JPS5839405B2 - high frequency amplifier - Google Patents
high frequency amplifierInfo
- Publication number
- JPS5839405B2 JPS5839405B2 JP52011137A JP1113777A JPS5839405B2 JP S5839405 B2 JPS5839405 B2 JP S5839405B2 JP 52011137 A JP52011137 A JP 52011137A JP 1113777 A JP1113777 A JP 1113777A JP S5839405 B2 JPS5839405 B2 JP S5839405B2
- Authority
- JP
- Japan
- Prior art keywords
- modulation
- resistor
- emitter
- cross
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Amplifiers (AREA)
Description
【発明の詳細な説明】
本発明は、混変調を生じにく5した高周波増幅器に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high frequency amplifier that is less likely to cause cross modulation.
従来のエミッタ接地型の高周波増幅器は第1図に示すよ
うに、トランジスタQのエミッタとアース間に直流電流
帰還用(エミッタバイアス用)抵抗RBを接続し、該抵
抗に並列に高周波を側路するコンデンサCtを並列接続
してなる。As shown in Figure 1, in a conventional emitter-grounded high-frequency amplifier, a DC current feedback (emitter bias) resistor RB is connected between the emitter of a transistor Q and the ground, and the high-frequency signal is bypassed in parallel with the resistor. It is formed by connecting capacitors Ct in parallel.
従ってこの回路では高周波に対するインピーダンスはは
ゾ零であり、低周波および直流に対するインピーダンス
はは”RBである。Therefore, in this circuit, the impedance for high frequencies is zero, and the impedance for low frequencies and direct current is RB.
しかしながらこの様な回路では、振幅変調された高周波
を増幅するとき混変調を生じやすい欠点がある。However, such a circuit has the disadvantage that cross-modulation is likely to occur when amplifying an amplitude-modulated high frequency wave.
なおこ5で問題とする混変調とは、妨害信号に含まれる
変調成分によって希望信号が変調される現象を言う。Note that the cross modulation discussed in Section 5 refers to a phenomenon in which a desired signal is modulated by a modulation component contained in an interfering signal.
本発明はか\る点を改善し、極めて簡単な手段により混
変調発生を阻止しようとするものである。The present invention aims to improve these points and prevent the occurrence of cross-modulation using extremely simple means.
本発明は振幅変調された高周波信号を増幅するトランジ
スタを有する高周波増幅器において、該トランジスタの
エミッタに接続されてエミッタバイアスを与える抵抗と
並列に、変調成分を通すコンデンサと、はゾ混変調を最
低にする値に選定した抵抗との直列回路を接続したこと
を特徴とするが、次に実施例を参照しながらこれを詳細
に説明する。The present invention provides a high-frequency amplifier having a transistor for amplifying an amplitude-modulated high-frequency signal, in which a capacitor for passing a modulation component is connected in parallel to a resistor connected to the emitter of the transistor to provide an emitter bias, in order to minimize cross-modulation. The present invention is characterized in that a series circuit with a resistor selected to have a value of
第1図の回路で混変調が生じる理由を究明すると、これ
は次のようになる。The reason why cross-modulation occurs in the circuit shown in FIG. 1 is as follows.
トランジスタQのベースへは振幅変調された高周波信号
S1が加えられるが、該信号の搬送波に含まれる低周波
変調成分が、ベース、エミッタで構成されるダイオード
の非線形特性によりその一部が取出されて抵抗REに現
われ、これが希望信号を変調してしまい、混変調を生じ
る。An amplitude-modulated high-frequency signal S1 is applied to the base of the transistor Q, but a part of the low-frequency modulation component contained in the carrier wave of the signal is extracted due to the nonlinear characteristics of the diode composed of the base and emitter. appears at resistor RE, which modulates the desired signal, resulting in cross-modulation.
そこでエミッタ抵抗REO値を変えると、混変調の程度
が変り、そしてこれは変調成分に対するエミッタ抵抗の
値が所定値のとき極小になることがわかった。Therefore, it has been found that changing the emitter resistance REO value changes the degree of cross-modulation, and that this becomes minimum when the value of the emitter resistance with respect to the modulation component is a predetermined value.
