JPS583A - Two-stage combustion device - Google Patents

Two-stage combustion device

Info

Publication number
JPS583A
JPS583A JP9764781A JP9764781A JPS583A JP S583 A JPS583 A JP S583A JP 9764781 A JP9764781 A JP 9764781A JP 9764781 A JP9764781 A JP 9764781A JP S583 A JPS583 A JP S583A
Authority
JP
Japan
Prior art keywords
secondary air
injection holes
furnace
air injection
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9764781A
Other languages
Japanese (ja)
Other versions
JPS6229682B2 (en
Inventor
Hiroshige Ikebe
池辺 弘茂
Kenji Sudo
須藤 健次
Takeshi Sakai
酒井 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9764781A priority Critical patent/JPS583A/en
Publication of JPS583A publication Critical patent/JPS583A/en
Publication of JPS6229682B2 publication Critical patent/JPS6229682B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE:To suppress the generation of NOx without the increase of unburnt fuel by providing the furnace with secondary air injection holes of different size in diameter. CONSTITUTION:The boiler furnace 1 is provided with injection holes for the secondary air for the two-stage burning which are made above the burners 2. The injection holes 3, for example, are made smaller in diameter than the injection holes 4. With secondary air being injected into the boiler furnace 1 through the injection holes 3 and 4, the secondary air 5 through the injection holes 3 is made to flow along the walls on the side of the injection holes 3, while the secondary air 6 through the injection holes 4 is made to flow along the opposing furnace walls. This causes combustion gas and secondary air to be mixed effectively as the whole to enable perfect secondary combustion, with the result that the amount of fuel remaining unburnt fuel is reduced and that uniform distribution of oxygen and unburnt fuel is maintained at the furnace outlet.

Description

【発明の詳細な説明】 本発明はボイラ廃ガス中の未燃分を抑制しながらNOx
を有効に低減し得るようにした二段燃焼装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention reduces NOx while suppressing unburned components in boiler waste gas.
The present invention relates to a two-stage combustion device that can effectively reduce

火力発電用ボイラや産業用ボイラにおいて、NO×低減
を目的として二次空気噴射孔による二段燃焼を行った場
合、二次空気噴射孔より火炉内に供給される二次空気の
貫通度によっては未燃分の増大という弊害が生じること
もあり、二段燃焼の効果を充分に発揮させ得ないことが
ある。
In thermal power generation boilers and industrial boilers, when two-stage combustion is performed using secondary air injection holes for the purpose of reducing NOx, depending on the degree of penetration of the secondary air supplied from the secondary air injection holes into the furnace. This may have the disadvantage of increasing unburned content, and the effects of two-stage combustion may not be fully demonstrated.

従来の二次空気噴射孔を利用した二段燃焼においては、
第1図及び第3図に示す二次空気噴射孔(a)が全て同
じ寸法であったため、二次空気速度が小さい場合には、
ボイラ火炉(b)幅方向に二次空気が貫通することはで
きず、第1図に示すごとく、二次空気(C)は二次空気
噴射孔(a)側炉壁に沿って流れ、二次空気速度が大き
い場合には、逆に貫通度が大きく、第3図に示すごとく
、二次空気(C)は二次空気噴射孔(a)の対向壁に沿
って流れる。これを実ボイラと幾何学的に相似なモデル
による燃焼実験の結果によって説明すると次のようにな
る。
In conventional two-stage combustion using secondary air injection holes,
Since all the secondary air injection holes (a) shown in Figures 1 and 3 had the same dimensions, when the secondary air velocity is small,
Secondary air cannot penetrate the boiler furnace (b) in the width direction, and as shown in Figure 1, the secondary air (C) flows along the furnace wall on the side of the secondary air injection hole (a), Conversely, when the secondary air velocity is high, the degree of penetration is large, and the secondary air (C) flows along the opposing wall of the secondary air injection hole (a), as shown in FIG. This can be explained using the results of a combustion experiment using a model that is geometrically similar to an actual boiler.

