JPS5839919A - Gas liquifaction and cooling apparatus - Google Patents

Gas liquifaction and cooling apparatus

Info

Publication number
JPS5839919A
JPS5839919A JP56138795A JP13879581A JPS5839919A JP S5839919 A JPS5839919 A JP S5839919A JP 56138795 A JP56138795 A JP 56138795A JP 13879581 A JP13879581 A JP 13879581A JP S5839919 A JPS5839919 A JP S5839919A
Authority
JP
Japan
Prior art keywords
gas
holder
vessel
liquefier
drier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56138795A
Other languages
Japanese (ja)
Inventor
Sadayuki Matsui
松井 貞行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56138795A priority Critical patent/JPS5839919A/en
Publication of JPS5839919A publication Critical patent/JPS5839919A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect

Abstract

PURPOSE:To prevent the occurrence of clogging caused by ambient air flowed into a Dewar vessel, by sealing up the discharge side of a gas liquefier with a drier enclosed with a drying agent and sealing material. CONSTITUTION:A Dewar vessel 5, in which an infrared rays detector 4 is built in, is stuck to a Dewar vessel holder 8 and is held on the holder 8 and also, a drier 9 is provided at one end of the holder 8. A sealing material 11 performs duties to keep airtightness between a mandrel 7 fitted to the holder 8 and the holder 8. Discharged gas from the vessel 5 and ambient air flowing into the vessel 5 are flowed through the drier 9. Accordingly, humidity is removed by the action of the drier 9 even when the air current flowing into the vessel 5 contains moisture in a high humidity, and the inner part of the vessel 5 is kept under dry condition.

Description

【発明の詳細な説明】 この発明は赤外線検知器の冷却手鉦として用いられる。[Detailed description of the invention] This invention is used as a cooling hand gong for an infrared detector.

ジェールトムソン効果(Joule−Thomson 
 Eftset )を利用した小型ガス液化冷却装置に
関するものである。
Joule-Thomson effect
The present invention relates to a small-sized gas liquefaction cooling device that utilizes Eftset.

赤外線検知器は、過去数十年来、飛しょう体の誘導、フ
ユーズ及び各種監視装置等1軍用として用いられている
。例えば飛しょう体の1目゛として目標からの赤外線を
受動的に検知する手段は、目標からのROMの妨害を受
けに<<。
Infrared detectors have been used for the past several decades for military purposes such as guidance of flying objects, fuses, and various surveillance devices. For example, means for passively detecting infrared rays from a target as the first target of a projectile is subject to interference from the ROM from the target.

かつ夜間でも検知可能である事は一般に良く知られてい
る。
Moreover, it is generally well known that detection is possible even at night.

このような赤外線検知は、対象物からの赤外線の通過媒
体として大気が存在する為に、大気が吸収する波長帯を
避け9通常大気の窓(At。
Since the atmosphere exists as a transmission medium for the infrared rays from the target object, this type of infrared detection avoids wavelength bands that are absorbed by the atmosphere.9 Normal atmospheric window (Atmospheric window).

mosphere’s  Window )と呼ばれる
8〜5μm、及び8〜13μmの遠赤外波長領域で動作
が行なわれる。
The operation is performed in the far infrared wavelength region of 8 to 5 μm and 8 to 13 μm, called the mosphere's window.

赤外線検知器は物理的分類として、光子型(photo
n  tape )と熱屋(Thermal  typ
e )とに分かれるが、一般に誘導及び監視等の目的に
用いられる赤外線検知器は、高感度、高速応答性が要求
される為に光子型が使用される。
Infrared detectors are physically classified as photon type (photon type).
n tape) and Thermal type
(e) Generally, infrared detectors used for purposes such as guidance and monitoring are of the photon type because high sensitivity and high-speed response are required.

光子型赤外線検知器の材料としては上記8〜spm帯に
おいてはPb8e 、 In8b 、 Pb8nTe。
Materials for photon type infrared detectors include Pb8e, In8b, and Pb8nTe in the 8 to spm band.