第2図はか\る知見に基ずく本発明の第1の実症例を示
し、バイアス抵抗RBと高周波バイパスコンデンサCt
に更に並列に、抵抗rを電解コンデンサCpの直列回路
を接続する。Figure 2 shows the first actual case of the present invention based on this knowledge, in which the bias resistor RB and the high frequency bypass capacitor Ct
Furthermore, a series circuit of a resistor r and an electrolytic capacitor Cp is connected in parallel to the resistor r.
このようにすれば本発明回路の高周波に対するインピー
ダンスはコンデンサCtによりはゾ零、直流に対するイ
ンピーダンスは抵抗RE、そして低周波に対してはr−
RE/(r+RE)、概略値としてはrとなり、この抵
抗rを変えると混変調は例えば第3図に示す如く変化す
る。In this way, the impedance for high frequencies of the circuit of the present invention is zero due to the capacitor Ct, the impedance for direct current is reduced to zero by the resistor RE, and the impedance for low frequencies is reduced to zero by the capacitor Ct.
RE/(r+RE), whose approximate value is r, and when this resistance r is changed, the cross modulation changes as shown in FIG. 3, for example.
この図で横軸はr(Ω)、縦軸はコレクタ側で測定した
混変調の変調度Mu(%)であり、使用トランジスタは
2SC710,RB=にΩ、Ct=0.022μF1:
7レクタ電流Ic=1mA。In this figure, the horizontal axis is r (Ω), the vertical axis is the modulation degree Mu (%) of cross modulation measured on the collector side, and the transistor used is 2SC710, RB = Ω, Ct = 0.022μF1:
7 Rector current Ic = 1mA.
希望入力は80dBp、1000 KHz、妨害波1K
Hz、30%変調である。Desired input is 80dBp, 1000 KHz, interference wave 1K
Hz, 30% modulation.
抵抗rに対する変調度Muは妨害人力S2が100〜8
0dBμと変るにつれて図示の如く変化するが、問題と
なる妨害入力は80 dBμ程度であるから、これに対
し最低の変調度を与える抵抗rの値、本例では22Ωを
用いればよい。The modulation degree Mu for the resistance r is 100 to 8 when the disturbance force S2 is
It changes as shown in the figure as it changes to 0 dBμ, but since the disturbing input that is a problem is about 80 dBμ, the value of the resistor r that provides the lowest modulation degree, 22Ω in this example, may be used.
この様な値の抵抗rをコンデンサCpと直列にして用い
ると、エミッタIこ妨害波の変調成分電圧の一部が与え
られ、抵抗rの値を適当に選ぶことによって、ペースエ
ミッタ間の直流バイアス電圧の変動を最小にすることが
でき、この状態で混変調が最小となる。When a resistor r with such a value is used in series with the capacitor Cp, a part of the modulation component voltage of the interference wave is given to the emitter I, and by appropriately selecting the value of the resistor r, the DC bias between the pace emitters can be adjusted. Voltage fluctuations can be minimized, and in this state cross-modulation is minimized.
混変調を最小にする抵抗rは上記の例では22Ω、一般
的には数Ω〜数百〇であるが、この抵抗値が所望コレク
タ電流における適当なエミッタバイアス電圧を与えるも
のであればエミッタバイアス用抵抗REは省略すること
ができる。The resistance r that minimizes cross modulation is 22 Ω in the above example, and is generally several Ω to several hundred Ω, but if this resistance value provides an appropriate emitter bias voltage at the desired collector current, the emitter bias The resistor RE can be omitted.
第4図はこの説明図である。FIG. 4 is an explanatory diagram of this.
但し、この回路のように常にRB”−rの関係が保てる
とは限らないので、抵抗rを優先して設定する場合には
直流バイアス的に不利になる。However, as in this circuit, the relationship RB''-r cannot always be maintained, so if the resistance r is set with priority, it will be disadvantageous in terms of DC bias.
従って本発明では第2図または第5図のように抵抗RE
とrを分離する。Therefore, in the present invention, as shown in FIG. 2 or 5, the resistor RE
Separate and r.
