JPS5839680A - Synthesizing method of ketal derivative from glycerol allyl ether - Google Patents

Synthesizing method of ketal derivative from glycerol allyl ether

Info

Publication number
JPS5839680A
JPS5839680A JP13919681A JP13919681A JPS5839680A JP S5839680 A JPS5839680 A JP S5839680A JP 13919681 A JP13919681 A JP 13919681A JP 13919681 A JP13919681 A JP 13919681A JP S5839680 A JPS5839680 A JP S5839680A
Authority
JP
Japan
Prior art keywords
ketone
acetone
acid
acidic catalyst
methyl ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13919681A
Other languages
Japanese (ja)
Inventor
Kyoichi Tanaka
恭一 田中
Shinji Shikami
鹿海 晋治
Tatsutoshi Nakajima
中嶋 辰登士
Kazuhiko Nakada
和彦 中田
Nobuyuki Toyoshima
豊嶋 伸行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Menicon Co Ltd
Original Assignee
Toyo Contact Lens Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Contact Lens Co Ltd filed Critical Toyo Contact Lens Co Ltd
Priority to JP13919681A priority Critical patent/JPS5839680A/en
Publication of JPS5839680A publication Critical patent/JPS5839680A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled compound useful as a monomer for raw material polymers used for preparing contact lenses, by forming a ketal derivative of allyl glycidyl ether and a ketone in the presence of an acidic catalyst at a greatly reduced cost. CONSTITUTION:Allyl glycidyl ether of formulaIis reacted with a ketone, e.g. acetone, of formula II in the presence or absence of a solvent in the presence of an acidic catalyst, preferably by adding a small amount of a polymerization inhibitor, e.g. hydroquinone monomethyl ether, thereto to give the aimed compound, e.g. the compound of formula III. Acetone, methyl ethyl ketone, cyclohexanone, etc. may be used as the ketone. The reaction temperature varies with the kinds of the ketone, and is 20-50 deg.C for the acetone and 30-60 deg.C for the methyl ethyl ketone. A Brphinsted acid, preferably silicotungstic acid or sulfuric acid, or a Lewis acid, preferably boron trifluoride ethyl etherate, may be used as the acidic catalyst.

Description

【発明の詳細な説明】 ルエーテルの新規な合成法に関する。この化合物はコン
タクトレンズ製造用の原料ボリマーをつくるためのモノ
!一として有用である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for synthesizing ethers. This compound is used to make the raw material polymer for contact lens manufacturing! It is useful as one.

従来、ケタール化されたアリルエーテルとして、たとえ
ばアリルイソプロピリデングリセルールエーテル(以下
、AL工PGという)がつぎの反応式で示される合成法
によりえられることかグリセリン          
   イソプロヒ)デンタ)セロールしかしながらこの
合成法は6段階の工程を必要とするため合成に時間を要
するという欠点を有する。
Conventionally, as a ketalized allyl ether, for example, allyl isopropylidene glycerol ether (hereinafter referred to as AL-PG) can be obtained by the synthesis method shown by the following reaction formula.
Isoprohyde(denta)cerol However, this synthesis method has the disadvantage that it requires a six-step process and therefore takes a long time to synthesize.

本発明者らは叙上の欠点を克服するべく鋭意研究を重ね
た結果、アリルグリシジルエーテルとケトンとを酸触媒
の存在下において反応せしめるケタール化されたグリセ
ロールアリルエーテルの合成法によるときは前記の欠点
を解消できるばかりでなく、大巾なコストダウンもはか
れることを見出し、本発明を完成するにいたった0本発
明の合成法の了りルグリシジルエーテル(以下、ALG
Eという)を用いた例を反応式で示すとつぎのようにな
る。
The present inventors have conducted extensive research to overcome the above-mentioned drawbacks, and have found that when using a method for synthesizing ketalized glycerol allyl ether, which involves reacting allyl glycidyl ether with a ketone in the presence of an acid catalyst, the above-mentioned method can be used. It was discovered that not only the disadvantages could be eliminated, but also a significant cost reduction could be achieved, and the present invention was completed.
The reaction formula for an example using E) is as follows.