Ge : Hg 、* Hg0dTe *また8 〜1
3μm帯においてはPb8nTe + Ge:Hg *
 Hg0dTe 、 Ge:Ou  等が考えられる。
Ge: Hg, *Hg0dTe *Also 8 ~ 1
In the 3 μm band, Pb8nTe + Ge:Hg *
Possible materials include Hg0dTe and Ge:Ou.

しかしこのような光子屋赤外線検知器の材料は、その熱
雑音(Themal noisse)が感度(Ssns
ifivtty )に著しく影響する為に10G’に以
下に冷却する必要が−ある。
However, the thermal noise of the materials used in such Photonya infrared detectors has a negative effect on the sensitivity (Ssns).
It is necessary to cool down below 10 G' to significantly affect the ifivtty.

一般に低温工学で100°に以下を定義する低温(cr
yogenic  Temperature )の領域
における冷却方法は、超電′導、メーザ−、バラ7) 
IJフック幅器等の分野においても周知であるが。
Generally, in cryogenics, 100° is defined as the following low temperature (cr
Cooling methods in the yogenic temperature range include superconducting, maser, and rosette7)
It is also well known in the field of IJ hook width devices and the like.

冷媒としてヘリウム、窒素、アルゴン尋を使用し、装置
としては拡散エンジンを用いる大規模なものから単に実
験室的に、液化ガスを注入するだけのものと様々である
Helium, nitrogen, or argon are used as refrigerants, and the equipment ranges from large-scale systems using diffusion engines to laboratory systems that simply inject liquefied gas.

この中で、前記の誘導及び監視の目的に用いられる機器
は、その運用が野外であ)、かつ運搬が容易である必要
があり、したがってそのような機器に組み込まれる赤外
線検知器の冷却装置は長期保存が可能で、かつその冷却
作用が任意の緊急時に作動ができ、更に小型軽量でなけ
ればならない事は明らかである。この目的に合致するよ
うな冷却装置としてジュールトムソン効果を利用した小
型のガス液化冷却装置が従来よシ使用されている。その
概略的な構成を第1図に示す通りである。
Among these, the equipment used for the above-mentioned guidance and monitoring purposes must be able to operate outdoors) and be easily transported, and therefore the cooling system for the infrared detector incorporated in such equipment is required. It is clear that it must be able to be stored for a long time, its cooling action can be activated in any emergency, and it must also be small and lightweight. As a cooling device that meets this purpose, a small gas liquefaction cooling device that utilizes the Joule-Thomson effect has conventionally been used. Its schematic configuration is shown in FIG.

第1図において(1)はガス供給源、(2)はフィルタ
ー、(3)は通常クライオスタット(cryostat
)と呼ばれるガス液化器である。
In Figure 1, (1) is a gas supply source, (2) is a filter, and (3) is a cryostat.
) is a gas liquefier.

ガス供給源(1)としては冷却の作用時間が短い場合は
、窒素或いはアルゴン等のガスを高圧にて封入したガス
容器が用いられ、−万作用時間が長い場合には小型のガ
ス循環ポンプが使用される。いずれにしてもガス供給源
tt)からの高圧ガスはフィルター(2)によって不純
物を除去され、ガス液化器(3)に流入する。ガス液化
器(3)はジュールトムソン効果すなわち圧力降下に伴
なう冷媒ガスの温度降下を利用して、流入ガスを液化さ
せ、その液化ガスの蒸発潜熱によって1図示されていな
いが赤外線検知器を冷却する。
As the gas supply source (1), if the cooling action time is short, a gas container filled with gas such as nitrogen or argon at high pressure is used; if the action time is long, a small gas circulation pump is used. used. In any case, the high pressure gas from the gas supply source tt) is purified of impurities by the filter (2) and flows into the gas liquefier (3). The gas liquefier (3) uses the Joule-Thomson effect, that is, the temperature drop of the refrigerant gas due to the pressure drop, to liquefy the incoming gas, and the latent heat of vaporization of the liquefied gas causes an infrared detector (not shown) Cooling.

