JPS583904A - Manufacture of expanded metallic granule - Google Patents

Manufacture of expanded metallic granule

Info

Publication number
JPS583904A
JPS583904A JP56099730A JP9973081A JPS583904A JP S583904 A JPS583904 A JP S583904A JP 56099730 A JP56099730 A JP 56099730A JP 9973081 A JP9973081 A JP 9973081A JP S583904 A JPS583904 A JP S583904A
Authority
JP
Japan
Prior art keywords
molten metal
droplets
gas
metal
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56099730A
Other languages
Japanese (ja)
Inventor
Yoshinosuke Tada
多田 嘉之助
Masato Kato
加藤 正登
Yoshimasa Hayashida
林田 義政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yahagi Seitetsu KK
YAHAGI IRON CO Ltd
Original Assignee
Yahagi Seitetsu KK
YAHAGI IRON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yahagi Seitetsu KK, YAHAGI IRON CO Ltd filed Critical Yahagi Seitetsu KK
Priority to JP56099730A priority Critical patent/JPS583904A/en
Publication of JPS583904A publication Critical patent/JPS583904A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain expanded metallic granules with low apparent specific gravity by dispersing a molten metal contg. a dissolved gas in an evacuated atmosphere and by cooling the dispersed metal with oil or water. CONSTITUTION:A molten metal or alloy M contg. a dissolved hydrogen-base gas is allowed to flow down to a dispersing and solidifying apparatus 20 kept in an evacuated state. The molten metal M is received in a perforated plate or a net body 23 and dispersed as liq. droplets. By spraying oil or water on the droplets during free dropping from a blowpipe 24, the contained gas is absorbed and dissolved, and the droplets are expanded, cooled, and solidified. Thus, expanded metallic granules with low apparent specific gravity are obtd.

Description

【発明の詳細な説明】 本発明は発泡金属粒又は合金粒(本明細書においては単
に「金属粒」と称する)の製法に係り、ぬる気泡を形成
して単粒の見掛比重が中実粒の真比重よりも著るしく軽
少な発泡金属粒を製造する方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing foamed metal particles or alloy particles (herein simply referred to as "metal particles"), which forms slimy bubbles and has a solid apparent specific gravity of a single particle. The present invention relates to a method for producing foamed metal particles that are significantly lighter than the true specific gravity of the particles.

本発明により製造された発泡金属粒はその侭、又(まこ
れを素材として単味で又は他の結合材、充填材等と複合
し、焼結乃至成形することにより軽量材料として各種用
途に例えば断熱、防水、防音、吸振、濾材、熱交換、触
媒用その他に供することができる。
The foamed metal particles produced according to the present invention can be used as a lightweight material for various purposes, for example, by using the foamed metal particles as a raw material alone or by combining them with other binders, fillers, etc., and sintering or molding them. It can be used for insulation, waterproofing, soundproofing, vibration absorption, filter media, heat exchange, catalysts, etc.

多孔質金属材料の製造については従来から各種の方法が
提案されており、それらの内で金属の溶湯が冷却凝固す
る際に発泡させる方法としては水素吸蔵特殊金属又は熱
分解性発泡剤を溶湯に添加したり或いは水流を特殊態様
で噴射して溶湯を処理する等の方法がある。一方、比較
的大型の金属塊の製造例えばPJj 造に際してこれを
多孔質体とすることは、冷却凝固時の温度分布や液圧差
による遊離ガスの偏倚及び浮力等のために気泡の形成、
分布を全体的に均一になすのが極めて困難であり、又気
泡容積率を大にすることも困俯であるので、実際上不可
能であることが知られている。
Various methods have been proposed for the production of porous metal materials.Among them, the method of foaming the molten metal when it cools and solidifies is to add a special hydrogen-absorbing metal or a pyrolyzable foaming agent to the molten metal. There are methods of treating the molten metal by adding it or by spraying a water stream in a special manner. On the other hand, when producing a relatively large metal block, for example, in PJJ construction, making it a porous body causes the formation of bubbles due to the deviation of free gas and buoyancy due to the temperature distribution and liquid pressure difference during cooling and solidification.
It is known that it is extremely difficult to make the distribution uniform throughout, and it is also difficult to increase the bubble volume ratio, which is practically impossible.

従って、本発明の目的は、特殊な発泡剤の使用を必要と
ぜず、又特殊態様で水流を噴射することなしに、比較的
簡単性つ容易に発泡金属粒を量産することのできる方法
を提供することにある。
Therefore, an object of the present invention is to provide a method for mass-producing foamed metal particles in a relatively simple and easy manner without using a special blowing agent or jetting water in a special manner. It is about providing.