第5図は他の実施例を示し、上記の値の抵抗rは、高周
波バイアス用小容量コンデンサC1と低周波バイアス用
大容量電解コンデンサCpとの並列回路と直列に、かつ
これらがエミッタバイアス抵抗REと並列に接続される
。FIG. 5 shows another embodiment, in which a resistor r having the above value is connected in series with a parallel circuit of a small capacitance capacitor C1 for high frequency bias and a large capacitance electrolytic capacitor Cp for low frequency bias, and these are emitter bias resistors. Connected in parallel with RE.
この場合は高周波に対するインピーダンスもrとなり、
高周波に対する利得が若干下るが、利得が充分ある様な
場合は本回路を採用できる。In this case, the impedance to high frequencies is also r,
Although the gain for high frequencies is slightly lower, this circuit can be used if the gain is sufficient.
本発明の回路は振幅変調波を扱う増幅器、周波数変換器
、混合器などに応用でき、それらの例を第6図〜第9図
に示す。The circuit of the present invention can be applied to amplifiers, frequency converters, mixers, etc. that handle amplitude modulated waves, examples of which are shown in FIGS. 6 to 9.
第6図および第1図はバランスドミクサへ応用した例を
示し、Q、Q、。FIG. 6 and FIG. 1 show an example of application to a balanced mixer.
G2はトランジスタ、C,Lは中間周波に同調したタン
ク回路、S3は局部発振器の出力信号、S4は搬送波信
号である。G2 is a transistor, C and L are tank circuits tuned to the intermediate frequency, S3 is a local oscillator output signal, and S4 is a carrier wave signal.
局発信号S3が入る側には格別処置する必要がないが、
搬送波信号S4が入る側では混変調発生の恐れがあり、
第6図の例ではエミッタ抵抗REと並列に前記コンデン
サCpと抵抗rの直列回路が接続され、第7図ではエミ
ッタ抵抗REO値をrにしている。There is no need to take any special measures on the side where the local oscillator signal S3 enters, but
There is a risk of cross modulation occurring on the side where the carrier wave signal S4 enters.
In the example of FIG. 6, a series circuit of the capacitor Cp and a resistor r is connected in parallel with the emitter resistor RE, and in FIG. 7, the value of the emitter resistor REO is set to r.
第8図は中間周波増幅器へ応用した例を示し、コンデン
サcpと抵抗rの直列回路が抵抗REに並列に接続され
る。FIG. 8 shows an example of application to an intermediate frequency amplifier, in which a series circuit of a capacitor CP and a resistor r is connected in parallel to a resistor RE.
また第9図は搬送波信号S4を増幅する差動増幅器へ適
用した例を示し、この場合はエミッタ抵抗RBをrにし
ている。Further, FIG. 9 shows an example in which the present invention is applied to a differential amplifier that amplifies a carrier wave signal S4, and in this case, the emitter resistance RB is set to r.
■は定電流源である。混変調を防止するにはトラップ回
路を設け、または自動利得制御回路を設けるなどの方法
があるが、これらはいずれも妨害レベルを下げて混変調
を避ける方式である。■ is a constant current source. There are methods to prevent cross-modulation, such as providing a trap circuit or an automatic gain control circuit, but these methods reduce the interference level and avoid cross-modulation.
これに対して本発明の方式は妨害レベルを下げるのでは
なく、あるレベルの妨害入力が入っても混変調を起りに
<SLようとする方式であると言える。On the other hand, the method of the present invention does not lower the interference level, but rather attempts to reduce <SL by causing cross-modulation even if a certain level of interference input is received.
次に実験例を挙げる。Next, an experimental example will be given.
第10図に示す測定回路により種々の因子が混変調に及
ぼす影響を調べた。The influence of various factors on cross modulation was investigated using the measurement circuit shown in FIG.
この図で01は希望信号源、G2は妨害信号源、R1−
R7は抵抗、C1,C2はコンデンサ、Llはインダク
タンス、Aは電流計、その他の符号は前記と同様である
。In this figure, 01 is the desired signal source, G2 is the interference signal source, and R1-
R7 is a resistor, C1 and C2 are capacitors, Ll is an inductance, A is an ammeter, and other symbols are the same as above.
この回路でトランジスタQのコレクタ電流Icをスペク
トルアナライザで測定した所、第11図に示す結果を得
た。When the collector current Ic of the transistor Q in this circuit was measured using a spectrum analyzer, the results shown in FIG. 11 were obtained.
