JPS5840309B2 - Keiryou Namari − Sanchikudenchiyoudenkiyoku Oyobi Sonoseizouhouhou - Google Patents

Keiryou Namari − Sanchikudenchiyoudenkiyoku Oyobi Sonoseizouhouhou

Info

Publication number
JPS5840309B2
JPS5840309B2 JP48048341A JP4834173A JPS5840309B2 JP S5840309 B2 JPS5840309 B2 JP S5840309B2 JP 48048341 A JP48048341 A JP 48048341A JP 4834173 A JP4834173 A JP 4834173A JP S5840309 B2 JPS5840309 B2 JP S5840309B2
Authority
JP
Japan
Prior art keywords
fibers
lead
active material
plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48048341A
Other languages
Japanese (ja)
Other versions
JPS4954823A (en
Inventor
ピー セスタロ ジヨン
ソコロブ ユリール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NL Industries Inc
Original Assignee
NL Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NL Industries Inc filed Critical NL Industries Inc
Publication of JPS4954823A publication Critical patent/JPS4954823A/ja
Publication of JPS5840309B2 publication Critical patent/JPS5840309B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 この発明は、新規な軽量電極構造体を備えた軽量鉛−酸
蓄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a lightweight lead-acid battery with a novel lightweight electrode structure.

従来より種々の型式の鉛−酸蓄電池と電極構造体とが提
案されており、多くの電極は酸化鉛の粉末と硫酸との混
合物を横着した重い金属枠体を使用している。
Various types of lead-acid batteries and electrode structures have been proposed in the past, with many electrodes using a heavy metal frame filled with a mixture of lead oxide powder and sulfuric acid.

しかしながら、この構造は軽量であることを条件とする
電池には好ましくない。
However, this structure is not preferable for batteries that require light weight.

そこで、本発明は、新規な積層電極構造体を使用した軽
量鉛−酸蓄電池を提供するものである。
Accordingly, the present invention provides a lightweight lead-acid storage battery using a novel laminated electrode structure.

この積層電極は、三層からなり、中心層には導電板を使
用し、他の二層を夫々活粉末物質で被覆された繊維の均
質な複合体からなる多孔圧縮焼結板で構成し、前記繊維
の90乃至100%を合成繊維とし、残部を天然繊維と
する。
This laminated electrode consists of three layers, the center layer is a conductive plate, the other two layers are each composed of porous compressed sintered plates made of a homogeneous composite of fibers coated with active powder material, 90 to 100% of the fibers are synthetic fibers, and the remainder is natural fibers.

この範囲の合成繊維と残部の天然繊維とを使用する理由
は、マットを焼結させて多孔圧縮焼結板を得るには熱可
塑性(たとえば合成)繊維を必要とし、使用する合成繊
維が90%未満であると適正に焼結されたマットが得ら
れないからである。
The reason for using this range of synthetic fibers and the balance natural fibers is that thermoplastic (e.g. synthetic) fibers are required to sinter the mat to obtain a porous compacted sintered board, and the synthetic fibers used are 90% This is because if it is less than that, a properly sintered mat cannot be obtained.

この鉛−酸蓄電池は、軽量である。This lead-acid battery is lightweight.

なぜなら、電池の極板を先に説明した三層からなる積層
電極構造体で構成するからである。
This is because the electrode plate of the battery is composed of the three-layer laminated electrode structure described above.

これらの電極板は、同じ量の活物質を含む従来のペース
ト型蓄電池格子に比較してほぼ30乃至50%方軽量と
なる。
These electrode plates are approximately 30-50% lighter than conventional paste battery grids containing the same amount of active material.

さらに、これらの合成極板は、通常の電池格子より遥か
に軽量でより可撓性があり、広範囲で不規則な形状にす
ることができ、例えば、折曲したり、湾曲したり螺旋状
に形成したり、また円筒状に形成することができ、この
ことは従来のペースト型蓄電池格子では不可能であった
Additionally, these composite plates are much lighter and more flexible than regular battery grids and can be shaped into a wide range of irregular shapes, such as folded, curved, spiral, etc. It can also be formed into a cylindrical shape, which is not possible with conventional paste-type battery grids.

三層型積層構造体の中心層は、導電物質の薄板からなり
、例えば、薄い金属板または導電物質を含む板紙を使用
し、好ましくは、薄い多孔鉛板を使用し、これを2枚の
軽量圧縮焼結合成板でサンドインチ状に挾持し、これら
の合成板を繊維と活物質、例えば、酸化鉛、鉛、三塩基
性硫酸鉛または四塩基性硫酸鉛とで組成する。
The central layer of the three-layer laminated structure consists of a thin plate of a conductive material, such as a thin metal plate or a paperboard containing a conductive material, preferably a thin porous lead plate, which is separated by two lightweight sheets. Compression sintered composite plates are sandwiched in a sandwich shape, and these composite plates are composed of fibers and an active material such as lead oxide, lead, tribasic lead sulfate, or tetrabasic lead sulfate.

