JPS5858008B2 - Laser power detection device - Google Patents

Laser power detection device

Info

Publication number
JPS5858008B2
JPS5858008B2 JP52086597A JP8659777A JPS5858008B2 JP S5858008 B2 JPS5858008 B2 JP S5858008B2 JP 52086597 A JP52086597 A JP 52086597A JP 8659777 A JP8659777 A JP 8659777A JP S5858008 B2 JPS5858008 B2 JP S5858008B2
Authority
JP
Japan
Prior art keywords
laser power
detection device
optical waveguide
temperature
power detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52086597A
Other languages
Japanese (ja)
Other versions
JPS5422883A (en
Inventor
辰篤 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP52086597A priority Critical patent/JPS5858008B2/en
Publication of JPS5422883A publication Critical patent/JPS5422883A/en
Publication of JPS5858008B2 publication Critical patent/JPS5858008B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 本発明は、パワーを測定すべきレーザ光を光導波路中に
伝搬させ、当該パワーを高感度で測定し得るボロメータ
形レーザーパワーメータに関し、殊に該計測システムに
おける検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bolometer type laser power meter that propagates a laser beam whose power is to be measured through an optical waveguide and can measure the power with high sensitivity, and particularly relates to a detection device in the measurement system. It is related to.

従来、レーザパワーの測定に使用されてきたカロリメー
タは光吸収体、温度検出素子、校正用ヒータの基本要素
から構成されている。
Conventionally, a calorimeter used to measure laser power consists of the basic elements of a light absorber, a temperature detection element, and a calibration heater.

然るに、この方法では発光面積の小さいレーザ光とか、
光ファイバーや光集積回路などから一度空間に放射され
た拡がり角の大きいレーザ光等のパワーを測定する場合
、全パワーを吸収するためには、吸収体面積を大きくす
る必要があり、そのために、空間感度のむらが生じ易い
、また熱容量が大きくなるため温度上昇分が小さく感度
をあげにくい、時間応答が遅いなどの欠点があった。
However, with this method, laser beams with a small emission area, etc.
When measuring the power of a laser beam with a large divergence angle that is emitted into space from an optical fiber or optical integrated circuit, it is necessary to increase the area of the absorber in order to absorb all the power. There are disadvantages such as sensitivity unevenness is likely to occur, the temperature increase is small due to the large heat capacity, making it difficult to increase sensitivity, and the time response is slow.

本発明はこの点に鑑でなされたもので、少くとも測定す
べきレーザ光に対しては極力透明な材料から作られた光
導波路に当該レーザ光の吸収体を兼ねた感温抵抗体を付
した検出装置を提供し、もってボロメータ形の小型、高
感度なレーザパワーメータとする等して高感度、高精度
なレーザパワー測定をなし得るようにすることを主目的
としたものである。
The present invention has been made in view of this point, and includes a temperature-sensitive resistor that also serves as an absorber for the laser light to be attached to an optical waveguide made of a material that is as transparent as possible, at least for the laser light to be measured. The main purpose of this invention is to provide a detection device that can be used to measure laser power with high sensitivity and precision, such as by making it into a small, high-sensitivity bolometer-type laser power meter.

以下図面に即し、本発明レーザパワー検出装置のいくつ
かの実施例に就き詳記する。
Below, several embodiments of the laser power detection device of the present invention will be described in detail with reference to the drawings.

第1A、B図に示すものは本発明の基本的な実施例の一
つであって、光導波路1は光損失の少い少くとも測定す
べき光に対しては透明な材質から成ったこの場合管状の
ものであり、その端面1aは光学研磨を施しである。
The optical waveguide 1 shown in FIGS. 1A and 1B is one of the basic embodiments of the present invention, and the optical waveguide 1 is made of a material that has low optical loss and is transparent at least to the light to be measured. In this case, it is tubular, and its end surface 1a is optically polished.

光導波路1の外壁には周方向中くとも一部分、望ましく
は図示のように全周を囲繞して、軸方向適宜な長さ分、
感温抵抗体2を密接的に設けである。
The outer wall of the optical waveguide 1 is surrounded by at least a portion in the circumferential direction, preferably the entire circumference as shown in the figure, and has a suitable length in the axial direction.
The temperature sensitive resistor 2 is provided closely.

感温抵抗体2の両端には電極3,3を付していて、図示
矢印■で示す如くリード線4,4を介して抵抗体2に電
流を流し得るようになっている。
Electrodes 3, 3 are attached to both ends of the temperature-sensitive resistor 2, so that a current can be passed through the resistor 2 via lead wires 4, 4, as shown by the arrow (■) in the figure.