υ ALGIIc すなわちALGIを直接アセトン、メチルエチルケトン
、シクロヘキサノンなどのケトンと反応させることによ
り、AI、工PG、4−アリルオキシー2−メチル−2
−エチル−1,6−ジオ午ソフン(以下、 ALMIと
いう)、2−アリルオキシメチレン−スピロ(:4,5
)1.4−ジオキサデカン以下、AllOHという)な
どのケタール化されたグリーtrO−ルアリルエーテル
が合成される。コレラの化合物の構造式を示すとっぎの
とおりである。
υ ALGIIc That is, by directly reacting ALGI with a ketone such as acetone, methyl ethyl ketone, or cyclohexanone, AI, PG, 4-allyloxy-2-methyl-2
-ethyl-1,6-dioxymethyl (hereinafter referred to as ALMI), 2-allyloxymethylene-spiro (:4,5
) 1,4-Dioxadecane (hereinafter referred to as AllOH) and other ketalized glycerol-trO-ruallyl ethers are synthesized. This is a diagram showing the structural formula of the cholera compound.

AL工PG ALMI LOH 本発明において用いる酸触媒としては、ブレンステッド
酸およびルイス酸があげられ、ブレンステッド酸として
はトリフルオロメタンスルホン酸、ナイタングステン酸
、および硫酸などが好適であり、またルイス酸としては
三7ツ化ホウ素エーテル錯体が好適である。触媒使用量
としては、出発物質であるケトンの閂と種類により異な
るがAUGIC1QQ部(重量部、以下同様)に対して
ケイタングステン酸26水塩のばあいはo、oos〜5
部、好ましくは0.02〜2部、トリフルオロメタンス
ルホン酸のばあいは0.002〜2部、好ましくは0.
01〜1部、三フフ化ホウ素エチルエーテル錯体のばあ
いはo、oos〜5部、好ましくは0.02〜2部であ
る。
AL PG ALMI LOH Examples of acid catalysts used in the present invention include Brønsted acids and Lewis acids. Preferred Brønsted acids include trifluoromethanesulfonic acid, nitungstic acid, and sulfuric acid; Preferred is a boron trisulfide ether complex. The amount of catalyst used varies depending on the type and type of ketone used as the starting material, but in the case of silicotungstic acid 26 hydrate, it is o, oos to 5 parts by weight of AUGIC.
parts, preferably 0.02 to 2 parts, and in the case of trifluoromethanesulfonic acid, 0.002 to 2 parts, preferably 0.
In the case of the boron trifluoride ethyl ether complex, the amount is 0.01 to 1 part, and in the case of the boron trifluoride ethyl ether complex, the amount is 0.01 to 5 parts, preferably 0.02 to 2 parts.

ケトンの量はAI+GI [モルに対し0・7モル〜1
6モル、好ましくは2モル〜10モルが好ましい。
The amount of ketone is AI + GI [0.7 mole to 1 mole]
6 mol, preferably 2 mol to 10 mol is preferred.

ケトン量が多いばあいには反応物の濃縮時に時間がかか
りすぎ、また、少ないばあいには反応時間が長くなり、
副生成物が多くなるので好ましくない。
If the amount of ketone is large, it will take too much time to concentrate the reactants, and if the amount is small, the reaction time will be longer.
This is not preferred because it increases the amount of by-products.

反応は溶媒の存在下または不存在下に行なうことができ
る。用いられうる溶媒としては、たとえばニーヘキサン
、ベンゼン、キシレンなどの不活性な有機溶剤があげら
れる。溶媒を用いないときは、ケトンを過剰に用いれば
よい・また反応時における原料や生成物の重合を抑制す
るために、たとえばハイドロキノン、へイドワキノンモ
ノメチルエーテル、メトキシハイドロキノンなどの重合
禁止剤を少量添加して反応を行なうのが好ましい。
The reaction can be carried out in the presence or absence of a solvent. Examples of solvents that can be used include inert organic solvents such as nihexane, benzene, and xylene. When a solvent is not used, an excess of ketone can be used. Also, in order to suppress the polymerization of raw materials and products during the reaction, a small amount of a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, or methoxyhydroquinone can be used. It is preferable to carry out the reaction by adding.