次に、この発明の構成を添付図面を参照しながら以下詳
細に説明する。
Next, the configuration of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、多数の孔部12を備えた鉛箔板11に
合成繊維と酸化鉛粉末とからなる二枚の合成板13およ
び14を積層する。
In FIG. 1, two composite plates 13 and 14 made of synthetic fibers and lead oxide powder are laminated on a lead foil plate 11 having a large number of holes 12.

鉛板を約1.27CrrLだけ合成板より延出させて耳
部15を形成し、これを電極に接続する。
The lead plate is extended from the composite plate by about 1.27 CrrL to form an ear portion 15, which is connected to the electrode.

鉛箔板は、導電性で、合成板は繊維と鉛酸化物との均質
な混合物からなる多孔圧縮焼結板である。
The lead foil board is electrically conductive, and the composite board is a porous compacted sintered board consisting of a homogeneous mixture of fibers and lead oxide.

第2図において、第1図に示した積層型合成電極を蓄電
池の極板として使用した例を示す。
FIG. 2 shows an example in which the laminated composite electrode shown in FIG. 1 is used as an electrode plate of a storage battery.

蓄電池は、プラスチックのケース21と7個の積層合成
電極とからなり、その内の3個を陽極板22として作用
させかつ残りの4個を陰極板23として作用させる。
The storage battery consists of a plastic case 21 and seven laminated composite electrodes, three of which act as anode plates 22 and the remaining four as cathode plates 23.

極板は、隔離板24により互いに隔離されかつ底部にお
いて支持体25上に設置される。
The plates are separated from each other by separators 24 and mounted on a support 25 at the bottom.

これらの支持体は、蓄電池の横幅に沿って延在しかつ充
分な隙間26を形成して使用中極板から脱落する活物質
を回収する。
These supports extend along the lateral width of the battery and provide sufficient clearance 26 to collect active material that falls off the plates during use.

4枚の陰極板は、それらの陰極耳部2Tを陰極端子28
に溶着することにより接続される。
The four cathode plates connect their cathode ears 2T to cathode terminals 28.
Connected by welding to.

同様に3枚の陽極板は、陽極耳部29を陽極端子30に
溶着することにより接続される。
Similarly, the three anode plates are connected by welding the anode ears 29 to the anode terminals 30.

蓄電池には、蓋体31を設け、この蓋体に端子栓と排気
栓とを設ける。
The storage battery is provided with a lid 31, and the lid is provided with a terminal plug and an exhaust plug.

蓄電池の使用に際し、稀硫酸を極板の上方まで充電する
When using a storage battery, charge it with dilute sulfuric acid to the top of the electrode plate.

鉛−酸蓄電池に本発明にかかる電極構造体を組込むと蓄
電池は軽量となり、優れたサイクル寿命で高率放電特性
を発揮する。
When the electrode structure according to the present invention is incorporated into a lead-acid storage battery, the battery becomes lightweight and exhibits high rate discharge characteristics with an excellent cycle life.

さらに、この発明の電極構造体は、優れた機構的強度を
有し、製造が簡単でしかも経済的である。
Furthermore, the electrode structure of the present invention has excellent mechanical strength and is simple and economical to manufacture.

この電極構造体は、次のようにして製造される。This electrode structure is manufactured as follows.

三層型積層構造体の中心層を形成する導電板としては、
鉛または鉛合金箔あるいは金属板もしくは導電物質を含
有する板紙を使用する。
The conductive plate forming the center layer of the three-layer laminated structure is
Use lead or lead alloy foil or metal plates or paperboard containing conductive materials.

さらに、この中心板は、導電板の全面積に対する開口面
積が9.0優までの多孔薄鉛板で構成することが好まし
い。
Further, it is preferable that the center plate is made of a porous thin lead plate having an opening area of up to 9.0 mm relative to the total area of the conductive plate.

この多孔板の使用は、特に望ましいことである。The use of this perforated plate is particularly desirable.

なぜなら、三層構造体を重畳する際、孔部内に繊維と活
物質とが充満する結果強靭で気密な接合積層体を形成で
きるからである。
This is because when the three-layer structure is superimposed, the pores are filled with fibers and active material, resulting in the formation of a strong and airtight bonded laminate.

さらに、中心板は、例えば電流コレクタとして作用する
微細な黒鉛または粒状鉛金属粒子を含む導電板紙等で構
成することができる。
Additionally, the center plate may be constructed of conductive paperboard or the like containing, for example, fine graphite or granular lead metal particles that act as current collectors.

この電流コレクタとして使用される導電板は、可撓性ま
たは剛性の何れでも良い。
The conductive plate used as this current collector may be either flexible or rigid.

本発明にかかる合成板に使用する合成繊維は、(1)
電解液、例えば、蓄電池内に存在する硫酸(2)合成
板内に存在しまたは形成される活物質(3)蓄電池の充
電および放電中に通常発生する気体により実質的に浸蝕
されないことを条件とする。
The synthetic fibers used in the composite board according to the present invention are (1)
The electrolyte, for example sulfuric acid present in the battery (2) The active material present or formed in the composite plate (3) Provided that it is not substantially attacked by the gases normally generated during charging and discharging of the battery. do.