本発明方法により得られる金属粒は後述の通り各単粒の
気泡容積率が犬であるのでこの金属粒をその侭の状態で
も各種の用途に供することができ、更にこれら金属粒の
粒径、気泡容積率を揃えこれを素材として焼結等により
集合成形すれば、構成単粒そのものが気泡を有していて
軽比重であるのみならず粒間空隙が加わるので全体とし
て著るしく気孔率が高く、軽量でありしかも均斉な多孔
質構造材イSIを容易且つ確実に製造することができる
と謂う利点を有している。
Since the metal particles obtained by the method of the present invention have a bubble volume ratio of each single particle as described below, the metal particles can be used for various purposes even in their original state. If the cell volume ratio is adjusted and this material is collectively molded by sintering etc., the constituent single grains themselves not only have air bubbles and have a light specific gravity, but also intergranular voids are added, so the porosity as a whole is significantly reduced. It has the advantage of being able to easily and reliably produce a porous structural material SI that is high, lightweight, and uniform.

しかして、本発明においては、この種の発泡金属粒素材
を製造するために各般の条件を検討の結果、下記の点を
基本的技術思想とした。
Therefore, in the present invention, as a result of examining various conditions for manufacturing this type of foamed metal particle material, the following points were adopted as the basic technical idea.

第1に、一般に金属溶湯は主として水素などのガスを溶
解吸収し温度」二昇に従って、その量を増加するが冷却
同化に際してはこれらのガスの溶解度が急に減少し、過
飽分のガスを遊離する傾向があるので、この現象を利用
する。
First, molten metal generally dissolves and absorbs gases such as hydrogen, and the amount increases as the temperature rises, but during cooling and assimilation, the solubility of these gases suddenly decreases, and the supersaturated gas is absorbed. Since they tend to be liberated, this phenomenon is utilized.

すなわち、主として水素などのガスを溶解、吸収した金
属溶湯、必要により積極的にこれらのガスを充分に吸収
させた溶湯を発泡させること。
That is, molten metal that has mainly dissolved and absorbed gases such as hydrogen, and if necessary, foamed molten metal that has sufficiently absorbed these gases.

第2に、」二記のガスを溶解吸収した金属溶湯を使用し
ても一般大気圧中における鋳造のように、冷却凝固させ
ると遊離ガスは抜は出ていわゆるビ971′ ンホールないしブローホールを形成するr前述したよう
に、気泡を一定の大容積率とすることが困難である。
Second, even if you use a molten metal that has dissolved and absorbed the gases mentioned above, when it is cooled and solidified, as in casting under general atmospheric pressure, the free gas will be extracted and a so-called vinyl hole or blowhole will be formed. As mentioned above, it is difficult to form bubbles at a constant large volume ratio.

よって、溶湯の冷却凝固時における平衡飽和溶解度を低
下することにより遊離ガス量を増加し、しかもその容積
を拡大させるために溶湯の冷却凝固する際の雰囲気圧を
相当に減圧された状態とすること。
Therefore, in order to increase the amount of free gas by lowering the equilibrium saturation solubility when the molten metal is cooled and solidified, and to expand its volume, the atmospheric pressure when the molten metal is cooled and solidified must be considerably reduced. .

第3に、目的とする凝固塊を比較的大塊とするときは、
この点も前述したが、仮に気泡の容積率を大きくできた
としても、その形成分布を全体的に均一にすることが困
難であることから、ガスを溶解吸収した溶湯を分散し、
比較的小径の液滴として自由落下状態で冷却させればほ
ぼ無重力状態における僅かな表面張力による液圧下で、
各分散粒毎に第2項の効果とあいまって大なる容積率の
気泡を均等に形成することが容易となり且つ分散粒は、
発泡膨張に際し表面張力によって種球状を呈する。
Thirdly, when the target coagulated mass is made into a relatively large mass,
This point was also mentioned above, but even if the volume ratio of bubbles could be increased, it would be difficult to make the formation distribution uniform throughout, so dispersing the molten metal that has dissolved and absorbed the gas,
If the droplet is cooled in a free-falling state with a relatively small diameter, it will be able to cool under the liquid pressure caused by the slight surface tension in an almost weightless state.
Combined with the effect of the second term for each dispersed particle, it becomes easy to uniformly form bubbles with a large volume ratio, and the dispersed particles
When the foam expands, it takes on a spherical shape due to surface tension.