第2図には上述のガス液化器の更に詳しい構造図を示し
である。(4)は赤外線検知器、(5)はデユア、(6
)はチェーブ、(7)は÷ンドレルである。
FIG. 2 shows a more detailed structural diagram of the above-mentioned gas liquefier. (4) is an infrared detector, (5) is a dua, (6
) is Cheve, and (7) is ÷Ndrel.

チェーブ(6)はマンドレル(7)にスパーイラル状に
巻き付けられてお〕、その内部を高圧ガスが流れる。ス
パイラルに巻き付けられたチェープ(6)とマンドレル
(7;が組み合わされた構造体は、デュ′ア内に、そめ
構造体の最外径がデーア(5)の内面と、密着するよう
に挿入されて仏る。デーア(団は一種の魔法ビンで外部
との斬熱を維持する為に、二重−の内部を真空に保たれ
ておシ、その内部中空壁に赤外線検知器(4)が取シ付
けられている。このような構成において供給される高圧
ガスは前記チェープ(6)の内部を通シ、チューブ(6
)の先端からデユア(5)の底部に向かって噴出する。
The tube (6) is spirally wound around the mandrel (7), and high pressure gas flows inside it. A structure in which a spirally wound chain (6) and a mandrel (7) are combined is inserted into the dure so that the outermost diameter of the diagonal structure is in close contact with the inner surface of the dure (5). Dare (the group) is a kind of magic bottle, and in order to maintain the connection with the outside, the inside of the double-bottom is kept in a vacuum, and an infrared detector (4) is installed in the hollow wall inside. The high-pressure gas supplied in such a configuration passes through the inside of the chain (6) and is connected to the tube (6).
) is ejected from the tip toward the bottom of the Dua (5).

その時、高1のガスは周囲に拡散されるので、その圧力
降下によル、噴出ガス社いわゆるジュールトムソン効果
で温度降下番きたす。しかし通常用いられる供給ガス圧
、 200気圧〜600気圧程度では、その温度降下は
微々たるものであるので、デユア(5)とチェープ(6
)の外面ととのわずかな間隙部から排出するガスと新た
に熱交換を行なわせ、この作用を繰り返す事により、究
極的に前記チューブ(6)の先端からデユア(5)の底
部に噴出するガスをその液化温度にまで降下させ、デユ
ア(5)の底部に液化ガスを生成さ□せる。゛冷媒とし
ての窒−及びアルゴンの液化温77°  87’K で
あるのでデユア(5)の内部中空壁に取り付けられた赤
外−検知器(4)は、そのような低温に冷却される。
At that time, the high-temperature gas is diffused into the surrounding area, and the resulting pressure drop causes a temperature drop due to the so-called Joule-Thomson effect. However, at the normally used supply gas pressure of about 200 to 600 atm, the temperature drop is negligible, so Dua (5) and Chape (6) are used.
), and by repeating this action, the gas is finally ejected from the tip of the tube (6) to the bottom of the Dua (5). The gas is lowered to its liquefaction temperature, producing liquefied gas at the bottom of the dure (5). Since the liquefaction temperature of nitrogen and argon as refrigerants is 77° 87'K, the infrared detector (4) mounted on the internal hollow wall of the dure (5) is cooled to such a low temperature.

ところで第2図に示されたようなガス液化器においてそ
の冷却作用を良好に行なわせる為に ゛は前記チューブ
内の供給ガスの流れを円滑にさせる必要がある事は言う
までも雇い。
By the way, it goes without saying that in order to achieve good cooling in a gas liquefier like the one shown in Figure 2, it is necessary to smooth the flow of the supply gas in the tube.