これらの繊維としては、ポリエチレンおよびポリプロピ
レンが挙げられる。
These fibers include polyethylene and polypropylene.

さらに個々の繊維が繊維長×繊度の値が25以下となる
ような繊維長と繊度とを有する繊維を使用することが望
ましい。
Furthermore, it is desirable to use fibers having fiber length and fineness such that the value of fiber length x fineness is 25 or less.

これらの繊維の例としては、単繊維またはセルロース繊
維に近似した繊維束が挙げられる。
Examples of these fibers include single fibers or fiber bundles that approximate cellulose fibers.

さらに、これらの合成繊維の約IO%までは必要に応じ
て天然繊維に置換できることが判った。
Furthermore, it has been found that up to about IO% of these synthetic fibers can be replaced with natural fibers if desired.

合成板に使用することのできる活物質は、通常鉛−酸蓄
電池の製造に際し、活物質として使用される鉛金属粉末
または鉛化合物でもよく、例えば、酸化鉛、または鉛、
三塩基硫酸鉛および四塩基硫酸鉛が挙げられる。
The active material that can be used in the composite board may be a lead metal powder or a lead compound that is normally used as an active material in the production of lead-acid batteries, such as lead oxide or lead,
Tribasic lead sulfate and tetrabasic lead sulfate are mentioned.

合成板に使用される酸化鉛粉末からなる活物質の量は、
広範囲に変化させることができる。
The amount of active material consisting of lead oxide powder used in the composite board is
Can be varied over a wide range.

しかしながら、合成板における活物質の量は、合成繊維
の各部に対し50乃至99重量部とすることが好ましい
However, the amount of active material in the composite board is preferably 50 to 99 parts by weight for each part of the synthetic fiber.

この軽量蓄電池の電極構造体は、簡単で経済的な手段に
より製造することができる。
The electrode structure of this lightweight accumulator can be manufactured by simple and economical means.

すなわち、合成繊維と活物質、例えば、酸化鉛粉末との
均質な編組物からなる合成板は製紙産業における板紙の
製法と同様の手段により製造できる。
That is, a composite board made of a homogeneous braid of synthetic fibers and an active material such as lead oxide powder can be manufactured by the same method as that used for manufacturing paperboard in the paper industry.

通常表面処理剤で被覆された合成繊維は、攪拌しながら
水中に分散されかつ充分混合されて約0.05乃至0.
2%の固体を含有するスラリを形成する。
Typically, synthetic fibers coated with a surface treatment agent are dispersed in water with stirring and thoroughly mixed to a concentration of about 0.05 to 0.
A slurry containing 2% solids is formed.

この繊維スラリに酸化鉛の粉末を加え充分混合した後凝
結剤を加える。
Add lead oxide powder to this fiber slurry, mix well, and then add a coagulant.

次にスラリのpHを低下させて繊維と酸化鉛との粗大な
凝結塊を得る。
Next, the pH of the slurry is lowered to obtain coarse agglomerates of fibers and lead oxide.

この凝結塊を沢過しかつ篩上に回収して酸化鉛粉末で被
覆された繊維の比較的均質なマットからなる合成板を形
成する。
The coagulum is filtered and collected on a sieve to form a composite board consisting of a relatively homogeneous mat of fibers coated with lead oxide powder.

空気乾燥後、合成板を導電板、例えば、多孔鉛金属板の
両側部に張着し、このようにして得られた三成分からな
る構造体を120°C乃至200℃の温度で大気圧乃至
13000psiの圧力下に加熱圧縮して三層型積層構
造電極体を得る。
After air drying, the composite board is pasted on both sides of a conductive plate, for example a porous lead metal plate, and the thus obtained three-component structure is exposed to atmospheric pressure at a temperature of 120°C to 200°C. A three-layer laminated structure electrode body is obtained by heating and compressing under a pressure of 13,000 psi.

次に、この発明の実施例を以下説明する。Next, embodiments of the present invention will be described below.

実施例 1 三層型積層電極は次のようにして製造した。Example 1 The three-layer laminated electrode was manufactured as follows.

表面処理剤で被覆した1、91のポリプロピレン繊維(
繊度3デニール、繊維長31ul、繊維幅0.0251
11jIl)を57727!のイソプロパツールで湿潤
した。
1,91 polypropylene fiber coated with a surface treatment agent (
Fineness 3 denier, fiber length 31ul, fiber width 0.0251
11jIl) 57727! moistened with isopropanol.

湿潤繊維を100ydの水と共にローリングブレンダ内
に投入した。
The wet fibers were placed into a rolling blender with 100 yd of water.

最初の混捏操作後、800ydの水を加えて約1分間混
合した。
After the first kneading operation, 800 yards of water was added and mixed for about 1 minute.