ずなわち、金属溶湯け、液滴として分散状態で冷却凝固
させること。
In other words, molten metal is cooled and solidified in a dispersed state as droplets.

次に、」二記思想に基く本発明方法を実施するための装
置の一例が示されている添附図面第1図に関連して説明
する。
Next, an explanation will be given with reference to FIG. 1 of the accompanying drawings, in which an example of an apparatus for carrying out the method of the present invention based on the second concept is shown.

この装置は、基本的には、原料金属又は合金を 5− 融解する溶湯形成部10と、該溶湯形成部からの溶湯を
分散凝固させて発泡金属粒とする分散凝固容器20と、
形成された発泡金属粒を取出ず排出部30とから成って
いる。溶湯形成部10には、原料の装填されるルツボ1
1と、該ルツボを加熱してルツボ内の原料を溶湯Mとな
ずために加熱コイル121の埋設された加熱炉12と、
密閉座13と、断熱台座14とが設けられている。ルツ
ボ11の底部には出湯孔111が形成されており、この
出湯孔は溶湯Mの収容時には閉鎖されており溶湯Mの出
湯に際して開孔されるようになされている。更に、ルツ
ボ11には高温度計15が所属していて原料の融解を確
認し、又加熱コイル121によるルツボの加熱温度を調
節し得るようになされている。
This device basically consists of: 5- a molten metal forming section 10 that melts raw metal or alloy; a dispersion and coagulation container 20 that disperses and solidifies the molten metal from the molten metal forming section to form metal foam particles;
It consists of a discharge section 30 for removing the formed metal foam particles. The molten metal forming section 10 includes a crucible 1 loaded with raw materials.
1, a heating furnace 12 in which a heating coil 121 is embedded for heating the crucible and converting the raw material in the crucible into molten metal M;
A hermetically sealed seat 13 and a heat insulating pedestal 14 are provided. A tapping hole 111 is formed at the bottom of the crucible 11, and this tapping hole is closed when the molten metal M is accommodated, and is opened when the molten metal M is tapped. Furthermore, a high thermometer 15 is attached to the crucible 11 to confirm melting of the raw material and to adjust the heating temperature of the crucible by the heating coil 121.

溶湯形成部10は上述のように構成されるが、原料金属
又は合金が別途に溶解炉で融解準備される場合には、ル
ツボ11の代りに単なる受湯ローl・を用いることもで
きる。
The molten metal forming section 10 is configured as described above, but if the raw metal or alloy is separately prepared for melting in a melting furnace, a simple molten metal receiving roll 1 may be used instead of the crucible 11.

分散凝固容器20の適宜個所例えば外壁上部にはバルブ
21.1の配設された導管21が設けられ、この 6− 導管21は真空ポンプ(図示せず)に接続されていて、
容器20の内部を減圧状態に維持するようになされてい
る。容器20内の圧力は圧力計22に表示されるので、
これを読取りバルブ201を操作することにより容器2
0内部の減圧状態を調節することができる。
A conduit 21 equipped with a valve 21.1 is provided at a suitable location of the dispersion coagulation vessel 20, for example at the top of the outer wall, and this conduit 21 is connected to a vacuum pump (not shown).
The interior of the container 20 is maintained in a reduced pressure state. Since the pressure inside the container 20 is displayed on the pressure gauge 22,
By reading this and operating the valve 201, the container 2
The reduced pressure state inside 0 can be adjusted.

ルツボ11の出湯孔111の孔径が小であれば格別の部
材を用いなくとも減圧下にある分散凝固容器20内を流
下中に溶湯を滴状となすことが可能であるが、出湯孔1
1]の孔径を小になせばこれが狭搾し易いので作業−に
問題が生じる。このために出湯孔111の孔径を比較的
太になしても流下する溶湯Mを分散して滴状となず補助
部材を設けることができる。この目的で、分!′fIi
凝固容器20の内部に且つその上蓋201に近い位置に
目皿乃至網体(以下1目皿」と称する)23が設けられ
ている。目皿23を通過して滴状となった溶湯Mはその
表面張力により球状化しつつ分散凝固容器20内を落下
する間に冷却し過飽和分のガスを放出し発泡凝固した金
属粒となって分散凝固容器20の底部に堆積するに至る
が、出湯した溶湯殊に液滴状溶湯に接触して分解反応に
よりガスを吸収溶解させると共に生成する発泡金属粒の
冷却を促進するための油又は水分散凝固容器20の外壁
202に設けることもできる。
If the hole diameter of the tapping hole 111 of the crucible 11 is small, it is possible to form the molten metal into droplets while flowing down inside the dispersion and coagulation container 20 under reduced pressure without using any special members.
If the hole diameter of 1] is made small, it will be easy to squeeze out the hole, which will cause problems in the work. For this reason, even if the hole diameter of the tapping hole 111 is made relatively large, the molten metal M flowing down can be dispersed and not form drops, and an auxiliary member can be provided. For this purpose, minutes! 'fIi
A perforated plate or mesh body (hereinafter referred to as a first perforated plate) 23 is provided inside the coagulation container 20 and at a position close to the upper lid 201 thereof. The molten metal M, which has passed through the perforated plate 23 and has become droplet-like, becomes spherical due to its surface tension, cools while falling in the dispersion and coagulation container 20, releases supersaturated gas, becomes foamed and solidified metal particles, and is dispersed. The oil or water dispersion deposits at the bottom of the coagulation vessel 20, but is used to contact the tapped molten metal, especially the droplet-shaped molten metal, to absorb and dissolve gas through a decomposition reaction, and to promote cooling of the foamed metal particles generated. It can also be provided on the outer wall 202 of the coagulation vessel 20.