すなわち、第1図の二次空気(C)の流れの場合におけ
る火炉出口X−X位置での酸素分布は、−二1こし救世
−X100)25%、二次/< 47 、l率(−全燃
焼空気量 空気流速gm/secの場合、第2図(イ)に示すよう
に二次空気噴射孔−)側炉壁に近い側が多く、対向炉壁
に近い側が少なくなるため、第2図(ロ)に示すごとく
一酸化炭素の分布は二次空気噴射孔(α)側では少なく
、対向炉壁側では多くなり、又第3図の二次空気(C)
の流れの場合における火炉出口X−X位置での酸素及び
−酸化炭素の分布状況はバイアス率25%、二次空気速
度20 rn/secの場合には、第4図(イ)(ロ)
に示すようになり、第1図の場合と逆になる。何れにし
ても、二次空気が火炉内に均等に分布しないため、燃焼
ガスとの混合が悪(、効果的な二段燃焼が得られず、ひ
いては未燃分の増大につながる。なお第1図及び第3図
中(d)は燃焼用バーナである。
That is, in the case of the flow of secondary air (C) in Fig. 1, the oxygen distribution at the furnace outlet XX position is -21 Koshi Salvation - In the case of total combustion air flow rate gm/sec, as shown in Fig. 2 (A), there is more air on the side near the secondary air injection hole -) side furnace wall and less on the side near the opposite furnace wall, as shown in Fig. 2 (A). As shown in (B), the distribution of carbon monoxide is small on the secondary air injection hole (α) side, and large on the opposite furnace wall side, and the distribution of carbon monoxide is
The distribution of oxygen and carbon oxide at the furnace outlet X-X position in the case of a flow of
The result is as shown in Figure 1, which is the opposite of the case in Figure 1. In any case, the secondary air is not evenly distributed in the furnace, resulting in poor mixing with the combustion gas (effective two-stage combustion cannot be obtained, and this leads to an increase in unburned matter. In the figure and FIG. 3, (d) is a combustion burner.

本発明は従来手段の有する前述の次点を除去することを
目的としてなしたもので、ボイラ火炉に、貫通度が異な
る二次空気の噴射孔を適宜数組合わせて設けたことを特
徴とするものである。
The present invention has been made for the purpose of eliminating the above-mentioned disadvantages of the conventional means, and is characterized in that a boiler furnace is provided with an appropriate number of secondary air injection holes having different penetration degrees. It is something.

以下、本発明の実施例を図面を参照しつつ説明する。Embodiments of the present invention will be described below with reference to the drawings.

第5図は本発明の一実施例で図中(1)はボイラ火炉、
(2)はバーナ、(31(4)はバーナ(2)よりも上
方に千鳥状になるよう設けられた二段燃焼用二次空気噴
射孔であり、二次空気噴射孔(3)は二次空気噴射孔(
4)より小径である。
Fig. 5 shows an embodiment of the present invention, and (1) in the figure shows a boiler furnace,
(2) is the burner, (31 (4) is the secondary air injection hole for two-stage combustion provided in a staggered manner above the burner (2), and the secondary air injection hole (3) is the secondary air injection hole. Next air injection hole (
4) Smaller diameter.

一般に、二次空気噴射孔からの空気の貫通度は、第6図
に示すごとく、燃焼ガスの一様流の上昇速度をvl、二
次空気速度を燻二次空気噴射孔の径をS、二次空気の貫
通距離をy、貫通距離yにおける二次空気噴射孔中心よ
り上の高さをXとすると、近似的に なる関係があり、貫通距離yは、二次空気速度υ、の0
.8乗と二次空気噴射孔の径Sの0.6乗との積に比例
する。
In general, the degree of penetration of air from the secondary air injection holes is determined by the rising speed of the uniform flow of combustion gas being vl, the secondary air velocity being vl, and the diameter of the secondary air injection holes being S, as shown in Figure 6. If the penetration distance of the secondary air is y and the height above the center of the secondary air injection hole at the penetration distance y is X, there is an approximate relationship, and the penetration distance y is 0 of the secondary air velocity υ.
.. It is proportional to the product of the 8th power and the diameter S of the secondary air injection hole to the 0.6th power.

従って上記二次空気噴射孔(31(4)より二次空気を
ボイラ火炉(1)内に噴射すると、第7図に示すごとく
、二次空気噴射孔(3)よりの二次空気(5)は二次空
気噴射孔(3)側炉壁に沿って流れ、二次空気噴射孔(
4)よりの二次空気(6)は対向炉壁に沿って流れるた
め、全体としては二次空気と燃焼ガスの混合が確実に行
なわれ、完全なミ次燃焼ができるため、未燃分が低減で
き、且つ火炉出口酸素分布及び未燃分分布は均一な分布
となる。
Therefore, when secondary air is injected into the boiler furnace (1) from the secondary air injection hole (31 (4)), as shown in Fig. 7, the secondary air (5) from the secondary air injection hole (3) is injected into the boiler furnace (1). flows along the furnace wall on the side of the secondary air injection hole (3), and the secondary air injection hole (
Since the secondary air (6) from 4) flows along the opposing furnace wall, the secondary air and combustion gas are mixed reliably as a whole, and complete secondary combustion is possible, so unburned matter is removed. In addition, the oxygen distribution at the furnace outlet and the unburned content distribution become uniform.

