) with adhesive (91). At the other end of the tube te+, a mirror H is provided with a gap between the end face of the optical fiber (7).
K also produces the same effect as the embodiment shown in FIG. 2, making it possible to measure temperature without being influenced by surrounding electric and magnetic fields.

以上述べたように、この発明によれば、温度検出装置に
おいて牙lの光ファイバと第1の光ファイバとを同じ光
軸上で1!!l隙を介して対向する位置に支持する上記
光ファイノ(とけ異なる熱膨張率の部材で形成された支
持部材を備え、光フアイバ間の間隙の大きさの変化によ
る牙lの光1′アイノ(と第3の光ファイバとの闇の光
の伝達量の変化から温度変化を検出しているので、温度
の検出が純光学的になり1回転電機の内部のような高電
界、高磁界の存在するところからノイズの影響を受けず
に温度の検出が実現できるとともに、光7アイμ間の間
隙の大きさの変化4利用してhるので、同一部材の支持
部材を用い・でも低温から高温までの温度検出が実現で
ちる。
As described above, according to the present invention, in the temperature detection device, the first optical fiber and the first optical fiber are connected to each other on the same optical axis. ! The above-mentioned optical fibers are supported at positions facing each other with a gap between them. Since the temperature change is detected from the change in the amount of dark light transmitted between the optical fiber and the third optical fiber, the temperature detection becomes purely optical, and the presence of high electric and magnetic fields such as inside a single-rotation electric machine is detected. This makes it possible to detect temperature without being affected by noise, and because it takes advantage of the change in the size of the gap between the optical 7 eyes, it is possible to detect temperatures from low to high temperatures using the same supporting member. It is possible to detect temperatures up to

【図面の簡単な説明】[Brief explanation of the drawing]

牙1図は従来例を示す略接続図、第2図けこ手続補正書
(自発) 特、1庁1く宮殿 1、事(’lの表示    特願昭 56−14010
Lt号2、発明の名称   湿度検出装置 3、補正をする者 6、 補正の対象 明細書の発明の詳細な説明の欄 6、 補正の内容
Figure 1 is a schematic connection diagram showing a conventional example, Figure 2 is a simplified connection diagram showing a conventional example, and Figure 2 is an amendment to the procedure (voluntary).
Lt No. 2, Title of the invention Humidity detection device 3, Person making the amendment 6, Detailed description of the invention in the specification to be amended 6, Contents of the amendment

Claims (1)

【特許請求の範囲】 II+  光源、この光源に接続されるオlの光ファイ
バ、オBの光7アイパ、これらの光ファイバとけ異なる
熱膨張率の材料で構成され上記オlの光ファイバと上記
第2の光ファイバを間隙を介して対向する位置に支持す
る支持部材、および上記オlの光ファイバと上記オ8の
光ファイバとの間で伝達された光を検出する検出手段を
備え、上記支持部材の熱膨張による間隙の大きさの変化
に基づいて温度を検出する温度検出装置。 (′11  支持部材はオlの光ファイノ(とオ8のi
7アイパを収容する管状に形成されていることを特徴と
する特許請求の範囲オ1項記載の温度検出装置。
[Scope of Claims] II+ A light source, an optical fiber connected to this light source, an optical fiber 7-iper connected to this light source, and an optical fiber made of a material having a different coefficient of thermal expansion than the above optical fiber. A support member for supporting the second optical fiber at opposing positions with a gap therebetween, and a detection means for detecting light transmitted between the optical fiber O and the optical fiber O, A temperature detection device that detects temperature based on a change in the size of a gap due to thermal expansion of a support member. ('11 The support member is O1's optical fiber (and O8's i
7. The temperature detecting device according to claim 1, wherein the temperature detecting device is formed into a tubular shape that accommodates 7 eyes.
JP14010281A 1981-09-04 1981-09-04 Temperature detector Pending JPS5841333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14010281A JPS5841333A (en) 1981-09-04 1981-09-04 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14010281A JPS5841333A (en) 1981-09-04 1981-09-04 Temperature detector

Publications (1)

Publication Number Publication Date
JPS5841333A true JPS5841333A (en) 1983-03-10

Family

ID=15260982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14010281A Pending JPS5841333A (en) 1981-09-04 1981-09-04 Temperature detector

Country Status (1)

Country Link
JP (1) JPS5841333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277119B2 (en) 2006-12-19 2012-10-02 Vibrosystm, Inc. Fiber optic temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277119B2 (en) 2006-12-19 2012-10-02 Vibrosystm, Inc. Fiber optic temperature sensor

Similar Documents

Publication Publication Date Title
US5419636A (en) Microbend fiber-optic temperature sensor
CN108458814B (en) Self calibration detection device and temperature demodulation method towards fiber Raman temperature-sensing system
JP2740206B2 (en) Thermal radiation type low temperature measuring instrument
JPH11142247A (en) Optical pyrometer for gas turbine
EP2752648A2 (en) Optical fibre distributed temperature detector with SMA element with discrete alarm
Mikolajek et al. Temperature measurement using optical fiber methods: overview and evaluation
JP2002524728A (en) Optical fiber temperature sensor
CN105953958A (en) All-silica fiber Fabry-Perot pressure sensor
Liu et al. Ultrasensitive parallel double-FPIs sensor based on Vernier effect and Type II fiber Bragg grating for simultaneous measurement of high temperature and strain
US20150160075A1 (en) Cane-based u-bend
KR840001710A (en) Transducer of fiber optic combiner
JPS5841333A (en) Temperature detector
US5208650A (en) Thermal dilation fiber optical flow sensor
US8590385B2 (en) High pressure fiber optic sensor system
CN205373872U (en) Optic fibre EFPI ultrasonic sensor
JPS5858008B2 (en) Laser power detection device
CN205449325U (en) Utilize dislocation optic fibre to realize device of beat frequency temperature measurement
JPS59203929A (en) Detection of temperature abnormality
JP3079981B2 (en) Temperature detector
JPS61288140A (en) Fiber type sensor
JP2009052964A (en) Fiber-optic temperature sensor and temperature detection system using it
JP2520671Y2 (en) Fiber optic composite cable
SU1185123A1 (en) Optical fibre thermometer
JPS60151524A (en) Ambient temperature correcting method of fiber type radiation thermometer
JPH0580606B2 (en)