分散凝固容器20の底部に堆積した発泡金属粒を取出す
ための排出部30は図示されでいるように2段構成の密
閉開閉扉31.32を備えたシュートとなし、これによ
って分散凝固容器20内への外部空気の漏入を極力阻止
するようになされているのが好ましい。
The discharge section 30 for taking out the foamed metal particles accumulated at the bottom of the dispersion and coagulation container 20 is a chute equipped with a two-stage sealed opening/closing door 31 and 32, as shown in the figure. It is preferable that the leakage of outside air into the tank is prevented as much as possible.

次に、第1図に示された装置を使用し、金属原料として
アルミニウムを用いて行なわれた実施例に関連して本発
明方法を更に詳細に説明する。
The method of the invention will now be explained in more detail with reference to an example carried out using the apparatus shown in FIG. 1 and using aluminum as the metal raw material.

実施例 1 まず、ルツボ11の孔径3關に穿った出湯孔11175
0°Cに保持し、溶湯Mとした。このとき原料アルミニ
ウムに、油脂、水分、腐蝕などがあれば溶湯Mは水素を
主とするガスを溶解吸収するが、必要により溶湯Mと接
触分解して主として水素を発生する例えば油脂、炭酸ア
ンモニウム、含水粉末フラックスなどの添加、その他の
適宜の方法で処理し、溶湯Mにガスを溶解吸収させる。
Example 1 First, a tapping hole 11175 was drilled in three holes in the crucible 11.
The temperature was maintained at 0°C, and it was designated as molten metal M. At this time, if the raw aluminum contains oil, moisture, corrosion, etc., the molten metal M dissolves and absorbs gases mainly composed of hydrogen, but if necessary, it catalytically decomposes with the molten metal M to mainly generate hydrogen. For example, oil, ammonium carbonate, The gas is dissolved and absorbed into the molten metal M by adding a water-containing powder flux or by other appropriate methods.

ついで、予め真空ポンプを作動し、導管21を通じて圧
力計22の指示値による容器20の圧力を%気圧に減圧
し、出湯孔】11を開孔して出湯させた。
Next, the vacuum pump was operated in advance to reduce the pressure in the container 20 to % atm based on the value indicated by the pressure gauge 22 through the conduit 21, and the tap hole 11 was opened to tap the hot water.

分散、冷却、発泡して凝固し、容器20の下底に堆積し
た発泡アルミニウム粒は、排出シュート33の密閉扉3
1および32を交互に開閉して、外部に取り出された。
The foamed aluminum particles that are dispersed, cooled, foamed, solidified, and deposited at the bottom of the container 20 are removed from the closed door 3 of the discharge chute 33.
1 and 32 were opened and closed alternately and taken out.

得られた発泡アルミニウム粒は、一部の変形塊を除いて
よく種球状を呈し、それらの気泡は殆どすべて外部に開
放しない閉鎖気孔であって、水中に投入してもよく浮び
、その見掛比重は1以下であった。
The obtained foamed aluminum particles have a well-shaped spherical shape except for some deformed lumps, and almost all of the air bubbles are closed pores that do not open to the outside, so they float well even when placed in water, and their appearance does not change. The specific gravity was 1 or less.

それらの特性を示せば第1表の通りであった。Their properties are shown in Table 1.