チューブ径は内径が50〜200 (μmφ)と非常に細く、更に熱交換の効率を向上させ
る為にそのチューブの実質的な長さは数メートルに及ぶ
。そこで第1図に示されたガス供給源の冷媒ガスの純度
とフィルターの性能が問題となる。つtb供給ガスの内
−に含まれる不純物が前述のように細長いチーープの内
部を流れた時にチューブ内に堆積し、いわゆる目詰まり
を起こす危険があり・fi、!こ?目詰まりが生じた時
は、チューブ内のクスの流れは停止し赤外線検知器への
冷却作用は行なわれなくなる。この事は前述のガス液化
器の原理説明から容易に類推できるであろう。
The tube diameter is very thin with an inner diameter of 50 to 200 (μmφ), and the actual length of the tube is several meters in order to further improve the efficiency of heat exchange. Therefore, the purity of the refrigerant gas in the gas supply source shown in FIG. 1 and the performance of the filter become issues. When the impurities contained in the supply gas flow through the inside of the long and narrow tube as described above, there is a risk that they will accumulate in the tube and cause so-called clogging. child? When clogging occurs, the flow of the gas inside the tube stops and the cooling effect on the infrared detector is no longer performed. This can be easily inferred from the explanation of the principle of the gas liquefier described above.

供給ガスに含まれる不純物として、塵埃等の固型粒子、
カーボン、二酸化炭素、及び水分が考えられる。固型粒
子及びカーボンはその粒径の大きさによってチューブ内
に詰まるのは当然としても、特に水分はチューブに至る
までは水蒸気となって供給ガス内に混在し、低温に冷却
される個所すなわちチューブ内で凝縮し、固体粒子とな
って目詰t、bを起こすので、ガス液化器より前方に設
けられるフィルターでは除去が著しく困難なものである
Impurities contained in the supplied gas include solid particles such as dust,
Possible carbon, carbon dioxide, and moisture. It is natural for solid particles and carbon to clog the tube due to their particle size, but moisture in particular becomes water vapor and mixes in the supplied gas until it reaches the tube, where it is cooled to a low temperature, that is, the tube. Since the gas condenses inside the gas liquefier and becomes solid particles, causing clogging t and b, it is extremely difficult to remove the gas using a filter installed in front of the gas liquefier.

したがって供給ガスはあらかじめこのような不純物が除
去されている事が要求される。例えば使用される窒素或
いはアルゴン等において固、水分は2 PPm以下と非
常に厳しく制限している。
Therefore, it is required that such impurities be removed from the supply gas in advance. For example, the solid and moisture content of nitrogen, argon, etc. used is very strictly limited to 2 PPm or less.

さて、上述のように高純度に精製された供給ガスを使用
し、iに保守1点検時に混入する不純物を除去する目的
のフィルターを用いて第1図のような冷却装置を構成し
9作動させた時には、その装置の信頼性は高く、目詰ま
少も生じないはずであるが、多くの試験において目詰ま
りが発生する事が確認された。その原因として、ガス液
化器の内部において排出ガスの流れと逆に流入する周囲
空気が影響している事が分かった。更に詳しい説明をす
れば、スパイラル状に巻かれたチーーブの外面とデーア
との間隙部は極めて微小であるが、この間隙部において
Now, using the highly purified supply gas as described above, and using a filter for the purpose of removing impurities mixed in during the first maintenance inspection, a cooling system as shown in Fig. 1 is constructed and operated. However, in many tests, it was confirmed that clogging occurred. It was found that the cause of this was the influence of ambient air flowing in opposite to the flow of exhaust gas inside the gas liquefier. To explain in more detail, the gap between the outer surface of the spirally wound tube and the wire is extremely small, but in this gap.

チューブから噴出しその後に排出されるガス流と逆方向
にガス液化器の周囲の空気が流れ込む事が観察され、そ
の周囲空気は使用環境によっては湿度が高く水分を含ん
でいるので、その水分がデユア内の冷却によって凝縮し
、チーープ外面とデーアとの間隙部或いはチーープの先
端を閉ざしてしまい、結果としてガスの流れを停止させ
る事となる。
It has been observed that the air around the gas liquefier flows in the opposite direction to the gas flow that is ejected from the tube and then discharged. Depending on the usage environment, the air around the gas liquefier is highly humid and contains moisture, so the moisture may be removed. The gas condenses as it cools inside the chamber, closing the gap between the outer surface of the chamber and the chamber or the tip of the chamber, and as a result, stopping the flow of gas.

