JPS5838890A - Reactor stabilizing device - Google Patents

Reactor stabilizing device

Info

Publication number
JPS5838890A
JPS5838890A JP56136538A JP13653881A JPS5838890A JP S5838890 A JPS5838890 A JP S5838890A JP 56136538 A JP56136538 A JP 56136538A JP 13653881 A JP13653881 A JP 13653881A JP S5838890 A JPS5838890 A JP S5838890A
Authority
JP
Japan
Prior art keywords
stability
core
reactor
pressure
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56136538A
Other languages
Japanese (ja)
Inventor
光武 徹
加藤 直敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP56136538A priority Critical patent/JPS5838890A/en
Publication of JPS5838890A publication Critical patent/JPS5838890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子炉安定化装置に係る。[Detailed description of the invention] The present invention relates to a nuclear reactor stabilization device.

現在の炉心部の安定性評価は、炉心設計時に安定性解析
コードを用いて、自然流量曲線上および流量制御曲線上
の数点においてなされ、第2図に示す如く減巾比を求め
ている。この設計解析においては、安全側の評価を行う
ために安全係数を見込んだパラメータの値を選んだ一す
、原子炉の経時変化に関して最も安定性余裕がノ」・さ
くなる条件の解析を行っている。これらの解析結果は、
原子炉の運転許容範囲の決定に使用されておシ、原子炉
は第1図の安全設計基準をこえる条件点を避けて運転さ
れることになっている。
Currently, stability evaluation of the reactor core is performed at several points on the natural flow rate curve and the flow rate control curve using a stability analysis code during core design, and the attenuation ratio is determined as shown in Figure 2. In this design analysis, we selected parameter values that took into account safety factors in order to evaluate the safety side, and analyzed the conditions under which the stability margin becomes the smallest regarding the aging of the reactor. There is. These analysis results are
It is used to determine the allowable operating range of a nuclear reactor, and the reactor is to be operated avoiding the condition points that exceed the safe design criteria shown in Figure 1.

一方、炉心部の安定性余裕の低下に対しては、安定性余
裕が低下するような運転点を避けることが考えられてい
る。
On the other hand, in order to reduce the stability margin in the reactor core, it is considered to avoid operating points where the stability margin decreases.

なお、上記の安定性は炉心安定性およびチャンネル安定
性を含む。
Note that the above stability includes core stability and channel stability.

炉心安定性とは、炉心反応度安定性すなわち定常状態に
ある炉心に何らかの反応度外乱が加わった時の中性子束
変動の安定性である。何らかの原因てより反応度の変動
が生じると、炉心内冷却材流量、工/タルビー等の変動
を通じてボイド率の変動を生じ、反応度係数を介して出
力へフィードバックするループが正のフィードバンクと
々るととがある。これにより、運転状態によっては炉心
内中性子束が振動を始め、振巾が成長し発散に至る場合
がある。このような中性子束の不安定現象を生じないよ
うにするのが炉心安定性である。炉心安定性は制御系に
依らない原子炉それ自身の安定性であり、不安定現象が
生ずる運転状態は許されない。
Core stability refers to core reactivity stability, that is, the stability of neutron flux fluctuations when some reactivity disturbance is applied to the core in a steady state. If the reactivity fluctuates due to some reason, the void ratio will fluctuate through fluctuations in the coolant flow rate in the core, engineering/talvy, etc., and the loop that feeds back to the output via the reactivity coefficient will become a positive feed bank. There is a word. As a result, depending on the operating state, the neutron flux within the core may begin to oscillate, the amplitude may grow, and it may diverge. Core stability is what prevents such unstable neutron flux phenomena from occurring. Core stability is the stability of the reactor itself, which is not dependent on the control system, and operating conditions that cause unstable phenomena are not allowed.

また、チャンネル安定性とは、炉心内に配置された燃料
集合体チャンネルボックス内の圧力損失外乱に対するチ
ャンネル内冷却材流量の安定性のことである。すなわち
、チャンネル入口部に圧力損失の変動を生じた時、チャ
ンネル流量が変化しチャンネル。内のボイド量も変化す
る。前記のボイド量変化は流量変化に対し時間遅れを有
するため、流量変化とボイド量変化との間に位相遅れを
生じ、流量が振動を始め、その振巾が成長し発散に至る
ことがある。このような流量の不安定現象を生じないよ
うにするのがチャンネル安定性である。前記の流量の不
安定現象は原子炉の安全性に重大な影響をおよぼすので
、チャンネル安定性は原子炉の安全性にとって不可欠で
ある。
In addition, channel stability refers to the stability of the flow rate of coolant in the channel against pressure loss disturbances in the fuel assembly channel box arranged in the reactor core. In other words, when a change in pressure loss occurs at the channel entrance, the channel flow rate changes. The amount of voids inside also changes. Since the void amount change has a time delay relative to the flow rate change, a phase lag occurs between the flow rate change and the void amount change, and the flow rate may begin to oscillate, and its amplitude may grow and diverge. Channel stability is what prevents such flow rate instability from occurring. Channel stability is essential to the safety of a nuclear reactor, since the above-mentioned flow instability phenomenon has a serious impact on the safety of a nuclear reactor.