 9− (第 1 表) 得られた発泡アルミニウム粒の粒子構造(外観及び断面
構造)は第2a及び2b図の図面代用写真(1,5倍)
に示される通りであった。
9- (Table 1) The particle structure (appearance and cross-sectional structure) of the obtained foamed aluminum grains is shown in the photographs (1.5 times magnification) in place of drawings in Figures 2a and 2b.
It was as shown in

この実施試験により、出湯孔1】1から流出するアルミ
ニウム溶湯Mの分散滴化するときの粒径は、出湯孔11
1の孔径が大きく影響し、したがって、発泡程度にもよ
るが、発泡アルミニウム粒の粒径は基本的には出湯孔】
11の孔径に左右され、一方この口径が小であれば、ア
ルミニウム溶湯Mに酸化発生するドロスにより、狭搾し
易く作業が不安定になることが判明した。
According to this practical test, the particle size when the molten aluminum M flowing out from the tapping hole 1]1 becomes dispersed droplets is as follows.
The pore size of foamed aluminum particles has a large influence on the pore size, and therefore, although it also depends on the degree of foaming, the particle size of foamed aluminum particles is basically determined by the tapping hole]
It has been found that if the diameter of the hole is small, the molten aluminum M is easily squeezed by dross generated by oxidation, making the work unstable.

また一旦流下する液滴が合体したためと思われる変形塊
の発生が認められたので、これらを防止するために次の
ように改善実施(、た。
In addition, the occurrence of deformed lumps, which were thought to be caused by the coalescence of droplets once flowing down, was observed, so the following improvements were implemented to prevent these.

実施例 2 出湯孔111の孔径を実施例1の場合よりも拡大し、7
mm程度として、狭搾の影響の緩和をはかる一方、孔径
3 mmの分散流出孔を孔径以上の孔間間隔をあけて、
数個穿孔したステンレス鋼板製の分散目皿23を容器2
0内に設け、他は、実施例1の場合と同様に実施したと
ころ、平均見掛比重などは、前例とほぼ同様であったが
粒度分布において、変形塊の発生が殆んど見られなくな
り、最大外径が8闘程度以下となり、しかも変形塊の発
生率が減少し平均外径が4.5mm程度に揃った。これ
は分散目皿23の底板に離隔して穿孔した分散流出孔の
効果によるものと考えられる。分散目皿23は、本例の
場合、ステンレス鋼板製のものを使用したが他の金属ま
たは、無機非金属で製作することもできる。
Example 2 The hole diameter of the tapping hole 111 was expanded compared to that of Example 1, and the diameter of the tapping hole 111 was expanded to 7
mm, in order to alleviate the effect of constriction, while dispersing outflow holes with a hole diameter of 3 mm with a hole spacing larger than the hole diameter,
A dispersion plate 23 made of stainless steel plate with several perforations is placed in the container 2.
0, and the other conditions were carried out in the same manner as in Example 1. Although the average apparent specific gravity was almost the same as in the previous example, the occurrence of deformed lumps was hardly observed in the particle size distribution. , the maximum outer diameter became less than about 8 mm, the incidence of deformed lumps decreased, and the average outer diameter became about 4.5 mm. This is considered to be due to the effect of the dispersion outflow holes bored in the bottom plate of the dispersion plate 23 at a distance. Although the dispersion plate 23 is made of stainless steel plate in this example, it can also be made of other metals or inorganic non-metals.

分散目皿23の流出孔もその孔径や溶湯Mの性状により
狭搾する傾向があるので、これを極力防止するには、作
業開始前に予熱し、あるいは、さらに予め容器20内の
空気を例えば窒素その他の不活性ガスに置換した上で減
圧すれば有効である。
The outflow hole of the dispersion plate 23 also tends to be narrowed depending on its hole diameter and the properties of the molten metal M. Therefore, to prevent this as much as possible, it is necessary to preheat before starting the work, or to further evacuate the air in the container 20 in advance, for example. It is effective to replace the gas with nitrogen or other inert gas and then reduce the pressure.

以上の実施例の方法では、得られる発泡アルミニウムの
粒径は発泡率が同程度の場合において分散目皿23の流
出孔径に支配されるので、より細粒を望むときは、流出
孔を小にすればよい。
In the method of the above embodiment, the particle size of the aluminum foam obtained is controlled by the outflow hole diameter of the dispersion plate 23 when the foaming rate is the same, so if finer particles are desired, the outflow hole is made smaller. do it.

尚、溶湯を液滴に分散する手段としては、例えば回転体
を用いるなど、各種の公知の機械的方法、装置が提案さ
れているので、それらを適宜適用することももちろん可
能である。
Note that various known mechanical methods and devices have been proposed as means for dispersing the molten metal into droplets, such as using a rotating body, and it is of course possible to apply them as appropriate.