第8図は本発明の他の実施例であり、二次空気噴射孔(
3) (4)を−直線上に交互に配列した例であり、第
9図に示すごとく二次空気(5) (6)はボイラ火炉
(11内を図のごと(上昇する。従って第5図の場合と
同様完全な二次燃焼が得られ、未燃分も減少する。図中
第6図及び第7図に示す符号と同一の符号のものは同一
のものを示す。
FIG. 8 shows another embodiment of the present invention, in which the secondary air injection holes (
3) This is an example in which (4) are arranged alternately on a - straight line, and as shown in Figure 9, the secondary air (5) (6) rises in the boiler furnace (11) as shown in the figure. As in the case shown in the figure, complete secondary combustion is obtained and unburned matter is reduced.In the figure, the same reference numerals as those shown in FIGS. 6 and 7 indicate the same thing.

第10図は本発明の更に他の実施例で、二次空気噴射孔
(7)の入口部に速度調節器(8)を設け、該速度調節
器(8)により二次空気速度を調整するようにしたもの
で°ある。斯かる構成とすると、火炉の大きさに見合っ
た貫通度が得られるだけでなく、バイアス率の変化にも
対処できる。
FIG. 10 shows still another embodiment of the present invention, in which a speed regulator (8) is provided at the inlet of the secondary air injection hole (7), and the speed regulator (8) adjusts the secondary air velocity. It is something like this. With such a configuration, not only can a degree of penetration commensurate with the size of the furnace be obtained, but also changes in bias ratio can be coped with.

なお、本発明は前述の実施例に限定されるものではなく
、千鳥状や直線状に配列した大小の二次空気噴射孔に速
度調節機構を設けるようにしてもよいこと、二次空気噴
射孔の配置及び組合わせは種々のものが可能であること
、その他事発明の要旨を逸脱しない範囲内で種々変更を
加え得ること、等は勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and that speed adjustment mechanisms may be provided for secondary air injection holes of different sizes arranged in a staggered or linear manner. It goes without saying that various arrangements and combinations are possible, and that various other changes can be made without departing from the gist of the invention.

本発明の二段燃焼装置によれば、下記のごとき種々の優
れた効果を奏し得る。
According to the two-stage combustion device of the present invention, various excellent effects as described below can be achieved.

fI)既設あるいは新設ボイラにおいて、二段燃焼を効
果的に行え、未燃分を増大させることなくNOxを低減
できる。
fI) Two-stage combustion can be effectively performed in existing or new boilers, and NOx can be reduced without increasing unburned content.

(II)二段燃焼が効果的に行えることから、バイアス
率を増大でき、更にNOxの低減が可能となる。
(II) Since two-stage combustion can be performed effectively, the bias rate can be increased and NOx can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例で二次空気の貫通度が小さい場合の説明
図、第2図(イ)は第1図に示すボイラの火炉出口にお
ける酸素の分布状態の説明図、第2図(ロ)は同一酸化
炭素の分布状態の説明図、第3図は従来例で二次空気の
貫通度が大きい場合の説明図、第4図(イ)は第3図に
示すボイラの火炉出口における酸素の分布状態の説明図
、第4図(ロ)は同一酸化炭素の分布状態の説明図、第
5図は本発明の一実施例の説明図、第6図は第5図に示
す二次空気噴射孔の部分での二次空気の貫通度の説明図
、第7図は第5図にボすボイラ火炉における二次空気の
流れの説明図、第過図は本発明の他の実施例の説明図、
第9図は第8図に示すボイラ火炉における二次空気の流
れの説明図、第10図は本発明の更に他の実施例の説明
図である。 図中(1)はボイラ火炉、(2)は燃焼用バーナ、(3
)(4)(7)は二次空気噴射孔、(5)(6)は二次
空気、(8)は速度調節器を示す。 特許出願人 石川島播磨重工業株式会社
Figure 1 is an explanatory diagram of the conventional example where the degree of penetration of secondary air is small, Figure 2 (A) is an explanatory diagram of the oxygen distribution state at the furnace outlet of the boiler shown in Figure 1, and Figure 2 (Ro ) is an explanatory diagram of the distribution state of the same carbon oxide, Figure 3 is an explanatory diagram of the conventional example where the degree of penetration of secondary air is large, and Figure 4 (a) is an illustration of the oxygen at the furnace outlet of the boiler shown in Figure 3. 4(b) is an explanatory diagram of the distribution state of the same carbon oxide, FIG. 5 is an explanatory diagram of an embodiment of the present invention, and FIG. 6 is an explanatory diagram of the distribution state of the same carbon oxide. Fig. 7 is an explanatory diagram of the degree of penetration of secondary air at the injection hole portion, Fig. 7 is an explanatory diagram of the flow of secondary air in the boiler furnace shown in Fig. 5, and Fig. 7 is an explanatory diagram of the flow of secondary air in the boiler furnace shown in Fig. 5. Explanatory diagram,
FIG. 9 is an explanatory diagram of the flow of secondary air in the boiler furnace shown in FIG. 8, and FIG. 10 is an explanatory diagram of still another embodiment of the present invention. In the figure, (1) is the boiler furnace, (2) is the combustion burner, and (3) is the combustion burner.
) (4) and (7) are secondary air injection holes, (5) and (6) are secondary air, and (8) is a speed regulator. Patent applicant Ishikawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)ボイラ火炉に、貫通度が異なる二次空気の噴射孔を
適宜組合わせて設けたことを特徴とする二段燃焼装置。
1) A two-stage combustion device characterized in that a boiler furnace is provided with secondary air injection holes having different penetration degrees in appropriate combinations.
JP9764781A 1981-06-24 1981-06-24 Two-stage combustion device Granted JPS583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9764781A JPS583A (en) 1981-06-24 1981-06-24 Two-stage combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9764781A JPS583A (en) 1981-06-24 1981-06-24 Two-stage combustion device