而して、安定度を測る指標として用いられる前記した減
巾比DRは、 XI として定義される。なお% XI T X2は、外乱に
対する出力、流量等の変動量の引続くオーバーシー−ト
量である。
Therefore, the above-described width reduction ratio DR used as an index for measuring stability is defined as XI. Incidentally, % XIT

ところが、運転中の原子炉においては、平均中性子検出
器によって中性子束の振動の有無を監視しているのみで
あシ、現在の運転状態における安定度や、運転点変更後
の安定度変化の予測等は行われていない。従って、炉心
、チャンネルの安定度余裕が基準値内に確保されている
かどうかは必ずしも保証されない。
However, in an operating nuclear reactor, the average neutron detector only monitors the presence or absence of neutron flux oscillations, and it is difficult to predict the stability in the current operating state or the stability change after changing the operating point. etc. have not been carried out. Therefore, it is not always guaranteed whether the stability margins of the core and channels are maintained within the standard values.

本発明は上記の事情に基きなされたもので、運転中およ
び運転状態の変更時に、炉心安定性、チャンネル安定性
を十分に確保し得る原子炉安定化装置を得ることを目的
としている。
The present invention was made based on the above-mentioned circumstances, and an object of the present invention is to obtain a nuclear reactor stabilization device that can sufficiently ensure core stability and channel stability during operation and when changing operating conditions.

以下、図面につき本発明の詳細な説明する。第2図にお
いて、原子炉1内の流量、圧力、中性子束等の各プロセ
ス信号aは、データ収集装置2により収集される。なお
、データ収集装置2には運転員入力装置3によシ入力さ
れる運転点変更信号すも入力されている。データ収集装
置2の収集したプロセス信号aは、炉心性能計算装置4
およびその出力を入力される炉心状態予測装置5に送ら
れる。炉心状態予測装置5の出力すなわち炉心状態に関
する信号Cは、安定性計算装置6に入力され、安定性計
算装置6の出力すなわち炉心部安定度信号dは安定性条
件比較装置7に送られる。比較の結果、設定圧力変更信
号e、gが原子炉入口条件計算装置8、設定圧力制御装
置9に送られる。
The invention will now be described in detail with reference to the drawings. In FIG. 2, process signals a such as flow rate, pressure, and neutron flux inside the nuclear reactor 1 are collected by a data collection device 2. Note that an operating point change signal inputted from the operator input device 3 is also input to the data collection device 2 . The process signal a collected by the data collection device 2 is transmitted to the core performance calculation device 4.
The output is then sent to the core state prediction device 5, which receives the input. The output of the core state prediction device 5, that is, the signal C regarding the core state, is input to the stability calculation device 6, and the output of the stability calculation device 6, that is, the core stability signal d, is sent to the stability condition comparison device 7. As a result of the comparison, set pressure change signals e and g are sent to the reactor inlet condition calculation device 8 and the set pressure control device 9.

原子炉入口条件計算装置8は原子炉入口条件信号fを安
定性計算装置6に与える。設ff1f力制御装置9は、
設定圧力変更のための制御信号りを圧力制御系圧力設定
点10に与える。
The reactor inlet condition calculation device 8 provides the reactor inlet condition signal f to the stability calculation device 6. The setting ff1f force control device 9 is
A control signal for changing the set pressure is applied to the pressure control system pressure set point 10.

上記の本発明装置は下記の如く作動する。まず、上記構
成の本発明装置において、装置2.4.5.6およびk
kaは原子炉安定性予測機能を、また装置5.6.7.
8および9は原子炉安定化機能を有している。
The apparatus of the present invention described above operates as follows. First, in the device of the present invention having the above configuration, device 2.4.5.6 and k
ka has a reactor stability prediction function, and equipment 5.6.7.
8 and 9 have a reactor stabilization function.

今、運転点を冷却材流量QAS炉出力への運転点Aから
、流量Qa  出力P1の運転点Bに変更する場合、運
転点Aから同Bに至る軌跡および運転点Bにおける安定
性余裕を原子炉安定性予測機能により計算する。安定性
余裕が低下し基準値より低下する場合には、原子炉安定
性安定化機能により、一定の安定性余裕を確保する操作
を行う。
Now, when changing the operating point from operating point A for the coolant flow rate QAS reactor output to operating point B for the flow rate Qa output P1, the trajectory from operating point A to operating point B and the stability margin at operating point B are Calculated using the furnace stability prediction function. If the stability margin decreases and falls below the standard value, the reactor stability stabilization function performs operations to ensure a certain stability margin.

以下にそれらの手順を説明する。まず、運転員は運転点
変更に関するデータb1すなわち変更後の運転点、運転
変更時の軌跡よりサンプルする運転点等を運転員入力装
置3により入力する。炉心性能計算装置4、炉心状態予
測装置5は、データ収集装置2の収集した現在の運転点
についてのデータaに基き、前記入力された各点につい
て炉心状態を予測する。
Those steps will be explained below. First, the operator inputs data b1 regarding the operating point change, that is, the operating point after the change, the operating point sampled from the trajectory at the time of the operation change, etc., using the operator input device 3. The core performance calculation device 4 and the core state prediction device 5 predict the core state at each input point based on the data a about the current operating point collected by the data collection device 2.