この図でfsは希望信号の周波数、fmdは妨害信号の
変調周波数であり、Mは希望信号と混変調による側帯数
との振幅差を示す。In this figure, fs is the frequency of the desired signal, fmd is the modulation frequency of the interference signal, and M is the amplitude difference between the desired signal and the number of sidebands due to cross modulation.
次にr=oにしてトランジスタQのエミッタ側を完全に
バイパスした結果を第12図および第13図に示す。Next, the results of completely bypassing the emitter side of the transistor Q by setting r=o are shown in FIGS. 12 and 13.
本例ではR6=0.Cp=47μF1R1=2.2にΩ
、R2=470Ω、■c= 0.7 m A。In this example, R6=0. Cp=47μF1R1=2.2Ω
, R2=470Ω, ■c=0.7 mA.
fs=1000KHz、妨害信号の周波数fo=110
0 KHz、 fmd = I KHz、妨害信号の変
調度md=30%である。fs=1000KHz, frequency of interference signal fo=110
0 KHz, fmd = I KHz, and the modulation degree of the interfering signal md = 30%.
第12図は妨害信号レベルVdに対する前記Mを示し、
希望信号のレベルvs=80dBである。FIG. 12 shows the above M with respect to the interference signal level Vd,
The desired signal level vs=80 dB.
第13図は希望信号のレベルvsに対するM(dB)を
示し、妨害信号のレベルvd=30dBである。FIG. 13 shows the desired signal level vs. M (dB), where the interfering signal level vd=30 dB.
第13図からMは、妨害信号の2乗に比例することがわ
かり、また第13図から混変調は希望信号の大きさには
依存しないことがわかる。It can be seen from FIG. 13 that M is proportional to the square of the interfering signal, and it can also be seen from FIG. 13 that cross modulation does not depend on the magnitude of the desired signal.
また第14図はコレクタ電流Icに対するMを示し、v
s、fs、vd、fd、fmd、mdは上記と同じであ
る。Further, FIG. 14 shows M with respect to the collector current Ic, and v
s, fs, vd, fd, fmd, and md are the same as above.
この図からMはコレクタ電流の影響を受け、コレクタ電
流が増加すると増大することがわかる。It can be seen from this figure that M is influenced by the collector current and increases as the collector current increases.
次にエミッタ側のインピーダンスを妨害波の変調周波数
において有限にしてみた。Next, we tried to make the impedance on the emitter side finite at the modulation frequency of the interference wave.
第15図はvd対Mの関係を示し、r=o、r=22Ω
、r=47Ω、r−100Ω、r=IKΩをパラメータ
としている。Figure 15 shows the relationship between vd and M, r=o, r=22Ω
, r=47Ω, r-100Ω, r=IKΩ as parameters.
なお本例ではR6−0、Cp、R1゜R2s VS、f
s、fd、fmd、mdは上記と同じであり、Ic−1
mAである。In this example, R6-0, Cp, R1°R2s VS, f
s, fd, fmd, md are the same as above, Ic-1
It is mA.
これを、抵抗rを横軸に書き変えたものが第16図であ
り、第3図と同種のものである。FIG. 16 shows this diagram with the resistance r plotted on the horizontal axis, and is similar to FIG. 3.
また第11図はrとIcをパラメータとして妨害信号レ
ベルvdに対するMを、第18図はIc *帝をパラメ
ータとして妨害信号レベルvdに対するrの最適値を示
す。Further, FIG. 11 shows the optimum value of M for the interference signal level vd using r and Ic as parameters, and FIG. 18 shows the optimum value of r for the interference signal level vd using Ic*I as a parameter.
RswmdO値は前記と同様である。The RswmdO value is the same as above.
第18図から、妨害入力が小さいときはrの最適値はは
シ一定値を示していて、その値はIcによって定まるこ
とがわかる。From FIG. 18, it can be seen that when the disturbance input is small, the optimum value of r is a constant value, and that value is determined by Ic.
次に実験で求めた抵抗rの最適値を示す。Next, the optimum value of the resistance r determined through experiments will be shown.