このような現象は冷却装置の使用環境1%に温湿度やデ
ユア内に流れ込む周囲空気の量に依存しているが、前述
の如くガス液化器が良好に作動する水分の制限として+
2ppm以下と極めて低い事から、わずかな量でもデユ
ア内に周囲空気が流入すればその空気の相対湿度が数パ
ーセントであっても支障をきたし、このような冷却装置
を使用する誘導及び監視システムには重大な問題点とな
り得る。
This phenomenon depends on the operating environment of the cooling device, the temperature and humidity, and the amount of ambient air flowing into the unit, but as mentioned above, the moisture limit for the gas liquefier to function properly is +
Since the humidity is extremely low (less than 2 ppm), if even a small amount of ambient air enters the dua, even if the relative humidity of that air is only a few percent, it will cause problems, and guidance and monitoring systems using such cooling devices will be affected. can be a serious problem.

この発明は主述したように従来のジーールトムノン効果
を利用した小型のガス液化冷却装置で確認された周囲空
気のデユア内への流入による目詰まりの発生という大き
な問題点を解決する為の手段を提供するものである。更
に詳しく祉ガス液化器の排出側を乾燥剤を封入した乾燥
器及びシール材にて密閉し、ガス液化器からの排出ガス
及び周囲からガス液化器に流入する空気流は各々前記乾
燥器を通して流れるような構造の冷却装置を提供するも
のである。
As stated above, this invention provides a means for solving the major problem of clogging caused by ambient air flowing into the dure, which has been found in conventional small gas liquefaction cooling devices that utilize the Ziehl-Thomnon effect. It is something to do. In more detail, the discharge side of the welfare gas liquefier is sealed with a dryer containing a desiccant and a sealing material, and the exhaust gas from the gas liquefier and the air flow flowing into the gas liquefier from the surroundings flow through the dryer. The present invention provides a cooling device having such a structure.

以下この発明の実施例を第8図を参照して説明する。An embodiment of the invention will be described below with reference to FIG.

第8図はこの発明によるガス液化器の主要断面図である
。(8)はデユアホルダー、(9)は乾燥器、員は乾燥
剤、1gはシール材である。赤外線検知器(4)が組み
込まれたデユア(5)は、デユアホルダー(8)に接着
して保持される。デユアホルダー(8)の一方の端には
乾燥器(9)が設けられる。乾燥器(9)は例えば2つ
の径の異なる円筒状の金属メツシュで作られ、その内部
にシリカゲル等の乾燥剤(1(Iが封入されている。こ
の他に乾燥器(9)の構造としては1円周上数個所に穴
が設けられたデユアホルダー(6)にメッシェ状の乾燥
剤を封入する等が考えられ、いわゆるデユア内部と周囲
とを構造的に隔離し、その間のガスの流れを許容すると
同時に乾燥させる役割をもつものであれば各種の構造が
考えられる。シール材aOは0リング等で図示されてい
ないがネジ等の締付具テテエアホルダー(8)に取り付
けられるマンドレル(7)と、前記デユアホルダー(8
)との間の気密を保つ役割をする。
FIG. 8 is a main sectional view of the gas liquefier according to the present invention. (8) is a dual holder, (9) is a dryer, member is a desiccant, and 1g is a sealing material. The duer (5) in which the infrared detector (4) is incorporated is adhered and held by the duer holder (8). A dryer (9) is provided at one end of the dual holder (8). The dryer (9) is made of, for example, two cylindrical metal meshes with different diameters, and a desiccant (1) such as silica gel is sealed inside the mesh. A possible solution would be to enclose a mesh-like desiccant agent in a deurea holder (6) that has holes at several locations on its circumference, thereby structurally separating the so-called deurea interior from its surroundings, and preventing the flow of gas between them. Various structures can be considered as long as they have the role of drying at the same time as allowing drying.The sealing material aO may be an O-ring or the like (not shown), but it may be a mandrel (7) attached to the air holder (8) with a fastener such as a screw. ) and the dual holder (8
) to maintain airtightness between the