斯くして、レーザ光を吸収し、そのパワーを検出する全
体としての検出装置10が構成されるが、この検出装置
10を光導波路形ボロメータ(LGB)ユニットと呼ぶ
In this way, a detection device 10 as a whole that absorbs laser light and detects its power is constructed, and this detection device 10 is called an optical waveguide bolometer (LGB) unit.

測定すべきレーザ光Eは該ユニット乃至検出装置10の
光導波路端面1aに光ファイバF等々の小断面積出力端
面から供給され、光導波路1中を伝搬していくうちに感
温抵抗体2に吸収されていく。
The laser beam E to be measured is supplied to the optical waveguide end face 1a of the unit or the detection device 10 from the small cross-sectional area output end face of the optical fiber F, etc., and as it propagates through the optical waveguide 1, it hits the temperature sensitive resistor 2. It gets absorbed.

而して、当該レーザ光Eのパワー測定は例えば第2図示
のような測定系によって行う。
The power of the laser beam E is measured, for example, by a measurement system as shown in the second figure.

この測定系は一般性の高いブリッジ型であって、一辺に
は第1図示の検出装置乃至LBGユニット10が挿入さ
れ、他三辺には既知の抵抗値Rを有する抵抗5・・・・
・・が配されている。
This measurement system is of a highly general bridge type, in which the detection device or LBG unit 10 shown in the first diagram is inserted on one side, and resistors 5 having a known resistance value R on the other three sides.
...are arranged.

勿論、バランスを採るための検流計G1電源Vが備えら
れていることはこの種の回路の常である。
Of course, it is usual for this type of circuit to be provided with a galvanometer G1 power source V for balancing.

回路電流、結局はユニット10の電流を検出する手段(
電流計等)Aと該電流の調整手段(この場合、可変抵抗
器)rが電源■に直列に入っているが、こうした測定系
を援用しての測定は次のようにしてなす。
Means for detecting the circuit current, ultimately the current in the unit 10 (
An ammeter (such as an ammeter) A and a means for adjusting the current (in this case, a variable resistor r) are connected in series to the power supply (2).Measurements using such a measurement system are carried out as follows.

先づ、感温抵抗体2にリード線4、電極3を介して電源
■から適当な電流11を流し、ある抵抗値、この場合上
記ブリッジ回路においてバランスを採った抵抗値R(各
抵抗5の値と同じであること自明)に保っておく。
First, a suitable current 11 is applied to the temperature-sensitive resistor 2 from the power source 2 through the lead wire 4 and the electrode 3, and a certain resistance value, in this case the resistance value R balanced in the bridge circuit described above (of each resistor 5), is applied. (obviously the same as the value).

光導波路1内に測定すべきレーザ光Eを入射させると、
感温抵抗体2は該光のパワーを吸収して温度上昇が起こ
り、抵抗値が変化、一般に低下する。
When the laser beam E to be measured is introduced into the optical waveguide 1,
The temperature-sensitive resistor 2 absorbs the power of the light, causing a temperature rise, and its resistance value changes, generally decreasing.

ここで、検流計Gを監視し乍ら、電流調整手段rにより
電流を調整しく一般に減少させて)、ブリッジ回路が再
びバランスして感温抵抗体2の抵抗値がレーザ光入射前
の抵抗値Rとなるように図る。
Here, while monitoring the galvanometer G, the current is adjusted and generally decreased by the current adjusting means r), so that the bridge circuit is balanced again and the resistance value of the temperature sensitive resistor 2 becomes the resistance value before the laser beam enters. Aim for the value R.

その時の電流値■2を電流計Aにて読取ることにより、
レーザ光入射前に感温抵抗体2の抵抗値Rを得るに必要
であった電流値■1との相関で、下式により当該レーザ
光Eのパワーを求め得る。
By reading the current value ■2 at that time with ammeter A,
The power of the laser beam E can be determined by the following formula in correlation with the current value (1) required to obtain the resistance value R of the temperature-sensitive resistor 2 before the laser beam is incident.

第3図A−、Bは夫々本装置の他の実施例を示したもの
で通過形と終端形がある。
FIGS. 3A and 3B show other embodiments of the present device, which include a passing type and a terminal type.

第1図示のものと異なる点は光導波路1の周壁面を散乱
面1bとしく少くとも感温抵抗体手段に臨む部分)、等
価的に面積を増やすことにより吸収率を向上させている
The difference from the one shown in FIG. 1 is that the peripheral wall surface of the optical waveguide 1 is used as a scattering surface 1b (at least the portion facing the temperature-sensitive resistor means), and the absorption rate is improved by equivalently increasing the area.

第3A図示の通過形では出射光として近軸光線(壁面に
触れないで光軸に略々沿って通過する光)に近いものが
得られ、信号波形などのモニタが同時に行える利点を有
する。
The pass-through type shown in FIG. 3A has the advantage that output light similar to paraxial light (light that passes approximately along the optical axis without touching the wall surface) can be obtained, and that signal waveforms and the like can be monitored at the same time.

