JPS5839395B2 - Manufacturing method of linear piezoelectric material - Google Patents

Manufacturing method of linear piezoelectric material

Info

Publication number
JPS5839395B2
JPS5839395B2 JP52103234A JP10323477A JPS5839395B2 JP S5839395 B2 JPS5839395 B2 JP S5839395B2 JP 52103234 A JP52103234 A JP 52103234A JP 10323477 A JP10323477 A JP 10323477A JP S5839395 B2 JPS5839395 B2 JP S5839395B2
Authority
JP
Japan
Prior art keywords
piezoelectric material
solution
linear
piezoelectric
linear piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52103234A
Other languages
Japanese (ja)
Other versions
JPS5437300A (en
Inventor
利信 上田
豊樹 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP52103234A priority Critical patent/JPS5839395B2/en
Publication of JPS5437300A publication Critical patent/JPS5437300A/en
Publication of JPS5839395B2 publication Critical patent/JPS5839395B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrophonic Musical Instruments (AREA)

Description

【発明の詳細な説明】 本発明は自由に屈曲することの可能な可撓性線状圧電材
料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a flexible linear piezoelectric material that can be bent freely.

従来、圧電性を示す材料として、水晶及びリチユムナイ
オベート等の結晶そして更にはチタン酸バリウム及びチ
タン・ジルコン酸鉛等の強誘電体セラミック等は圧電特
性の良いものとして知られており、振動子及び発火素子
等多くの分野で利用されている。
Conventionally, as materials exhibiting piezoelectricity, crystals such as quartz and lithium niobate, as well as ferroelectric ceramics such as barium titanate and titanium/lead zirconate, are known to have good piezoelectric properties, and are known to have good piezoelectric properties. It is used in many fields such as children and ignition devices.

しかし、これらの材料はいずれも高脆材料であり、機械
的衝撃力に対して弱く割れ易い欠点を有していた。
However, all of these materials are highly brittle and have the disadvantage of being weak against mechanical impact and easily cracking.

そのため、大きな曲率で曲げることはもちろん、細い線
状にすることも極めて困難であり、形状的に又使用形態
的に多くの制限があった。
Therefore, it is extremely difficult not only to bend it with a large curvature, but also to form it into a thin line, and there are many limitations in terms of shape and usage.

一方、合成有機高分子圧電材料として知られているポリ
フッ化ビニリデン(以下PVF2と略称する)を用いた
圧電材料は、薄い大面積に成形し得、可撓性を有する圧
電材料であり、使用形態自由度が大きい材料である。
On the other hand, a piezoelectric material using polyvinylidene fluoride (hereinafter abbreviated as PVF2), which is known as a synthetic organic polymer piezoelectric material, can be formed into a thin large area and has flexibility. It is a material with a large degree of freedom.

しかしながら、とのPVF2圧電材料は、PVF2を延
伸処理することにより結晶形を■型に変え主鎖を平面ジ
グザグ構造として配向することが圧電性を大きくするた
めの重要な要素となっており、プレス成形等の溶結成形
で自由な形状にすることは不可能であった。
However, for the PVF2 piezoelectric material, the important factor for increasing piezoelectricity is changing the crystal shape to a ■ shape by stretching PVF2 and orienting the main chain as a planar zigzag structure. It was impossible to create a free shape by welding such as molding.

これに対して、ポリーr−メチルーL−グルタメート(
以下PMLGと略称する)等の合成ポリペプチド系の圧
電材料は、溶液中から結晶化する場合に溶液の流れ方向
に分子鎖が配向することが知られており、これによって
可撓性を有する圧電材料が製作できる。
In contrast, poly r-methyl-L-glutamate (
It is known that when synthetic polypeptide-based piezoelectric materials such as PMLG (hereinafter abbreviated as PMLG) are crystallized from a solution, the molecular chains are oriented in the flow direction of the solution. Materials can be produced.