大型容器に移送した後、水を加えて容量を1200−と
し、次L・で25.61の酸化鉛(蓄電池等級酸化鉛)
を繊維のスラリに加えて混合物を充分混練した。
After transferring to a large container, add water to bring the volume to 1200, then add 25.61 L of lead oxide (accumulator grade lead oxide).
was added to the fiber slurry and the mixture was thoroughly kneaded.

ザンタムガム(ケルコ コンパニー社ヨリ” Ke l
jrol nの商品名で市販されている)の0.5多
水溶液25グを混合物に加えて攪拌しながら製紙業者が
使用する程度の明春溶液を加えてスラリのpHを9から
4に低下させ、このpH値で繊維−酸化鉛混合物は粗大
な凝結塊を形成した。
Xantham Gum (by Kelco Company)
Add 25 g of a 0.5 polyhydric solution (commercially available under the trade name JROL N) to the mixture and, with stirring, add Ming Chun solution at the level used by paper manufacturers to reduce the pH of the slurry from 9 to 4. , at this pH value the fiber-lead oxide mixture formed coarse agglomerates.

凝結塊を含むスラリを直ちに平板鋳型内に注入し、この
型を水で充満して0.5%固形の原料粘稠度を得た。
The slurry containing the coagulum was immediately poured into a flat mold and the mold was filled with water to obtain a raw consistency of 0.5% solids.

スラリな充分攪拌した後、水切を行って板紙を40メツ
シユの縁飾に成形した。
After thoroughly stirring the slurry, it was drained and the paperboard was formed into a 40 mesh border.

次に平板を縁飾かも取外して乾燥した。Next, the flat plate was removed along with the trim and allowed to dry.

得られた板材は、95重量φの酸化鉛を含有した。The obtained plate material contained 95 weight φ of lead oxide.

三層型積層電極は、次のようにして製造した。The three-layer laminated electrode was manufactured as follows.

寸法が約5.72 X 12.7cIrLで鉛箔の厚さ
が19Uの導電金属板を使用した。
A conductive metal plate with dimensions of approximately 5.72 x 12.7 cIrL and a lead foil thickness of 19U was used.

鉛箔板には蜂巣構造状に多数の孔を穿設しその孔径を約
4.767ulとし、さらに全開口面積を56優とした
A large number of holes were bored in the lead foil plate in a honeycomb structure, the hole diameter was about 4.767 ul, and the total opening area was 56 ul.

箔板の幅狭な端部の一部には孔部を穿設しないでその端
部に沿って約1.27(ニア71の固形箔の耳部を形成
した。
A portion of the narrow end of the foil plate was not drilled with a hole, but a solid foil ear of approximately 1.27 mm (near 71) was formed along the edge.

このようにして得た合成板を約4.44X5crI′L
の二つの部分に切断し、多孔金属箔板を2枚の平板間に
介装し2枚の板材を12001bs/ sqの圧力下に
165°Cの温度で約10分間加熱圧着して積層した。
The composite board obtained in this way is approximately 4.44X5crI'L.
A porous metal foil plate was interposed between the two flat plates, and the two plates were laminated by heat-pressing at a temperature of 165°C for about 10 minutes under a pressure of 12,001 bs/sq.

この電極を使用した三層極板型蓄電池は、次のようにし
て完成した。
A three-layer plate type storage battery using this electrode was completed as follows.

積層電極を約2゜54X5.715cfrLの極板に裁
断し、極板の端縁部をパラフィンで被覆し直径約3.1
75Mの鉛棒を金属箔板から延出する固形鉛耳部に溶着
した。
The laminated electrode was cut into plates of approximately 2°54 x 5.715 cfrL, the edges of the plates were coated with paraffin, and the diameter was approximately 3.1 cm.
A 75M lead rod was welded to a solid lead ear extending from the metal foil plate.

これらの極板の三枚を矩形プラスチック箱内の縦溝内に
設置して三極板蓄電池を形成した。
Three of these plates were placed in a longitudinal groove in a rectangular plastic box to form a triode battery.

前記縦溝は、極板が約3.175.離間されるように設
計した。
The vertical groove has a polar plate of approximately 3.175 mm. Designed to be separated.

電槽に電解液(比重が1.070の硫酸)を充填し、正
極活物質の電流密度が15mA/グ(単位ダラム当りの
ミリアンペア)となるような一定の電流を使用して24
時間化成を行った。
Fill the battery with an electrolyte (sulfuric acid with a specific gravity of 1.070) and use a constant current such that the current density of the positive electrode active material is 15 mA/g (milliampere per unit duram).
Time conversion was performed.

化成後、1.070比重の酸を1、300比重の酸に置
換した。
After chemical formation, the acid with a specific gravity of 1.070 was replaced with an acid with a specific gravity of 1,300.

さらに、9mA/グの正極活物質の調整充電を16時間
に亘り行った。
Furthermore, adjustment charging of the positive electrode active material at 9 mA/g was performed for 16 hours.