第3B図示の終端形では光の通過、出力を考えていない
ので、光導波路の中心に散乱部6を作ることにより近軸
近傍の光を散乱させ壁面で吸収させる。
Since the terminal type shown in Figure 3B does not consider the passage and output of light, by creating a scattering section 6 at the center of the optical waveguide, light near the paraxial axis is scattered and absorbed by the wall surface.

従ってボロメータユニットに光パワーの殆ど全部を吸収
させることができる。
Therefore, almost all of the optical power can be absorbed by the bolometer unit.

散乱部の個数、形状は上記の目的に即し、任意の問題で
ある。
The number and shape of the scattering parts are arbitrary depending on the above purpose.

光導波路用の透明材料としては光の吸収損失の小さいガ
ラスが適しているが中でも石英ガラスが最適である。
Glasses with low light absorption loss are suitable as transparent materials for optical waveguides, and among them, quartz glass is most suitable.

感温抵抗体としては半導体サーミスタ、金属フィルムな
どが使用できる。
As the temperature-sensitive resistor, a semiconductor thermistor, a metal film, etc. can be used.

光導波路の径および長さ、形状は任意に選べるが、測定
対象の特性、例えば波長、パワーレベル拡がり角に応じ
て設計する。
Although the diameter, length, and shape of the optical waveguide can be selected arbitrarily, they are designed depending on the characteristics of the object to be measured, such as wavelength and power level spread angle.

散乱壁面1bに就いては、光導波路1の周壁面に直接細
工を施した一体のものでも、或いは別個に作って組上げ
ても良い。
The scattering wall surface 1b may be an integral one that is directly worked on the peripheral wall surface of the optical waveguide 1, or may be made separately and assembled.

第4図は、上述の各ボロメータユニット10を機械的に
支持するに適したマウント構造9の一例であって、ケー
シング9a内には断熱材7を充填すると良り、リード線
4の端部は外部測定系機器との接続が簡易、確実なよう
にコネクタ8に接続を採ると良い。
FIG. 4 shows an example of a mount structure 9 suitable for mechanically supporting each of the bolometer units 10 described above, in which the casing 9a is preferably filled with a heat insulating material 7, and the ends of the lead wires 4 are It is preferable to connect to the connector 8 so that connection with external measurement equipment is simple and reliable.

マウント構造自体、任意の問題であって、図示のものに
限る謂われのないこと当然である。
It goes without saying that the mounting structure itself is an arbitrary matter and is not limited to what is shown in the drawings.

以上詳記のように、本発明は、測定すべき光に対しては
少くとも透明、望ましくは石英ガラス等の透明材料で作
った光導波路手段に吸収体と温度検出素子とを兼ねる感
温抵抗体手段を付し、レザーパワーを電気量に変換して
検出するレーザパワー検出装置乃至光導波路形ボロメー
タユニットを提供し、光パワー測定系に援用して高感度
、簡便な測定をなさしめる有効なものであり、光通信用
パワー測定器等への汎用性高いものである。
As described in detail above, the present invention provides an optical waveguide means made of a material that is at least transparent to the light to be measured, preferably made of a transparent material such as quartz glass, and a temperature-sensitive resistor that serves as an absorber and a temperature detection element. We provide a laser power detection device or an optical waveguide type bolometer unit that converts laser power into an electrical quantity and detects it, and is an effective device that can be used in an optical power measurement system to perform highly sensitive and simple measurements. It is highly versatile for use in optical communication power measuring instruments, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明レーザパワー検出装置の基本的な一実
施例の斜視図、第1B図は同じくその縦断面図、第2図
は当該検出装置を含む測定系の一例の概略構成図、第3
A図は本発明第二の実施例の縦断面図、第3B図は同じ
く第三の実施例の縦断面図、第4図は本発明装置を機械
的に支持するに適したマウント構造の概略構成断面図、
である。 図中、1は光導波路手段、2は感温抵抗体、6は散乱手
段、10は全体としてのレーザパワー検出装置、 である。
FIG. 1A is a perspective view of a basic embodiment of the laser power detection device of the present invention, FIG. 1B is a vertical sectional view thereof, and FIG. 2 is a schematic configuration diagram of an example of a measurement system including the detection device. 3
Figure A is a vertical sectional view of the second embodiment of the present invention, Figure 3B is a vertical sectional view of the third embodiment, and Figure 4 is a schematic diagram of a mount structure suitable for mechanically supporting the device of the present invention. Configuration cross section,
It is. In the figure, 1 is an optical waveguide means, 2 is a temperature-sensitive resistor, 6 is a scattering means, and 10 is the entire laser power detection device.