次に、エミッタ側のインピーダンスが混変調に与える影
響を解析した結果を示す。Next, we will show the results of analyzing the effect of emitter-side impedance on cross-modulation.
第1図の回路において、エミッタとアース間のインピー
ダンスをZとすれば、ペースエミッタ間電圧Ve、コレ
クタ電流Ic、ベース電圧Eは次式で表わされる。In the circuit shown in FIG. 1, if the impedance between the emitter and the ground is Z, then the pace emitter voltage Ve, the collector current Ic, and the base voltage E are expressed by the following equations.
E=Ve+IZ
Ve=E IZ=Vo+v=E□+e IOZ i
Zこへでv。E=Ve+IZ Ve=E IZ=Vo+v=E□+e IOZ i
Z here v.
、■o、EoはVe、 I 、 Eの直流分、vtis
eは同文流分である。, ■o, Eo are the direct current components of Ve, I, and E, vtis
e is the same sentence.
従ってトランジスタの非線形性は一般に次のように表わ
せる。Therefore, the nonlinearity of a transistor can generally be expressed as follows.
混変調に影響するのは3次の項までであるから、Isε
αvO=a□ 、 IsεαV□α=a1α2
♂
IsεavO−=a2 、 IsεαV O=2 s
とおくと、21 31
Ic=ao+alv+a2v2+a3v3I□ + i
=ao+ al(e−i Z)+a2 (e−i Z
)”+a3(e−i Z)3こ\で直流分についてI。Since it is up to the third-order term that affects cross-modulation, Isε
αvO=a□, IsεαV□α=a1α2
♂ IsεavO−=a2, IsεαV O=2 s
Then, 21 31 Ic=ao+alv+a2v2+a3v3I□+i
=ao+al(e-i Z)+a2(e-i Z
)”+a3(e-i Z)3 I for the DC component.
=aoとおくと、i(1+a1Z+2 a2eZ+−3
a3 e2Z) −12(a3Z”+3ageZ2)十
13Z3a3=ale+a2e2+a3e3iが微少値
でZが数10Ωの場合はi2.i3の項は省略できるの
で、上式は次のようになる。= ao, i(1+a1Z+2 a2eZ+-3
a3 e2Z) -12(a3Z"+3ageZ2)113Z3a3=ale+a2e2+a3e3i is a minute value and Z is several tens of ohms, the terms i2.i3 can be omitted, so the above equation becomes as follows.
こ\で混変調の変調度muは妨害波の電圧をE2、妨害
波の変調度をm2として
で表わされる。Here, the modulation degree mu of cross modulation is expressed as E2, the voltage of the interfering wave, and m2, the modulation degree of the interfering wave.
この式から混変調はインピーダンスZの大きさに依存し
、Zによって混変調が最小になる点が存在することがわ
かる。From this equation, it can be seen that cross-modulation depends on the magnitude of impedance Z, and that there is a point depending on Z where cross-modulation becomes minimum.
以上詳細に説明したように、本発明によれば、変調成分
に対するエミッタ側インピーダンスの値を適当値にする
という簡単な手段により、振幅変調された高周波のトラ
ンジスタ増幅回路の混変調を僅小にすることができ、実
用上人なる利点が得られる。As explained in detail above, according to the present invention, cross-modulation in an amplitude-modulated high-frequency transistor amplifier circuit is minimized by a simple means of setting the value of the emitter-side impedance to an appropriate value for the modulation component. This provides practical advantages.
第1図は従来の高周波増幅器の要部を示す回路図、第2
図は本発明の実施例を示す回路図、第3図は抵抗r対変
調度Muの関係を示すグラフ、第4図はエミッタ抵抗と
混変調最適化抵抗を共用する場合の回路図、第5図は本
発明の他の実施例を示す回路図、第6図〜第9図は本発
明の適用例を示す要部回路図、第10図は実験に用いた
測定回路の回路図、第11図〜第18図は実験により得
られた種々の特性を示すグラフである。
図面でQはトランジスタ、REはエミッタバイアス抵抗
、Cpは変調成分を通すコンデンサ、rは混変調を最低
にする値に選定した抵抗である。Figure 1 is a circuit diagram showing the main parts of a conventional high-frequency amplifier;
The figure is a circuit diagram showing an embodiment of the present invention, FIG. 3 is a graph showing the relationship between resistance r and modulation depth Mu, FIG. 4 is a circuit diagram when emitter resistance and intermodulation optimization resistance are shared, and FIG. The figure is a circuit diagram showing another embodiment of the present invention, Figures 6 to 9 are main circuit diagrams showing an example of application of the present invention, Figure 10 is a circuit diagram of a measurement circuit used in the experiment, and Figure 11 is a circuit diagram showing another embodiment of the present invention. Figures 1 to 18 are graphs showing various characteristics obtained through experiments. In the drawing, Q is a transistor, RE is an emitter bias resistor, Cp is a capacitor that passes modulation components, and r is a resistor selected to have a value that minimizes cross modulation.