Publications (2)

Publication Number Publication Date
JPS583A true JPS583A (en) 1983-01-05
JPS6229682B2 JPS6229682B2 (en) 1987-06-27

Family

ID=14197892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9764781A Granted JPS583A (en) 1981-06-24 1981-06-24 Two-stage combustion device

Country Status (1)

Country Link
JP (1) JPS583A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168947B2 (en) * 2004-07-06 2007-01-30 General Electric Company Methods and systems for operating combustion systems
JP2007107850A (en) * 2005-10-17 2007-04-26 Babcock Hitachi Kk Boiler equipment
US7681508B2 (en) 2004-11-02 2010-03-23 Babcock-Hitachi K.K. After-air nozzle for two-stage combustion boiler, and a two-stage combustion boiler, boiler and combustion method using the same
EP2314921A3 (en) * 2009-10-21 2011-09-07 Fives Pillard Method of operating a boiler
JP2012122720A (en) * 2006-01-11 2012-06-28 Babcock Hitachi Kk Pulverized coal-fired boiler, and pulverized coal burning method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168947B2 (en) * 2004-07-06 2007-01-30 General Electric Company Methods and systems for operating combustion systems
US7681508B2 (en) 2004-11-02 2010-03-23 Babcock-Hitachi K.K. After-air nozzle for two-stage combustion boiler, and a two-stage combustion boiler, boiler and combustion method using the same
JP2007107850A (en) * 2005-10-17 2007-04-26 Babcock Hitachi Kk Boiler equipment
JP4664180B2 (en) * 2005-10-17 2011-04-06 バブコック日立株式会社 Boiler equipment
JP2012122720A (en) * 2006-01-11 2012-06-28 Babcock Hitachi Kk Pulverized coal-fired boiler, and pulverized coal burning method
EP2314921A3 (en) * 2009-10-21 2011-09-07 Fives Pillard Method of operating a boiler

Also Published As

Publication number Publication date
JPS6229682B2 (en) 1987-06-27

Similar Documents

Publication Publication Date Title
US5460513A (en) Low NOx burner
US5275552A (en) Low NOx gas burner apparatus and methods
US4021186A (en) Method and apparatus for reducing NOx from furnaces
US4135874A (en) Two stage combustion furnace
US4144016A (en) Burner
US4052142A (en) Air velocity burner
JPS583A (en) Two-stage combustion device
RU94045164A (en) Low-emission swirling-type furnace
JPH01155108A (en) Pre-mixing type gas burner
JPH0445726B2 (en)
JPS582321B2 (en) NOX Teigen Sekitan Burner
JP3569985B2 (en) Lean combustion method and apparatus
JP2924138B2 (en) Low NOx burner
JPS595801B2 (en) Low NOX burner
SU1539460A1 (en) Coal-dust burner for swirl-type combustion chamber
JPS60202204A (en) Pulverized coal firing burner and operating method thereof
JPS59124811U (en) Low NOx combustion boiler
JPS599001B2 (en) Low NOx burner device
JPH05675Y2 (en)
JP2528860Y2 (en) Premix gas burner
JPS6234111Y2 (en)
JPS6350568Y2 (en)
JPS60185004A (en) Three-stage burner
JPS60233403A (en) Three-stage type combustion device
JPH07217864A (en) After air supplier