本発明方法の反証実験として、アルミニウムの溶湯に例
えば乾塩素ガスを吹き込んで水素などの吸収ガスを脱ガ
ス処理した場合は、その後単に減圧状態で冷却凝固して
も当然ながら、殆んど発泡せずまたガスを吸収処理した
溶湯を大気圧中において分散凝固させた場合も本発明の
場合におけるような発泡現象は見られなかった。
As an experiment to prove the method of the present invention, for example, when dry chlorine gas was blown into molten aluminum to degas absorbed gases such as hydrogen, it was found that almost no foaming occurred even if the aluminum was then simply cooled and solidified under reduced pressure. Also, when the gas-absorbing molten metal was dispersed and solidified at atmospheric pressure, no foaming phenomenon as in the case of the present invention was observed.

すなわち、アルミニウムの溶湯の分散液滴を大容積率の
ガス気泡を含んで均一に発泡凝固させることは、本発明
の顕著な特徴効果があることが確認された。
That is, it was confirmed that uniformly foaming and solidifying dispersed droplets of molten aluminum containing gas bubbles with a large volume ratio has a remarkable characteristic effect of the present invention.

尚、アルミニウム溶湯のガスの吸収溶解量を容器内にお
け゛る分散液滴状態において増加する目的で、水または
油と接触させて分解し、主として水素を吸収させ、冷却
発泡凝固させることも可能で、この場合は、容器内の減
圧状態を極力保持するために油または水を空気噴霧によ
らず、圧力噴霧により液滴に吹きかけ、あるいは液滴を
直接これらの液体中に落下させ、冷却凝固させても減圧
状態にあれば、ある程度の発泡効果を認めることができ
た。従って、これらの附加的処理も本発明の範晒に属す
るものであることに留意され度い。
In addition, in order to increase the amount of gas absorbed and dissolved in molten aluminum in the form of dispersed droplets in a container, it is also possible to decompose it by contacting it with water or oil, absorb mainly hydrogen, and then cool, foam, and solidify it. In this case, in order to maintain the reduced pressure inside the container as much as possible, oil or water is sprayed onto the droplets using pressure spraying instead of air spraying, or the droplets are dropped directly into these liquids, allowing them to cool and solidify. Even if this was done, a certain degree of foaming effect could be observed as long as the pressure was reduced. Therefore, it should be noted that these additional processes also fall within the scope of the present invention.

以」−の実施例に関する説明は、アルミニウムに対して
であるが、本発明は、高温溶湯状態において、主として
水素などのガスを溶解吸収し、冷却凝固時にはガスの飽
和溶解度を著しく減少して過飽和分を遊離する鉄鋼は、
もちろん、非鉄系の銅、ニッケルをはじめとする一般純
金属および合金類に対しても、類似の効果をもって適用
することができる。
The following description of the embodiments is for aluminum, but the present invention mainly dissolves and absorbs gases such as hydrogen in a high-temperature molten state, and upon cooling and solidification, significantly reduces the saturation solubility of the gas to create supersaturation. The steel that releases the
Of course, the present invention can also be applied to general pure metals and alloys, including non-ferrous copper and nickel, with similar effects.

13− 発泡金属単粒の気泡容積率は、金属溶湯のガス溶解量の
如何にも支配されるのであるが、溶湯湿度が高く、また
分散冷却凝固時の器内雰囲気圧の小なる程大きくなる。
13- The cell volume ratio of a single foamed metal particle is controlled by the amount of gas dissolved in the molten metal, and increases as the humidity of the molten metal increases and the atmospheric pressure in the vessel during dispersion cooling and solidification decreases. .

しかして、極度に発泡させた場合には、気泡容積率が7
5%程度以」二になるものがあるが、気泡容積率を過大
にすると外殻の一部が破壊して開放気泡になり易くなる
However, in the case of extreme foaming, the cell volume ratio is 7.
In some cases, the cell volume ratio is about 5% or more, but if the cell volume ratio is increased too much, a part of the outer shell is likely to break and become open cells.

よって、閉鎖気泡である発泡金属粒の製造を目的とする
場合は、金属特性等諸条件を考慮し、試験実施しその結
果を参酌して気泡容積率を定める必要がある。
Therefore, when the purpose is to produce foamed metal particles with closed cells, it is necessary to take various conditions such as metal properties into consideration, conduct a test, and determine the cell volume ratio by taking the results into consideration.