次に、この蓄電池を5サイクルにおよぶ放電および充電
を繰返して次の要領で試験した。
Next, this storage battery was repeatedly discharged and charged for five cycles and tested in the following manner.

蓄電池を10オームの抵抗器を介して放電させ、各サイ
クルにおける放電時間を記録して放電中の最終電圧を1
.8vにした。
The battery was discharged through a 10 ohm resistor and the discharge time recorded during each cycle to determine the final voltage during discharge.
.. I set it to 8v.

抵抗器は、夫々の放電期間により活物質の平均電流密度
が7mA/ yとなるよう選択した。
The resistors were chosen such that each discharge period resulted in an average current density of 7 mA/y in the active material.

次いで電槽を2.5Vの電圧で120mAの制限電流に
より16時間充電した。
The cell was then charged for 16 hours with a voltage of 2.5V and a limited current of 120mA.

上記の放電および充電工程を総計5回の完全なサイクル
として行った。
The above discharge and charge steps were performed for a total of five complete cycles.

蓄電池は5サイクル共平均電圧が2.OVで平均効率は
約32.0%であった。
The average voltage of the storage battery for 5 cycles is 2. The average efficiency at OV was about 32.0%.

蓄電池容量は、全極板重量の43mAH/?(単位ダラ
ム当りミリアンペア時間)であった。
The storage battery capacity is 43mAH/? of the total plate weight? (milliampere hours per unit duram).

実施例 2 この実施例において、三層型層電極を再び実施例1と同
様に製造し、この場合ポリプロピレンに代えてポリエチ
レン繊維を使用した。
Example 2 In this example, a three-layer layered electrode was again produced as in Example 1, but in this case polyethylene fibers were used instead of polypropylene.

合成板は、実施例1の方法により製造し、さらに本例で
使用した金属箔は実施例1で使用したものと同一であっ
た。
The composite board was manufactured by the method of Example 1, and the metal foil used in this example was the same as that used in Example 1.

三層型積層構造体は、実施例1の工程に従い製造し、但
しこの場合温度は138°Cであった。
A three-layer laminate structure was manufactured according to the process of Example 1, except that the temperature was 138°C.

蓄電池は、5サイクル共平均2.OVの電圧に保持され
た。
The storage battery has an average of 2. It was held at a voltage of OV.

平均蓄電池効率は、44%であった。The average storage battery efficiency was 44%.

蓄電池容量は、全電極重量の71 mAH/Vであった
The storage battery capacity was 71 mAH/V of total electrode weight.

実施例 3−10 これらの実施例では、合成板内の酸化鉛活物質の量を変
化させた場合の効果と最終積層電極を加熱圧着する際の
、圧力変化の効果を示す。
Examples 3-10 These examples demonstrate the effect of varying the amount of lead oxide active material in the composite board and the effect of varying pressure when heat-pressing the final laminated electrode.

実施例1と同様にしていくつかの三層型積層電極を製造
※※した。
Several three-layer laminated electrodes were manufactured in the same manner as in Example 1.

これらの合成板は活物質(酸化鉛)の含有量が異なり最
終電極は加熱圧力と圧着時間を変えて製造した。
These composite plates had different contents of active material (lead oxide), and the final electrodes were manufactured by changing the heating pressure and compression time.

試験用の電槽を構成し、実施例1の蓄電池試験法に従い
5サイクルに亘り試験を繰返した。
A battery case for testing was constructed, and the test was repeated for 5 cycles according to the storage battery test method of Example 1.

実施例1の要領に従い得られた試験結果を表1に示す。Table 1 shows the test results obtained according to the procedure of Example 1.

実施例 11 この実施例は、多孔鉛板に代えて中心層として黒鉛紙を
使用した三層型積層電極の構造を示す。
Example 11 This example shows the structure of a three-layer laminated electrode using graphite paper as the center layer instead of a porous lead plate.

三層型積層電極は、実施例1と同様にして製造したが、
この場合黒鉛紙を中心層として使用した。
A three-layer stacked electrode was manufactured in the same manner as in Example 1, but
In this case graphite paper was used as the center layer.

三層型積層電極の電槽を構成して実施例1と同様に試験
した。
A battery case with a three-layer laminated electrode was constructed and tested in the same manner as in Example 1.

電槽は5回共平均2.5vの電圧に保持された。The battery was held at an average voltage of 2.5V for all five tests.

平均蓄電池効率は9%で、電池容量は全電極重量の8m
AH/fであった。
The average storage battery efficiency is 9%, and the battery capacity is 8m of the total electrode weight.
It was AH/f.

実施例 12 この実施例では、多孔鉛板に代えて、中心層として固形
鉛箔板を使用した。
Example 12 In this example, a solid lead foil plate was used as the center layer instead of a porous lead plate.

35.2S’の酸化鉛と1.92のポリプロピレン繊維
とを使用して実施例1の方法に従い三層型積層電極を形
成した。
A three-layer laminated electrode was formed according to the method of Example 1 using 35.2 S' lead oxide and 1.92 S' polypropylene fiber.