反応温度は使用するケトンの種類により異なり、アセト
ンのばあい、10〜60°0、好ましくは20〜50’
O1通常室温程度で充分であり、過酷な条件は不要であ
る。またメチルエチルケトンのばあい、10〜77°0
、好ましくは60〜60°0、シクロヘキサノンのばあ
い、10〜140°0、好マしくは40〜90°Oであ
る。
The reaction temperature varies depending on the type of ketone used; in the case of acetone, it is 10 to 60°, preferably 20 to 50°.
O1 is usually sufficient at room temperature, and harsh conditions are not necessary. In the case of methyl ethyl ketone, 10 to 77°0
, preferably 60 to 60°O, and in the case of cyclohexanone, 10 to 140°O, preferably 40 to 90°O.

反応時間は触媒の種類および鰍、ケトンの種類および量
、反応温度などに左右されるが通常2時間〜7日間であ
る。
The reaction time varies depending on the type of catalyst, the type and amount of the ketone, the reaction temperature, etc., but is usually 2 hours to 7 days.

本発明における反応は研究の結果、ますムLσとケトン
が消費されて目的物質と副生成物が同量生成し、ついで
副生成物が消失して最終的に目的物質のみが残るという
経過をたどるものである。
As a result of research, the reaction in the present invention follows a process in which Lσ and ketone are consumed, the target substance and by-products are produced in equal amounts, and then the by-products disappear and finally only the target substance remains. It is something.

つぎに本発明の合成法の実施例をあげるう一本発明はか
かる実施例のみに限定されるものではない。
Next, examples of the synthesis method of the present invention will be given, but the present invention is not limited to these examples.

実施例1 (AL工paの合成) ケイタングステン酸0.59を11容の三角フラスコに
加え、攪拌しながらムLeli 2109 、アセトン
700m4およびハイドロキノンモノメチルエーテル0
.2gの混合溶液を徐々に滴下した。滴下終了後さらに
2時間攪拌を続け、その後に無水炭膳ナトリウムを加え
て中和した。ついでロータリーエバポレーターでアセト
ンを除失し、さらに水100m1およびn−ヘキサン5
00思lを加えて振とうし、分離、抽出を行なった。え
られたn−ヘキサン溶液に無水硫酸ナトリウム1009
を加えて脱水し、さらに活性炭10gを加えて攪拌後−
夜放置した。活性炭をp別後、ロータリーエバポレータ
ーで濃縮し、えられた残渣を減圧蒸留精製して沸点50
 ’O/4 、5mmH9、屈折率!1fi0=1.4
314の無色透明な液体447g、をえた(収率46%
)。えられた液体は赤外線吸収スペクトルにより同定を
行なったところAL工PGであることが確認された。
Example 1 (Synthesis of AL engineering pa) 0.59 silicotungstic acid was added to an 11-volume Erlenmeyer flask, and while stirring, 700 m4 of acetone and 0.0 m of hydroquinone monomethyl ether were added.
.. 2 g of the mixed solution was gradually added dropwise. After the dropwise addition was completed, stirring was continued for another 2 hours, and then anhydrous sodium charcoal was added to neutralize the mixture. Then, acetone was removed using a rotary evaporator, and 100 ml of water and 5 ml of n-hexane were added.
00 ml was added and shaken to perform separation and extraction. Add anhydrous sodium sulfate 1009 to the resulting n-hexane solution.
After adding and dehydrating, 10g of activated carbon was added and stirred.
I left it overnight. After separating the activated carbon, it is concentrated using a rotary evaporator, and the resulting residue is purified by distillation under reduced pressure to a boiling point of 50.
'O/4, 5mmH9, refractive index! 1fi0=1.4
447g of colorless transparent liquid of 314 was obtained (yield 46%).
). The obtained liquid was identified by infrared absorption spectrum and was confirmed to be AL-PG.