他方、開放気泡となる発泡金属粒も特殊の目的用途には
好適なので、その場合には、適宜積極的に製造すべきで
ある。
On the other hand, foamed metal particles with open cells are also suitable for special purposes, and in that case, they should be actively produced as appropriate.

本発明を適宜に適用実施すれば、任意の気泡容積率の発
泡金属粒を製造することが可能であるが、気泡容積率が
過小の場合は、効果薄く一般に少なくとも20%以上の
場合に効果が現われる。
If the present invention is appropriately applied and carried out, it is possible to produce foamed metal particles with any cell volume ratio, but if the cell volume ratio is too small, the effect will be weak, and generally, if the cell volume ratio is at least 20%, the effect will not be effective. appear.

また、単粒の粒径は、金属の特性にもよるが、大型を目
的とすると変形塊を生じやすく、粒度分布も偏倚する。
Furthermore, although the particle size of a single particle depends on the characteristics of the metal, if large size particles are intended, deformed lumps are likely to occur, and the particle size distribution will also be biased.

従って、金属種によっても若干相違するか、一般に比較
的に容易に製造可能な15mm径以下とする。
Therefore, the diameter may vary slightly depending on the metal type, or the diameter is generally 15 mm or less, which is relatively easy to manufacture.

なお、不発明によって製造された発泡金属粒は、種球状
であるが、金属材質」−可能な場合は、必要に応じて圧
縮し、扁平形に加工して目的に供することも勿論可能で
ある。
Although the foamed metal particles produced by the invention are spherical, it is of course possible to use the metal material by compressing it and processing it into a flat shape if necessary. .

【図面の簡単な説明】[Brief explanation of drawings]

添附図面中、 第1図は本発明方法の実施に適する装置の一例を略示す
る縦断面図であり、 第2a及び2b図は本発明方法により製造された発泡金
属粒の粒子構造を示す拡大尺図面代用写真であって、第
2a図は外観構造を、又第2b図は発泡金属粒を合成樹
脂体に押入し切断して断面構造を示したものである。 溶湯・・・・・・・・・・・・・・・・・・・・・M分
散凝固容器・・・・・・・・・・・・・20目皿乃至網
体・・・・・・・・・・・・・23油又は水噴霧用の吹
込管・・・・・・・・2415−
In the accompanying drawings, Figure 1 is a longitudinal sectional view schematically showing an example of an apparatus suitable for carrying out the method of the present invention, and Figures 2a and 2b are enlarged views showing the particle structure of foamed metal particles produced by the method of the present invention. FIG. 2a shows the external structure, and FIG. 2b shows the cross-sectional structure of foamed metal particles pressed into a synthetic resin body and cut. Molten metal・・・・・・・・・・・・・・・M Dispersion and coagulation container・・・・・・・・・・・・20 mesh plate or mesh body・・・・・・・・・・・・・・・23 Blow pipe for oil or water spray・・・・・・・2415-

Claims (4)

【特許請求の範囲】[Claims] (1)水素を主とするガスを溶解含有する金属又は合金
の溶湯を減圧状態に維持した分散凝固装置内に液滴とし
て流下させ、これら液滴をその表面張力により粒状化す
ると共にその冷却凝固に伴ない遊離する溶解ガスの圧力
により発泡させて内部に容積率20%以上の気泡を有す
る直径15zm又はそれ以下の種球状金属粒とすること
を特徴とする、発泡金属粒の製法。
(1) A molten metal or alloy containing dissolved gas, mainly hydrogen, is caused to flow down as droplets into a dispersion solidification device maintained under reduced pressure, and these droplets are granulated by their surface tension and then cooled and solidified. A method for producing foamed metal particles, which is characterized by foaming them under the pressure of dissolved gas liberated as a result of the process, thereby forming seed spherical metal particles with a diameter of 15 zm or less and having bubbles with a volume ratio of 20% or more inside.
(2)分散凝固装置内において流下する溶湯を一旦目皿
又は網体で受けて分散させ液滴とすることを特徴とする
特許請求の範囲第1項に記載の製法。
(2) The manufacturing method according to claim 1, characterized in that the molten metal flowing down within the dispersion and coagulation device is once received by a perforated plate or a mesh body and dispersed into droplets.
(3)液滴状溶湯の自由落下中に油又は水を噴霧するこ
とによりガスを吸収溶解させて発泡、冷却凝固させるこ
とを特徴とする特許請求の範囲第1又は2項に記載の製
法。
(3) The manufacturing method according to claim 1 or 2, characterized in that oil or water is sprayed during free falling of the droplet-shaped molten metal to absorb and dissolve gas, foam, and cool and solidify.
(4)液滴状溶湯を油又は水中に落下させガスを吸収溶
解させて発泡、冷却凝固させることを特徴と 1− する、特許請求の範囲第1乃至3項の何れか1つに記載
の製法。
(4) The method according to any one of claims 1 to 3, characterized in that the droplet-shaped molten metal is dropped into oil or water, absorbs and dissolves gas, and is foamed and solidified by cooling. Manufacturing method.
JP56099730A 1981-06-29 1981-06-29 Manufacture of expanded metallic granule Pending JPS583904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56099730A JPS583904A (en) 1981-06-29 1981-06-29 Manufacture of expanded metallic granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56099730A JPS583904A (en) 1981-06-29 1981-06-29 Manufacture of expanded metallic granule