かかる構成のガス液化器の組立てを、清浄でかつ乾燥し
た雰囲気で行ない、その後で第1図に示した小型ガス液
化冷却装置に組み入れた場合にデユア(5)からの排出
ガスとデユア(5)内に流入する周囲空気は、乾燥器(
9)を通して流れる。
When a gas liquefier with such a configuration is assembled in a clean and dry atmosphere and then incorporated into the small gas liquefaction cooling device shown in FIG. 1, the exhaust gas from the Dua (5) and the Dua (5) The ambient air flowing into the dryer (
9) flows through.

したがって、特KfSア(I内に流れ込む空気流が湿度
が高く水分を含んでいても乾燥器(9)の作用によって
除湿され、デーア(5)の内部は極めて乾燥した状態に
維持される。この事によりデユア(5)内部がその本来
の目的である高圧ガスのジェールトムソン効果によって
低温状態に近づいても、前述のようにデユア(5)内に
流入する周囲空気流の中に含まれる水分が凝縮して、前
記チェープとデユア間のわずかな間隙部或いはチェープ
先端に付着する現象は避けられ、冷却装置の作動を信頼
性の高いものとする。
Therefore, even if the airflow flowing into the special KfS chamber (I) is highly humid and contains moisture, it is dehumidified by the action of the dryer (9), and the inside of the chamber (5) is maintained in an extremely dry condition. Even if the interior of the duure (5) approaches a low temperature state due to the Jeer-Thomson effect of high-pressure gas, which is its original purpose, the moisture contained in the ambient air flow flowing into the duure (5) as described above The phenomenon of condensation and adhesion to the slight gap between the chape and the dure or to the tip of the chape is avoided, making the operation of the cooling device highly reliable.

以上詳述したように、この発明は従来のジェールトムソ
ン効果を利用した小型ガス液化冷却装置において9発生
した水分による目詰まりの現象を防止する為に乾燥器を
ガス液イし器の排出側に設ける事を提案し、小型ガス液
化冷却装置の良好な作動を保証しうるものであシ、その
構成は簡単であるが、許容できる水分の量が厳しい小屋
のガス液化冷却装置において多大な効果を発揮できるも
のであシ、最終的にそのような冷却装置を組み込んだ誘
導及び監視システムの信頼性を著しく高めるものである
As described in detail above, the present invention has been developed to place the dryer on the discharge side of the gas liquefier in order to prevent the clogging phenomenon caused by moisture that occurs in the conventional small gas liquefaction cooling device that utilizes the Jehl-Thompson effect. This is a device that can guarantee good operation of small-sized gas liquefaction cooling equipment, and although its configuration is simple, it has a great effect on gas liquefaction cooling equipment for cabins where the amount of moisture that can be tolerated is strict. This will ultimately significantly increase the reliability of guidance and monitoring systems incorporating such cooling devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は小屋のガス液化冷却装置の概略構成図、第2図
は従来のガス液化器の詳細図、第8図はこの発明による
ガス液化器の構成を示す図である。 ”図中(1)はガス供給源、(2)はフィルター、(3
)はガス液化器、(4)は赤外線検知器、(5)はデユ
ア。 (7)はマンドレル、(8)はデユアホルダー、(9)
は乾燥器、鵠は乾燥剤、a9はシール材である。 なお図中、同一あるいは相当部分には同一符号を付して
示しである。 代理人  葛 野 信 −
FIG. 1 is a schematic diagram of a gas liquefaction cooling device for a shed, FIG. 2 is a detailed diagram of a conventional gas liquefier, and FIG. 8 is a diagram showing the configuration of a gas liquefier according to the present invention. ``In the figure, (1) is the gas supply source, (2) is the filter, and (3) is the gas supply source.
) is a gas liquefier, (4) is an infrared detector, and (5) is a dua. (7) is a mandrel, (8) is a dual holder, (9)
is a dryer, mouse is a desiccant, and a9 is a sealing material. In the drawings, the same or corresponding parts are designated by the same reference numerals. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] 赤外線検知器の冷却手段として用いられ、ガス供給源、
フィルター及びガス液化器で構成されるガス液化冷却装
置において、赤外線検知器が取シ付けられたデユアを保
持するデユアホルダー、乾燥剤を封入した乾燥器、及び
デユアホルダーとマンドレルの締結時の気密を保持する
シール材とを備え、上記デユア内部を周囲環境から前記
乾燥器とシール材にて構造的に隔離状態にしたガス液化
器を組み入れた事を特徴とするガス液化冷却装置。
Used as a cooling means for infrared detectors, gas supply source,
In a gas liquefaction cooling system consisting of a filter and a gas liquefier, there is a duure holder that holds the duure to which an infrared detector is attached, a dryer containing a desiccant, and airtightness when the duure holder and mandrel are connected. 1. A gas liquefaction cooling device comprising a gas liquefier having a sealing material for holding the dryer and a gas liquefier which structurally isolates the inside of the deurea from the surrounding environment by the dryer and the sealing material.
JP56138795A 1981-09-03 1981-09-03 Gas liquifaction and cooling apparatus Pending JPS5839919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56138795A JPS5839919A (en) 1981-09-03 1981-09-03 Gas liquifaction and cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56138795A JPS5839919A (en) 1981-09-03 1981-09-03 Gas liquifaction and cooling apparatus