本発明者等はこの点に着目し、このような可撓性を有す
る圧電材料から線状圧電材料を製作することにつき検討
を重ねた結果本発明を完成したものである。
The present inventors paid attention to this point and completed the present invention as a result of repeated studies on manufacturing a linear piezoelectric material from such a flexible piezoelectric material.

すなわち本発明の目的は、自由に屈曲することの可能な
可撓性線状圧電材料の製造方法を提供することである。
That is, an object of the present invention is to provide a method for manufacturing a flexible linear piezoelectric material that can be freely bent.

本発明につき概説すれば、本発明の線状圧電材料の製造
方法は導電性を有する線状材料の表面に、溶液中より成
膜するときに溶液の流れ方向に分子鎖が配向する性質を
有する有機高分子材料を含む溶液を塗布し、該塗布溶液
に一定の流れ方向を付与しながら溶媒を除去して圧電材
料層を形成することを特徴とするものである。
To summarize the present invention, the method for producing a linear piezoelectric material of the present invention has the property that when a film is formed from a solution on the surface of a conductive linear material, molecular chains are oriented in the flow direction of the solution. The method is characterized in that a solution containing an organic polymeric material is applied, and the solvent is removed while imparting a certain flow direction to the applied solution to form a piezoelectric material layer.

本発明における圧電材料の一例であるポリーγ−ベンジ
ルーL−グルタメート(以下PBLGと略称する)は、
生体高分子の分野でも良く研究されている合成ポリペプ
チドの1種であり、溶液中から結晶化する場合に溶液の
流れ方向に分子鎖が配向する。
Poly γ-benzy-L-glutamate (hereinafter abbreviated as PBLG), which is an example of the piezoelectric material in the present invention, is
It is a type of synthetic polypeptide that has been well studied in the field of biopolymers, and when crystallized from a solution, its molecular chains are oriented in the direction of flow of the solution.

本発明等は、PBLGをジオキサンに溶解して粘調な溶
液をつくり、この溶液を斜めに立てかけたガラヌ板等の
平滑な面に沿って流し、これをジオキサンが完全に蒸発
して高分子固体が得られる1でスパチュラを用いて流れ
方向に沿ってならした。
In the present invention, PBLG is dissolved in dioxane to create a viscous solution, and this solution is poured along a smooth surface such as a Galanu board placed diagonally, and the dioxane is completely evaporated to form a polymer solid. 1 was obtained, and was smoothed along the flow direction using a spatula.

このようにして得られたフィルムの両面にアルミニウム
蒸着膜を形成し、流れの方向に対して45°の角度方向
に引張り振動応力を加え圧電性を測定すると、圧電率d
25= 1.4X 10−12C/Nの値が得られた。
An aluminum vapor-deposited film is formed on both sides of the film thus obtained, and the piezoelectricity is measured by applying tensile vibration stress at an angle of 45° to the direction of flow.
A value of 25=1.4X 10-12C/N was obtained.

この圧電材料は、薄い高分子フィルムであり、引張り強
度及び耐折疲労強度に優れた高分子圧電材料であり、2
00°Cを越える温度1で溶結せず、又分解も非常に遅
い材料であることが認められた。
This piezoelectric material is a thin polymer film, and is a polymer piezoelectric material with excellent tensile strength and bending fatigue strength.
It was found that the material does not weld at temperatures exceeding 00°C and decomposes very slowly.

同様な手法によりつくったPMLGにおいては、圧電率
d2. = 2.OX 10−12Cホの値が得られた
In PMLG made by a similar method, piezoelectric constant d2. = 2. A value of OX 10-12C was obtained.

この結果から、これらの高分子圧電材料は、溶液中より
成膜するときに溶液の流れの方向に分子配列をそろえる
性質を有しており、これに機械的応力を加えることによ
りその配向度が向上する特性をもっていることがわかる
These results show that these polymeric piezoelectric materials have the property of aligning their molecules in the direction of the flow of the solution when they are formed into a film from a solution, and that the degree of orientation can be changed by applying mechanical stress to this material. It can be seen that it has improved properties.