実施例2 (ALMKの合成) メチルエチルケトン450g、ハイドロキノンモノメチ
ルエーテル0.5gおよびケイタングステン1!l! 
1.09を11容の丸底フラスコに加え、マグネチツク
スターラーで攪拌しながらAIIGK 3009を滴下
した。滴下終了後−夜放置したのち、無水炭酸ナトリウ
ムを加えて中和し、さらに濾過した。
Example 2 (Synthesis of ALMK) 450 g of methyl ethyl ketone, 0.5 g of hydroquinone monomethyl ether and 1! l!
1.09 was added to an 11 volume round bottom flask, and AIIGK 3009 was added dropwise while stirring with a magnetic stirrer. After completion of the dropwise addition, the mixture was left to stand overnight, neutralized by adding anhydrous sodium carbonate, and further filtered.

p液をロータリーエバポレーターで濃縮し、残渣にn−
ヘキサン21を加え、飽和食塩水にて4回洗浄を行なっ
たのち、n−ヘキサン層を分離し、無水@酸ナトリウム
100gを加えて脱水後、さらに活性炭109を加えて
一夜放置し脱色した。
Concentrate the p solution using a rotary evaporator, and the residue contains n-
After adding hexane 21 and washing four times with saturated brine, the n-hexane layer was separated, and after dehydration by adding 100 g of anhydrous sodium chloride, activated carbon 109 was further added and left overnight to decolorize.

活性炭をp別後、ロータリーエバボレー廣−にてp液の
n−ヘキサンを除去したのち、残渣を減圧蒸留精製して
沸点70.5°O/4 、5mmHg、屈折率0 np =1.4363の無色透明な液体170gをえた
(収率34.7%)。えられた液体は赤外線吸収スペク
トルより同定を行なったところALMFiであることが
確認された。
After separating the activated carbon from p, the p liquid n-hexane was removed using a rotary evaporator, and the residue was purified by distillation under reduced pressure to give a boiling point of 70.5°O/4, 5 mmHg, and a refractive index of 0 np = 1.4363. 170 g of a colorless and transparent liquid was obtained (yield 34.7%). The obtained liquid was identified by infrared absorption spectrum and was confirmed to be ALMFi.

実施例6 (ALOHの合成) メチルエチルケトンに代えてシクロヘキサノン450g
を使用し、またロータリーエバポレーターに代えて蒸留
によってシクロヘキサノンを分離、除去したほかは実施
例2と同様にして実験を行ない、沸点96°’O/1−
2mm1i9、屈折率n:’=t 、4665の無色透
明な液体214gをえた(収率68.4%)。
Example 6 (Synthesis of ALOH) 450 g of cyclohexanone in place of methyl ethyl ketone
The experiment was conducted in the same manner as in Example 2, except that cyclohexanone was separated and removed by distillation instead of the rotary evaporator, and the boiling point was 96°'O/1-
214 g of a colorless and transparent liquid with a diameter of 2 mm1i9, a refractive index of n:'=t, and a size of 4665 was obtained (yield: 68.4%).

えられた液体は赤外線吸収スペクトルより同定を行なっ
たところALOHであることが確認された。
The obtained liquid was identified by infrared absorption spectrum and was confirmed to be ALOH.