この場合、固形鉛箔板を中心層として使用した。In this case, a solid lead foil plate was used as the center layer.

三層型積層電極電槽を構成して実施例1の方法に従い試
験した。
A three-layer laminated electrode container was constructed and tested according to the method of Example 1.

電槽は、各サイクル共平均2.OVに保持された。The battery case has an average of 2. It was held in OV.

蓄電池効率は27%で、電池容量は全極板重量の65m
AH/fであった。
The storage battery efficiency is 27%, and the battery capacity is 65m of the total plate weight.
It was AH/f.

実施例 13 この実施例では、酸化鉛に代えて電極の活物質として鉛
粉末を使用した。
Example 13 In this example, lead powder was used as the active material of the electrode instead of lead oxide.

実施例1の方法に従い35.29の鉛粉末と1.92の
ポリプロビレ/繊維とからなる合成板を製造した。
A composite board consisting of 35.29% lead powder and 1.92% polypropylene/fiber was produced according to the method of Example 1.

積層電極を165℃の温度で1200psiの圧力下に
15分間加熱圧着した。
The laminated electrodes were heat-pressed at a temperature of 165° C. and a pressure of 1200 psi for 15 minutes.

得られた三層電極式電槽を構成して実施例1と同様5サ
イクル試験した。
The resulting three-layer electrode type battery case was constructed and subjected to a 5-cycle test in the same manner as in Example 1.

電槽は、各回平均時間共平均2、OVに保持され、平均
電池効率は10%であった。
The battery case was maintained at an average of 2 OV for an average time each time, and the average battery efficiency was 10%.

電池容量は、全極板重量の11mAH/lであった。The battery capacity was 11 mAH/l of the total plate weight.

実施例 14−15 これらの実施例においては、極板の活物質として三塩基
硫化鉛および四塩基硫化鉛を使用した。
Examples 14-15 In these examples, tribasic lead sulfide and tetrabasic lead sulfide were used as the active materials of the electrode plates.

実施例1の方法に従い合成板を製造し、この場合活物質
の含有量を変化させた。
Composite boards were manufactured according to the method of Example 1, in which the content of active material was varied.

実施例1と同様に三層積層体を構成し、さらに二電極の
試験用電槽を構成してそのサイクル寿命を試験した。
A three-layer laminate was constructed in the same manner as in Example 1, and a two-electrode test battery was constructed to test its cycle life.

結果は下記の通りであった。The results were as follows.

以下の実施例は、前記の積層電極を2Vの蓄電池に使用
した例を示すものである。
The following example shows an example in which the laminated electrode described above is used in a 2V storage battery.

これらの積層電極は、共に陽極板および陰極板として使
用した。
Both of these laminated electrodes were used as an anode plate and a cathode plate.

これらの陽極板および陰極板は、市販の電池用隔離板を
使用して互いに離隔させた。
The anode and cathode plates were separated from each other using commercially available battery separators.

この場合、市販の隔離板はほとんど使用することができ
る。
In this case, most commercially available separators can be used.

しかしながら、最も共通した隔離板は、塩化ポリビニル
、ゴム、ポリエチレンおよび樹脂被覆型の重い板紙から
なる有孔すなわち多孔質板である。
However, the most common separators are perforated or porous boards made of polyvinyl chloride, rubber, polyethylene, and resin-coated heavy paperboard.

実施例 1に の実施例は、積層電極を3枚の陽極板および4枚の陰極
板を備えた2vの蓄電池に使用した例を示す。
Example 1 shows an example in which a stacked electrode is used in a 2V storage battery with three anode plates and four cathode plates.

実施例1の方法に従い活物質として酸化鉛を使用して7
個の積層電極を形成し、これを第2図に示すように極板
として矩形のルーサイト容器内に装入した。
7 using lead oxide as the active material according to the method of Example 1.
A laminated electrode was formed, and this was placed as an electrode plate in a rectangular Lucite container as shown in FIG.

これらの極板の内の4枚を負端子に接続し、残る3枚を
正端子に接続した。
Four of these plates were connected to the negative terminal, and the remaining three plates were connected to the positive terminal.

正端子および負端子共に容器の上方に延在させた。Both the positive and negative terminals extended above the container.

6枚の市販の電池用隔離板を陽極板と陰極板との間に介
装した。
Six commercially available battery separators were interposed between the anode and cathode plates.

使用隔離板を波形に構成しかつ多孔塩化ポリビニル板を
使用した。
The separators used were constructed in a corrugated manner and used porous polyvinyl chloride plates.

正端子栓および負端子栓並びに排気栓を備えたルーサイ
ト蓋を容器の頂部に被せた。
A Lucite lid with positive and negative terminal plugs and a vent plug was placed on top of the container.