又この高分子圧電材料に、分子配列にズリ応力が加えら
れるように力を加えた場合には、応力と垂直方向に電荷
が発生するような圧電性を示すことが認められた。
Furthermore, when a force was applied to this polymeric piezoelectric material so as to apply shear stress to the molecular arrangement, it was observed that it exhibited piezoelectricity in which an electric charge was generated in a direction perpendicular to the stress.

本発明は、上記のような溶液中より成膜するときに溶液
の流れ方向に分子鎖が配向する性質を有する有機高分子
材料の特性を利用して、導電性線状材料の表面に高分子
圧電材料の層を形成した線状圧電材料であるが、その製
造に当っては、前記有機高分子材料を溶剤に溶解し、2
5重量%程度に濃縮した溶液中に導電性線状材料を浸清
し、該溶液に一定の流れ方向を与えるために例えば垂直
方向に引上げて乾燥する。
The present invention utilizes the property of organic polymer materials, which have the property that molecular chains are oriented in the flow direction of the solution when a film is formed from a solution as described above, to deposit polymer molecules on the surface of a conductive linear material. This is a linear piezoelectric material in which a layer of piezoelectric material is formed, but in manufacturing it, the organic polymer material is dissolved in a solvent, and 2
A conductive linear material is immersed in a solution concentrated to about 5% by weight, and then pulled up and dried, for example, vertically, in order to give the solution a constant flow direction.

PBLG及びPMLGは一度乾燥状態にすることにより
ジオキサンには不溶の高分子固体となるので、上記の操
作を繰返すことにより塗膜の厚さを0.3 mm程度1
でとすることができる。
Once PBLG and PMLG are dried, they become polymer solids that are insoluble in dioxane, so by repeating the above operation, the thickness of the coating film can be reduced to about 0.3 mm.
It can be done.

溶液濃度を大きくすることにより塗布回数を減すること
はできるが、溶液濃度の高い状態の塗布では圧電性が充
分に発揮されない。
Although the number of applications can be reduced by increasing the solution concentration, the piezoelectricity cannot be sufficiently exhibited if the solution is applied at a high concentration.

このようにして作成した線状圧電材料の表面にアルミニ
ウム等の金属の層をスパッタリング等により形成し表面
(対向)電極を設けることにより圧電出力を取り出すこ
とができる。
Piezoelectric output can be extracted by forming a layer of metal such as aluminum by sputtering or the like on the surface of the linear piezoelectric material created in this way and providing a surface (counter) electrode.

本発明にむける圧電材料としては、前記の性質を有する
有機高分子材料であれば使用可能であるが、特にポリペ
プチド系のような合成蛋白質例えばPBLG及びPML
G等が適当である。
As the piezoelectric material for the present invention, any organic polymeric material having the above-mentioned properties can be used, but in particular, synthetic proteins such as polypeptides, such as PBLG and PML, can be used.
G etc. are suitable.

又、中心導電体としQ上銅線の他に、リン青銅(,5B
SS扛)線バネ材料、ピアノ線のような金属材料更には
炭素繊維等、導電性物質であればこれらを電極として使
用可能であり、又絶縁゛;イ物質の表面を導体化したも
のも適用することができる。
In addition, in addition to the copper wire on Q as the center conductor, phosphor bronze (,5B
Conductive materials such as SS wire spring materials, metal materials such as piano wire, and even carbon fiber can be used as electrodes, and insulating materials whose surfaces are made conductive can also be used. can do.

又、表面電極としては、A1等の金属導電材料をスパッ
タリングにより形成したもの、導電性塗料を塗布したも
の、金属を無電解メッキしたもの等を使用することがで
きる。
Further, as the surface electrode, those formed by sputtering a metal conductive material such as A1, those coated with conductive paint, those plated with metal electrolessly, etc. can be used.

この表面電極は利用方法によっては必要としない。This surface electrode may not be necessary depending on the usage.