Publications (1)

Publication Number Publication Date
JPS583904A true JPS583904A (en) 1983-01-10

Family

ID=14255174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56099730A Pending JPS583904A (en) 1981-06-29 1981-06-29 Manufacture of expanded metallic granule

Country Status (1)

Country Link
JP (1) JPS583904A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024695A (en) * 1984-07-26 1991-06-18 Ultrafine Powder Technology, Inc. Fine hollow particles of metals and metal alloys and their production
JPH0530149U (en) * 1991-06-27 1993-04-20 株式会社オギハラ Vacuum evaporation recovery device
JPH05306417A (en) * 1991-07-31 1993-11-19 Ogihara:Kk Induction heating vacuum vaporizing recovery method and apparatus therefor
JPH05331564A (en) * 1991-08-29 1993-12-14 Ogihara:Kk Method and device for induction-heated vacuum evaporation recovery
JPH05331563A (en) * 1991-07-31 1993-12-14 Ogihara:Kk Direct electrically heated vacuum-evaporation recovery method
JP2021055175A (en) * 2019-09-28 2021-04-08 鐘瑩瑩 Dust-proof metal powder-producing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024695A (en) * 1984-07-26 1991-06-18 Ultrafine Powder Technology, Inc. Fine hollow particles of metals and metal alloys and their production
JPH0530149U (en) * 1991-06-27 1993-04-20 株式会社オギハラ Vacuum evaporation recovery device
JPH05306417A (en) * 1991-07-31 1993-11-19 Ogihara:Kk Induction heating vacuum vaporizing recovery method and apparatus therefor
JPH05331563A (en) * 1991-07-31 1993-12-14 Ogihara:Kk Direct electrically heated vacuum-evaporation recovery method
JPH05331564A (en) * 1991-08-29 1993-12-14 Ogihara:Kk Method and device for induction-heated vacuum evaporation recovery
JP2021055175A (en) * 2019-09-28 2021-04-08 鐘瑩瑩 Dust-proof metal powder-producing apparatus

Similar Documents

Publication Publication Date Title
US4973358A (en) Method of producing lightweight foamed metal
EP0583415A1 (en) Method and apparatus for manufacturing porous articles
Nakajima Porous metals with directional pores
JPH05500391A (en) Lightweight foam metal and its production
US8562904B2 (en) Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material
US2937938A (en) Production of metal foam
Srivastava et al. Processing, stabilization and applications of metallic foams. Art of science
JPH06172819A (en) Method of granulating molten metal
Joly et al. Complex alloy powders produced by different atomization techniques: relationship between heat flow and structure
HU210524B (en) Process for producing grain-reinforced metal foam, and grain-reinforced, closed cellular foam
US4565571A (en) Method for producing low density porous metals or hollow metallic spheres
US5024695A (en) Fine hollow particles of metals and metal alloys and their production
JP2002371327A (en) Method for manufacturing foam metal
JPS583904A (en) Manufacture of expanded metallic granule
US5951738A (en) Production of granules of reactive metals, for example magnesium and magnesium alloy
US2974034A (en) Method of foaming granulated metal
JPS5871306A (en) Production of powder
Byakova et al. Effect of CaCO3 foaming agent at formation and stabilization of Al-based foams fabricated by powder compact technique
US5549732A (en) Production of granules of reactive metals, for example magnesium and magnesium alloy
JPH0647697B2 (en) Method for producing aluminum-lithium alloy by melting in air
JPH10158761A (en) Production of foam having directional pore
EP0470968A1 (en) Shape casting in mouldable media.
US2979392A (en) Foaming of granulated metal
JP4621938B2 (en) Method for producing porous metal body
JP2000104130A (en) Manufacture of porous metal