蓄電池に比重が1.070の硫酸電解液を充填して24
時間化化成行い、この際、活物質を15mA/S’にす
る一定電流を使用した。
Fill the storage battery with a sulfuric acid electrolyte with a specific gravity of 1.070.
Temporal conversion was carried out using a constant current of 15 mA/S' for the active material.

化成後、硫酸を比重が1.260の硫酸に置換した。After chemical formation, sulfuric acid was replaced with sulfuric acid having a specific gravity of 1.260.

9mA/fの正極活物質の調節充填を16時間に亘って
行った。
Adjusted charging of positive electrode active material at 9 mA/f was carried out over a period of 16 hours.

蓄電池を実施例1の電池試験法に従い5サイクルに亘り
試験し、4オームの抵抗器を使用して放出電流を0.5
Aとした。
The battery was tested for 5 cycles according to the battery test method of Example 1, with a discharge current of 0.5 using a 4 ohm resistor.
I gave it an A.

蓄電池は、5サイクル共平均2、QVに保持された。The battery was maintained at an average of 2, QV over 5 cycles.

蓄電池効率は、27.4優で電池容量は全極板重量の6
5.9 m AH/ f/であった。
The storage battery efficiency is 27.4% and the battery capacity is 6% of the total plate weight.
It was 5.9 m AH/f/.

実施例 17 この実施例では、実施例16に記載した2Vの電池の三
基をヘッヂートリマ(hedge−trirrmer
)ケース内に配置して6■の蓄電池を構成した。
Example 17 In this example, three of the 2V batteries described in Example 16 were installed in a hedge-trirrmer.
) A 6-inch storage battery was constructed by placing it inside the case.

また、三基の2V蓄電池はヘツヂートリマを成功裏に付
勢した。
Also, three 2V storage batteries successfully energized the head trimmer.

実施例 18 この実施例において、実施例1と同様に三層型積層電極
を製造し、この場合95重量優の繊維と5重量饅の柔か
い木材パルプ繊維との編組体を使用した。
Example 18 In this example, a three-layer laminated electrode was produced as in Example 1, in this case using a braid of 95 weight fibers and 5 weight soft wood pulp fibers.

ポリエチレン繊維の繊度は0.4デニールで繊維長さは
1vItであり、一方柔かい木材繊維は繊度が2デニー
ルで繊維長さが3712aであった。
The polyethylene fiber had a fineness of 0.4 denier and a fiber length of 1 vIt, while the soft wood fiber had a fineness of 2 denier and a fiber length of 3712a.

実施例1の方法に従い合成板を製造し、使用に係る金属
箔は、実施例1で使用した箔板と同一であった。
A composite board was manufactured according to the method of Example 1, and the metal foil used was the same as the foil board used in Example 1.

三層型積層構造体を実施例1の方法を使用して構成し、
但しこの場合焼結温度を120’cとし圧力は1150
0psiであった。
A three-layer laminate structure was constructed using the method of Example 1,
However, in this case, the sintering temperature is 120'c and the pressure is 1150°C.
It was 0psi.

蓄電池は、5回共平均2.OVに保持された。The storage battery has an average of 2. It was held in OV.

平均蓄電池効率は、42.3%であった。The average storage battery efficiency was 42.3%.

電池容量は、全極板重量の101mAH/ffであった
The battery capacity was 101 mAH/ff of the total plate weight.

操作条件および得られた結果は表1に示す通りである。The operating conditions and results obtained are shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は三層構造からなる積層電極の一部切開縦斜視図
、第2図は極板として7個の積層合成電極を使用する軽
量鉛−酸蓄電池の一部切開縦斜視図である。 11・・・鉛箔板、12・・・孔部、13,14・・・
合成板、15・・・耳部、21・・・ケース、22・・
・陽極板、23・・・陰極板、24・・・隔離板、25
・・・支持体、26・・・隙間、27・・・陰極耳部、
28・・・陰極端子、29・・・陽極耳部、30・・・
陽極端子、31・・・蓋体。
FIG. 1 is a partially cutaway vertical perspective view of a laminated electrode having a three-layer structure, and FIG. 2 is a partially cutaway vertical perspective view of a lightweight lead-acid storage battery using seven laminated composite electrodes as electrode plates. 11... Lead foil plate, 12... Hole, 13, 14...
Composite board, 15...Ear part, 21...Case, 22...
・Anode plate, 23... Cathode plate, 24... Separation plate, 25
... Support body, 26 ... Gap, 27 ... Cathode ear part,
28... Cathode terminal, 29... Anode ear part, 30...
Anode terminal, 31...lid body.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維を攪拌しながら水中に分散させてスラリを形成
し、前記繊維の90乃至ioo%が合成繊維で残部を天
然繊維とし、粉状活物質を前記スラリに添加し、充分混
合したのちpHを低下させながら分散されたスラリな凝
結させて繊維と活物質とからなる粗大な凝結風を形成し
、前記凝結風を濾過しかつ乾燥して前記活物質で被覆さ
れた繊維からなる比較的均質なマットの合成板を形成し
、前記活物質で被覆された繊維からなる前記均質マット
の合成板を導電板の両側面に張着してサンドイッチ構造
体を形成し、前記サンドインチ構造体を120’C乃至
200’Cの温度で大気圧乃至13000 psiの圧
力下に加熱圧縮して三層式積層電極構造体を形成し、外
側の二つの層に夫々多孔質圧縮焼結合成板を使用するこ
とを特徴とする軽量鉛−酸蓄電池用積層電極の製造方法
1 Disperse fibers in water with stirring to form a slurry, 90 to ioo% of the fibers are synthetic fibers and the remainder are natural fibers, add powdered active material to the slurry, mix thoroughly, and then adjust the pH. A dispersed slurry is condensed while reducing to form a coarse condensed air consisting of fibers and active material, and the condensed air is filtered and dried to form a relatively homogeneous condensed air consisting of fibers coated with the active material. A matte composite board is formed, and the homogeneous matte composite board made of fibers coated with the active material is adhered to both sides of a conductive plate to form a sandwich structure, and the sandwich structure is A three-layer laminated electrode structure is formed by heating and compressing at a temperature of C to 200'C and a pressure of atmospheric pressure to 13,000 psi, and a porous compression sintered composite plate is used for each of the outer two layers. A method for producing a laminated electrode for a lightweight lead-acid storage battery, characterized by:
JP48048341A 1972-05-10 1973-04-27 Keiryou Namari − Sanchikudenchiyoudenkiyoku Oyobi Sonoseizouhouhou Expired JPS5840309B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25193572A 1972-05-10 1972-05-10
US33031673A 1973-02-13 1973-02-13