次に本発明を実施例により説明するが、本発明はこれら
によりなんら限定されるものではない。
EXAMPLES Next, the present invention will be explained with reference to Examples, but the present invention is not limited to these in any way.

実施例 1 中心に直径0.5mmの銅網を用い、その表面に厚さ0
.3mmのポリーγ−メチルーL−グルタメート(PM
LG)圧電体層を形成した。
Example 1 A copper net with a diameter of 0.5 mm is used at the center, and a thickness of 0 on the surface is used.
.. 3 mm polygamma-methyl-L-glutamate (PM
LG) A piezoelectric layer was formed.

この線状圧電材料は、ポリーγ−メ羊ルーL−グルタメ
ートの10%ジオキサン溶液を25%濃度に濃縮し、こ
の溶液中に直径0.5mmの銅線を浸清し、垂直方向に
3cm/分の速度で引き上げ、高さ2.5 m tで上
げその状態で乾燥して作成した。
This linear piezoelectric material was prepared by concentrating a 10% dioxane solution of poly-gamma-L-glutamate to a concentration of 25%, immersing a copper wire with a diameter of 0.5 mm in this solution, and immersing it in a vertical direction of 3 cm/3 cm. The specimen was lifted at a speed of 2.5 m, raised to a height of 2.5 m t, and dried in that state.

この操作を繰り返して塗膜の厚さを0.3mmとするこ
とができた。
This operation was repeated until the thickness of the coating film was 0.3 mm.

この線状圧電材料の表面にスパッタリングによりM層を
形成し表面電極を形成した。
An M layer was formed on the surface of this linear piezoelectric material by sputtering to form a surface electrode.

この線状圧電材料10cmを切り取り、中心導電体と表
面電極間の電圧を、この線状圧電材料に曲げ応力を加え
て測定した結果、曲げ応力を加えたとき、数10myの
パルス状の電圧が観測された。
A 10cm piece of this linear piezoelectric material was cut out, and the voltage between the center conductor and the surface electrode was measured by applying bending stress to this linear piezoelectric material. When bending stress was applied, a pulse-like voltage of several 10 my was observed. Observed.

以上説明したように、本発明により製造された線状圧電
材料は中心導電体に可撓性を有する圧電材料の層が被覆
され、中心導電体に圧電出力が発生する構造とした圧電
材料であり、この線の振動によっても中心導電体に圧電
出力が得られる材料であるため、各種音響機器用の振動
弦等として用いれば、弦の振動を他の変換素子を用いる
ことなしに電気信号に変換することができ、 この形態の 圧電素子の利用分野は極めて広いものである。
As explained above, the linear piezoelectric material manufactured according to the present invention is a piezoelectric material having a structure in which a center conductor is coated with a layer of a flexible piezoelectric material, and a piezoelectric output is generated in the center conductor. Since this material can generate piezoelectric output in the center conductor even by the vibration of this wire, if it is used as a vibrating string for various audio equipment, the vibration of the string can be converted into an electrical signal without using any other conversion element. This type of piezoelectric element can be used in an extremely wide range of fields.

Claims (1)

【特許請求の範囲】 1 導電性を有する線状材料の表面に、溶液中より成膜
するときに溶液の流れ方向に分子鎖が配向する性質を有
する有機高分子材料を含む溶液を塗布し、該塗布溶液に
一定の流れ方向を付与しながら溶媒を除去して圧電材料
層を形成することを特徴とする線状圧電材料の製造方法
。 2 有機高分子材料がポリーγ−メチルーL−グルタメ
ート又はポリーγ−ベンジルーL−グルタメートである
特許請求の範囲1項記載の線状圧電材料の製造方法。
[Scope of Claims] 1. Applying a solution containing an organic polymer material having a property that molecular chains are oriented in the flow direction of the solution when forming a film from the solution onto the surface of a conductive linear material, A method for producing a linear piezoelectric material, which comprises forming a piezoelectric material layer by removing a solvent while imparting a constant flow direction to the coating solution. 2. The method for producing a linear piezoelectric material according to claim 1, wherein the organic polymer material is poly γ-methyl-L-glutamate or poly γ-benzyl-L-glutamate.
JP52103234A 1977-08-30 1977-08-30 Manufacturing method of linear piezoelectric material Expired JPS5839395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52103234A JPS5839395B2 (en) 1977-08-30 1977-08-30 Manufacturing method of linear piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52103234A JPS5839395B2 (en) 1977-08-30 1977-08-30 Manufacturing method of linear piezoelectric material