Publications (1)

Publication Number Publication Date
JPS5839919A true JPS5839919A (en) 1983-03-08

Family

ID=15230394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56138795A Pending JPS5839919A (en) 1981-09-03 1981-09-03 Gas liquifaction and cooling apparatus

Country Status (1)

Country Link
JP (1) JPS5839919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883365A1 (en) * 2005-03-16 2006-09-22 Sagem Cryogenic cooling apparatus for self-director of self-guided projectile, is based on Dewar vessel and Joule-Thomson cooler and has gaseous fluid evacuating line with primary and secondart openings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883365A1 (en) * 2005-03-16 2006-09-22 Sagem Cryogenic cooling apparatus for self-director of self-guided projectile, is based on Dewar vessel and Joule-Thomson cooler and has gaseous fluid evacuating line with primary and secondart openings

Similar Documents

Publication Publication Date Title
US2909908A (en) Miniature refrigeration device
JPS58171642A (en) Detector for infrared rays
US4277951A (en) Cryopumping apparatus
JPH0460539B2 (en)
US3021683A (en) Gas liquefiers
US3415078A (en) Infrared detector cooler
EP0136687B1 (en) Infrared receiver
JPS5839919A (en) Gas liquifaction and cooling apparatus
Wollnik et al. The improvement of a gas-jet system by the use of an aerosol generator
US5598711A (en) Fluid deflection method using a skirt
US3540826A (en) Saturation hygrometer
Weinstock et al. A cryogenically cooled photofragment fluorescence instrument for measuring stratospheric water vapor
US5592822A (en) Fluid deflection skirt apparatus
JP3720701B2 (en) Jules Thomson cooling device
US5692379A (en) Long term thermally stable cryostat
Hughes et al. Mariner Mars 1969 infrared spectrometer: Gas delivery system and Joule-Thomson cryostat
US5564278A (en) Thermally stable cryostat
KR102376798B1 (en) Cooled detecting device
Williamson et al. A miniature cooling system for Ge (Li) solid-state detectors
JPH0424618B2 (en)
SU781486A1 (en) Method of producing vacuum for heat insulation of "tube-in-tube"-type pipelines
US3970850A (en) Pool cooling infrared telescope
RU2198356C2 (en) Cryostat
JPS58138968A (en) Device for liquefying and cooling gas
US6519952B2 (en) Cryostat