Claims (1)

【特許請求の範囲】 1 測定すべきレーザ光に対しては少くとも透明な材料
から成る光導波路手段を含み、該光導波路手段にはレー
ザパワー吸収体としての感温抵抗体手段を付し、もって
当該レーザパワーを電気量に変換して検出し得ることを
特徴とするレーザパワー検出装置。 2 感温抵抗体手段は、光導波路手段の外面に沿って周
方向全域に配されていることを特徴とする特許請求の範
囲1に記載のレーザパワー検出装置。 3 光導波路手段の感温抵抗体手段に臨む壁面には光を
散乱させる散乱面が備えられていることを特徴とする特
許請求の範囲1,2のいづれかに記載のレーザパワー検
出装置。 4 光導波路手段の内部には散乱手段が配されているこ
とを特徴とする特許請求の範囲1.2,3のいづれかに
記載のレーザパワー検出装置。
[Claims] 1. An optical waveguide means made of a material that is at least transparent to the laser beam to be measured, and a temperature sensitive resistor means as a laser power absorber is attached to the optical waveguide means, A laser power detection device characterized in that the laser power can be detected by converting the laser power into an electric quantity. 2. The laser power detection device according to claim 1, wherein the temperature-sensitive resistor means is disposed over the entire circumferential area along the outer surface of the optical waveguide means. 3. The laser power detection device according to claim 1, wherein a wall surface of the optical waveguide means facing the temperature-sensitive resistor means is provided with a scattering surface for scattering light. 4. The laser power detection device according to claim 1, wherein a scattering means is arranged inside the optical waveguide means.
JP52086597A 1977-07-21 1977-07-21 Laser power detection device Expired JPS5858008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52086597A JPS5858008B2 (en) 1977-07-21 1977-07-21 Laser power detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52086597A JPS5858008B2 (en) 1977-07-21 1977-07-21 Laser power detection device

Publications (2)

Publication Number Publication Date
JPS5422883A JPS5422883A (en) 1979-02-21
JPS5858008B2 true JPS5858008B2 (en) 1983-12-23

Family

ID=13891406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52086597A Expired JPS5858008B2 (en) 1977-07-21 1977-07-21 Laser power detection device

Country Status (1)

Country Link
JP (1) JPS5858008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0122648Y2 (en) * 1983-04-19 1989-07-07

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150902U (en) * 1980-04-09 1981-11-12
JPS6138938A (en) * 1984-07-30 1986-02-25 Omron Tateisi Electronics Co Photoelectric converter formed on substrate
CN103148931B (en) * 2013-01-18 2015-04-22 华北电力大学(保定) Device of detecting large power laser beam by using small power detector and method
US9691424B2 (en) * 2015-03-24 2017-06-27 Seagate Technology Llc Bolometer for internal laser power monitoring in heat-assisted magnetic recording device
JP6477209B2 (en) * 2015-04-30 2019-03-06 株式会社島津製作所 Combined laser light source and fiber adjustment method
CN109540284B (en) * 2018-11-06 2021-01-05 中国计量科学研究院 Optical power detector and measuring method and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0122648Y2 (en) * 1983-04-19 1989-07-07

Also Published As

Publication number Publication date
JPS5422883A (en) 1979-02-21

Similar Documents

Publication Publication Date Title
US3282100A (en) Fine wire calorimeter
US4964735A (en) Apparatus for indicating the power and position of a laser beam
JPH0663872B2 (en) Distributed temperature sensor
US5047626A (en) Optical fiber sensor for measuring physical properties of liquids
JPS5858008B2 (en) Laser power detection device
US3387134A (en) Wavelength independent, direct reading radiometer
US5114228A (en) Apparatus for measuring the energy of rapidly pulsing radiation
JP2622539B2 (en) Radiation measurement device
US4159422A (en) Temperature stable displacement sensor with fine resolution
US3487216A (en) Cavity radiometer
JP3226495B2 (en) Optical component absorption measurement device
RU2684686C1 (en) Device for non-contact determination of conductor temperature, through which current flows
US3464267A (en) Laser powermeter
US4030362A (en) Self-calibrating radiometer
US4019381A (en) Transparent optical power meter
JP3085830B2 (en) Radiant heat sensor
US3313154A (en) Apparatus for measuring energy output of a laser
JPH09229853A (en) Detector for infrared gas analyser
Deep et al. Dynamic response of thermoresistive sensors
US5015943A (en) High power, high sensitivity microwave calorimeter
JPS60198419A (en) Calorimeter device for measuring transmission power of optical fiber
US4012955A (en) Apparatus for measuring the incident power of light in fiber optics
US3660661A (en) Ballistic joule meter for measuring a pulse of infrared radiation
CN109668652A (en) A kind of optical fibre temperature survey apparatus of glass tube filling
JPS6171326A (en) Photodetector