Publications (2)

Publication Number Publication Date
JPS5437300A JPS5437300A (en) 1979-03-19
JPS5839395B2 true JPS5839395B2 (en) 1983-08-30

Family

ID=14348754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52103234A Expired JPS5839395B2 (en) 1977-08-30 1977-08-30 Manufacturing method of linear piezoelectric material

Country Status (1)

Country Link
JP (1) JPS5839395B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63990U (en) * 1986-06-23 1988-01-06

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032597A (en) * 1973-07-25 1975-03-29
JPS5284498A (en) * 1975-12-29 1977-07-14 Mitsubishi Petrochemical Co Piezooelectric material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032597A (en) * 1973-07-25 1975-03-29
JPS5284498A (en) * 1975-12-29 1977-07-14 Mitsubishi Petrochemical Co Piezooelectric material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63990U (en) * 1986-06-23 1988-01-06

Also Published As

Publication number Publication date
JPS5437300A (en) 1979-03-19

Similar Documents

Publication Publication Date Title
US6379809B1 (en) Thermally stable, piezoelectric and pyroelectric polymeric substrates and method relating thereto
JP5721738B2 (en) Piezoelectric and / or pyroelectric solid composite material, method for obtaining the material and use thereof
Harrison et al. Piezoelectric polymers
DE2253833C3 (en) Piezoelectric electroacoustic transducer element
Pan et al. A self-powered vibration sensor based on electrospun poly (vinylidene fluoride) nanofibres with enhanced piezoelectric response
Han et al. Origin of in situ domain formation of heavily Nb-doped Pb (Zr, Ti) O3 thin films sputtered on Ir/TiW/SiO2/Si substrates for mobile sensor applications
Nguyen et al. Piezoelectric polymer microfiber‐based composite for the flexible ultra‐sensitive pressure sensor
EP0292014A2 (en) Piezoelectric transducer with electrodes which adhere well to both ceramic and synthetic materials
US20130229091A1 (en) Continuous piezoelectric film including polar polymer fibers
Tusiime et al. High stress-driven voltages in net-like layer-supported organic–inorganic perovskites
Tajitsu Development of electric control catheter and tweezers for thrombosis sample in blood vessels using piezoelectric polymeric fibers
CN1386321A (en) Acoustic wave device comprising alternating polarisation domains
Beigh et al. Low-cost, high-performance piezoelectric nanocomposite for mechanical energy harvesting
WO1995025984A1 (en) Biopolymer-based nonlinear optical materials
Sappati et al. Plasma treatment of composite piezoelectric thin films for good adhesion of printed conductive ink
US4055878A (en) Stabilization of piezoelectric resin elements
KR101440484B1 (en) Preparation method of β-phase PVDF film using spray coating
JPS5839395B2 (en) Manufacturing method of linear piezoelectric material
Seymour et al. Piezoelectric polymers: direct converters of work to electricity
Zeng et al. Piezoelectric ultrathin polymer films synthesized by electrostatic self-assembly processing
WO2023277118A1 (en) Composite material for power generation and method for producing composite material for power generation
JP7386471B2 (en) Substrate with polymer thin film and method for producing the same
Muhamad et al. Performance of a Piezoelectric Energy Harvester with Rubber Compound Modification
Sappati Piezoelectric Composite Based Flexible Printed Acoustic Gas Sensor
Itoh et al. Fundamental study of piezoelectric motion of chiral polymeric fibers for realizing tubular-type polymeric actuator for large macroscale physical object