Claims (1)
を有する高周波増幅器において、該トランジスタのエミ
ッタに接続されてエミッタバイアスを与える抵抗と並列
に、変調成分を通すコンデンサと、はゾ混変調を最低に
する値に選定した抵抗との直列回路を接続したことを特
徴とする高周波増幅器。1. In a high-frequency amplifier that has a transistor that amplifies an amplitude-modulated high-frequency signal, a capacitor that passes the modulation component is connected in parallel to a resistor that is connected to the emitter of the transistor and provides an emitter bias, and has a value that minimizes cross-modulation. A high frequency amplifier characterized by connecting a series circuit with a resistor selected as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52011137A JPS5839405B2 (en) | 1977-02-03 | 1977-02-03 | high frequency amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52011137A JPS5839405B2 (en) | 1977-02-03 | 1977-02-03 | high frequency amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5396652A JPS5396652A (en) | 1978-08-24 |
JPS5839405B2 true JPS5839405B2 (en) | 1983-08-30 |
Family
ID=11769625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52011137A Expired JPS5839405B2 (en) | 1977-02-03 | 1977-02-03 | high frequency amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5839405B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4874767A (en) * | 1971-12-29 | 1973-10-08 | ||
JPS506605B2 (en) * | 1972-04-05 | 1975-03-15 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS568320Y2 (en) * | 1973-05-17 | 1981-02-23 |
-
1977
- 1977-02-03 JP JP52011137A patent/JPS5839405B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4874767A (en) * | 1971-12-29 | 1973-10-08 | ||
JPS506605B2 (en) * | 1972-04-05 | 1975-03-15 |
Also Published As
Publication number | Publication date |
---|---|
JPS5396652A (en) | 1978-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20010098905A (en) | Frequency multiplier circuit and semiconductor integrated circuit | |
US6426677B1 (en) | Linearization bias circuit for BJT amplifiers | |
US6933780B2 (en) | Predistortion circuit and power amplifier | |
KR100325573B1 (en) | How to generate an electrical modulated signal used by a laser to modulate an optical data signal and an equalizer suitable for it | |
EP0601888A2 (en) | Variable gain RF amplifier with linear gain control | |
JPS5839405B2 (en) | high frequency amplifier | |
JP3361582B2 (en) | Device with AC signal processing circuit | |
US5784692A (en) | Method and apparatus for generating non-linear variable impedance | |
US1822061A (en) | Method and means for measuring light intensities | |
US8010075B1 (en) | High order harmonics generator | |
US6836199B2 (en) | Tuning circuit | |
US2510787A (en) | Variable reactance circuit | |
US2617938A (en) | Testing apparatus for radio communication systems | |
JPH07105504A (en) | Ac bias controller for magnetic recording head | |
RU214156U1 (en) | Device for measuring non-linear distortions of an electrical signal with increased noise immunity | |
JPS60196012A (en) | Oscillator | |
JPH0846432A (en) | Sine wave generator | |
JPS59231908A (en) | Gain control circuit | |
US2317474A (en) | Superregenerative receiver | |
Rukmani et al. | A nuclear quadrupole resonance spectrometer with automatic gain control and sideband suppression | |
US2960669A (en) | Amplitude modulation with linear frequency characteristic | |
US2584532A (en) | Modulation system | |
SU1376219A1 (en) | Frequency multiplier | |
JPH0336119Y2 (en) | ||
RU2024964C1 (en) | Magnetic recording device provided with dynamic biasing |