−6呵-6 呵

Claims (1)

【特許請求の範囲】[Claims] 1 アリルグリシジルエーテルと十トンとを酸触媒の存
在下において反応せしめることを特徴とするケタール化
されたグリセロールアリルエーテルの合成法。
1. A method for synthesizing ketalized glycerol allyl ether, which comprises reacting allyl glycidyl ether with ten tons in the presence of an acid catalyst.
JP13919681A 1981-09-02 1981-09-02 Synthesizing method of ketal derivative from glycerol allyl ether Pending JPS5839680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13919681A JPS5839680A (en) 1981-09-02 1981-09-02 Synthesizing method of ketal derivative from glycerol allyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13919681A JPS5839680A (en) 1981-09-02 1981-09-02 Synthesizing method of ketal derivative from glycerol allyl ether

Publications (1)

Publication Number Publication Date
JPS5839680A true JPS5839680A (en) 1983-03-08

Family

ID=15239787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13919681A Pending JPS5839680A (en) 1981-09-02 1981-09-02 Synthesizing method of ketal derivative from glycerol allyl ether

Country Status (1)

Country Link
JP (1) JPS5839680A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208974A (en) * 1984-03-31 1985-10-21 Shimizu Shoji Kk Preparation of 1,3-dioxolane group-containing unsaturated compound
JPH0183585U (en) * 1987-11-24 1989-06-02
WO2013041130A1 (en) * 2011-09-20 2013-03-28 Symrise Ag Acetals and ketals as fragrances and flavors
US20160052849A1 (en) * 2012-12-28 2016-02-25 Dow Coming Toray Co., Ltd. High-Purity Monoalkenyl-Containing Glycerin Derivative, And Method For Producing Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208974A (en) * 1984-03-31 1985-10-21 Shimizu Shoji Kk Preparation of 1,3-dioxolane group-containing unsaturated compound
JPH0183585U (en) * 1987-11-24 1989-06-02
WO2013041130A1 (en) * 2011-09-20 2013-03-28 Symrise Ag Acetals and ketals as fragrances and flavors
US20160052849A1 (en) * 2012-12-28 2016-02-25 Dow Coming Toray Co., Ltd. High-Purity Monoalkenyl-Containing Glycerin Derivative, And Method For Producing Same
US9663432B2 (en) * 2012-12-28 2017-05-30 Dow Corning Toray Co., Ltd. High-purity monoalkenyl-containing glycerin derivative and method of manufacturing same

Similar Documents

Publication Publication Date Title
KR100236585B1 (en) Process for the glycidylation of alcohols
JP5014724B2 (en) Method for producing dioxane glycol
JPS5839680A (en) Synthesizing method of ketal derivative from glycerol allyl ether
WO1981003331A1 (en) Process for preparing a dibenzylidenesorbitol or a dibenzylidenexylitol
JPH02193944A (en) Production of (meth)acrylic acid ester
JPH03120263A (en) Preparation of (meth)acrylate compound
Góźdź Synthesis and polymerization of p-bromomethylstyrene and p-lodomethylstyrene
JPH0413643A (en) Production of chloroacetals
JPH04502007A (en) Production method of bis-methylene spiro orthocarbonate
SU659569A1 (en) Method of obtaining glycidyl ethers of unsaturated carboxylic acids
JPH08291097A (en) Production of alkanediol-mono-t-butyl ether
SU742431A1 (en) Method of preparing 1- and 2-alkyltetrazoles
JP2532270B2 (en) Polyvalent allene compound and method for producing the same
JP3334206B2 (en) Method for producing 2,3,5,6-tetrafluoroaniline
JPS5967244A (en) Preparation of ethyl acrylate
RU2089545C1 (en) Method of preparing 2-methyl-2-ethyl-1,3-dioxolan-4- ylmethyl methacrylate
JPS62223141A (en) Production of allyl ether
JPS62178538A (en) Manufacture of 4-monoactal of 2-methyl-2-butene-1,4-dial
JP3083189B2 (en) Method for producing isolevoglucosenone
SU975704A1 (en) Process for producing ethyleneglycol monoformiate
JPS6245582A (en) Oxynaphthoic acid glycidyl ether ester and production thereof
SU427942A1 (en) Method of producing 1-trialkylsilyl-2-alkoxyethylenes
JPH0410465B2 (en)
JPS63130564A (en) Production of benzoylacrylic acid esters
JPS59161382A (en) Spiro-orthocarbonate compound