Publications (2)

Publication Number Publication Date
JPS4954823A JPS4954823A (en) 1974-05-28
JPS5840309B2 true JPS5840309B2 (en) 1983-09-05

Family

ID=26941907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48048341A Expired JPS5840309B2 (en) 1972-05-10 1973-04-27 Keiryou Namari − Sanchikudenchiyoudenkiyoku Oyobi Sonoseizouhouhou

Country Status (5)

Country Link
JP (1) JPS5840309B2 (en)
CA (1) CA982223A (en)
FR (1) FR2184012B1 (en)
GB (1) GB1395685A (en)
IT (1) IT987378B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158246B2 (en) * 1983-11-24 1986-12-10 Sumitomo Electric Industries

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679072B1 (en) * 1991-07-09 1993-09-24 Accumulateurs Fixes ACTIVE MASS FOR ELECTROCHEMICAL GENERATOR ELECTRODE WITH THREE - DIMENSIONAL POROUS SUPPORT.
KR200150028Y1 (en) * 1996-07-02 1999-07-01 손욱 Electrode plate
EP2538471A1 (en) * 2011-06-20 2012-12-26 Glatfelter Gernsbach GmbH & Co. KG Multifunctional web for use in a lead-acid battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060254A (en) * 1959-08-03 1962-10-23 Union Carbide Corp Bonded electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158246B2 (en) * 1983-11-24 1986-12-10 Sumitomo Electric Industries

Also Published As

Publication number Publication date
CA982223A (en) 1976-01-20
JPS4954823A (en) 1974-05-28
GB1395685A (en) 1975-05-29
DE2322555A1 (en) 1973-11-29
IT987378B (en) 1975-02-20
DE2322555B2 (en) 1976-10-28
FR2184012A1 (en) 1973-12-21
FR2184012B1 (en) 1977-09-02

Similar Documents

Publication Publication Date Title
US3973991A (en) Light-weight lead-acid battery with laminated electrodes
JP5341911B2 (en) Battery separator structure
US4648177A (en) Method for producing a sealed lead-acid cell
JPH09503618A (en) Bipolar electrochemical cell of stacked wafer cell
US3287166A (en) Battery electrode and battery, and process for preparing said electrode
US4637966A (en) Sealed lead-acid cell
US3703413A (en) Flexible inorganic fibers and battery electrode containing same
US3864169A (en) A method for making laminated electrodes
US5106707A (en) Rechargeable nickel electrode containing electrochemical cell
JPS5840309B2 (en) Keiryou Namari − Sanchikudenchiyoudenkiyoku Oyobi Sonoseizouhouhou
US2655552A (en) Separator for electric secondary batteries
JP2765029B2 (en) Manufacturing method of nickel hydroxide electrode
US3725129A (en) Method for preparing pasted nickel hydroxide electrode
JPS58212063A (en) Method of producing synthetic plate for laminated electrode
JPH03129667A (en) Electrode for battery and battery using this electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JPH0243308B2 (en)
JPS6255270B2 (en)
JPS5832210Y2 (en) Cylindrical alkaline storage battery
JP2022152915A (en) lead acid battery
JP2022152916A (en) lead acid battery
JPS63261672A (en) Electrode for alkaline storage battery and its manufacture
JP2022152913A (en) lead acid battery
JP2022152914A (en) lead acid battery