安定性計算装置6は、前記算出された各データ信号Cに
基き原子炉安定度を計算する。得られた炉心部安定度信
号は安定性条件比較装置7において予め与えられた基準
値と比較される。安定度が基準値を下回る場合には、設
定圧力変更信号eが原子炉入口条件計算装置8に送られ
る。入口条件計算装置8は圧力設定点を上げた場合の炉
出力の上昇、入口エンタルピーの低下を計算し、安定性
計算装置6はその計算結果に基き、設定点上昇時の安定
性余裕を計算し、安定性条件比較装置7はその結果に基
き所定の安定性余裕が確保されることが確認された時、
設定圧力変更信号gを設定圧力制御装置9に送シ、制御
装置9は制御信号りを圧力制御系圧力設定点10に送シ
、タービン入口圧力制御系の設定点を上げ、安定性余裕
を増加させる。
The stability calculation device 6 calculates the reactor stability based on each of the calculated data signals C. The obtained core stability signal is compared with a predetermined reference value in a stability condition comparison device 7. If the stability is below the reference value, a set pressure change signal e is sent to the reactor inlet condition calculation device 8. The inlet condition calculation device 8 calculates the increase in furnace output and the decrease in inlet enthalpy when the pressure set point is raised, and the stability calculation device 6 calculates the stability margin when the set point increases based on the calculation results. , when the stability condition comparison device 7 confirms that a predetermined stability margin is secured based on the results,
The set pressure change signal g is sent to the set pressure control device 9, and the control device 9 sends the control signal g to the pressure control system pressure set point 10, raising the set point of the turbine inlet pressure control system and increasing the stability margin. let

本発明においては上記の如く、系圧力を変化させて安定
性余裕を確保するようにしているが、系圧力と安定性と
は第3図に示す関係を持っている。
In the present invention, as described above, the system pressure is changed to ensure a stability margin, and the system pressure and stability have the relationship shown in FIG. 3.

第3図はチャンネル安定性につき例示したもので、圧力
の増加がチャンネル安定性を改善する効果は、圧力を増
加させだ時間−熱出力で低圧の時と比較すると、水の比
熱が増加してサブクール域長さが犬となること、出口ク
ォリティXeに対するボイド率αが低下することとによ
って、二相部属力損失が小さくなることによってもたら
される。
Figure 3 shows an example of channel stability, and the effect of increasing pressure on channel stability is that when pressure is increased, the specific heat of water increases when compared with the time-heat output at low pressure. This is brought about by the fact that the subcool region length becomes a dog and the void ratio α with respect to the exit quality Xe decreases, so that the two-phase attribute loss becomes smaller.

第3図から、圧力の効果により減巾比が著しく低下し、
安定性が改善されることは明らかである。
From Figure 3, it can be seen that the width reduction ratio decreases significantly due to the effect of pressure.
It is clear that the stability is improved.

従って、設定圧力を上げることによって運転条件をほと
んど変更せずに、原子炉の安定性余裕を増加させること
ができる。
Therefore, by increasing the set pressure, the stability margin of the reactor can be increased with little change in operating conditions.

第4図は本発明装置により減巾比が低下された結果、図
中一点鎖線で示す一定減巾比運転曲線が、図中破線で示
す従来の一定減巾比運転曲線よりも高出力側に移行して
いることを示しており、これからも運転範囲における安
定性余裕が増すことがわかる。
Figure 4 shows that as a result of the reduction ratio being lowered by the device of the present invention, the constant reduction ratio operating curve shown by the dashed line in the figure is on the higher output side than the conventional constant reduction ratio operation curve shown by the broken line in the figure. This shows that the stability margin in the operating range will continue to increase.

上記から明らかなように、本発明によれば、プラントの
現実の運転状態に対応した安定度評価がなされるので、
設計解析によシ定められた許容運転範囲よシも広い運転
範囲を確保することができ、しかも炉心状態の変化によ
る原子炉安定性余裕の低下を検知すると、これに対処し
て殆んど運転痒件を変更することなく一定の安定性余裕
を確保することができる。従って、予定された出力のま
まで安定性限界によって運転範囲が定められている領域
でも運転することができる。
As is clear from the above, according to the present invention, stability evaluation corresponding to the actual operating state of the plant is performed.
It is possible to secure an operating range that is wider than the allowable operating range determined by design analysis, and when a decrease in the reactor stability margin due to changes in the reactor core condition is detected, it is possible to take measures to prevent the reactor from operating almost immediately. A certain stability margin can be secured without changing the pruritus. Therefore, it is possible to operate even in a region where the operating range is determined by the stability limit while maintaining the planned output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチャンネル安定性を示す線図、第2図は本発明
一実施例のブロックダイヤグラム、第3図は安定性にお
よぼす系圧力の効果を示す線図、第4図は本発明による
一定減巾比運転曲線を従来井 3・・・運転員入力装置、4・・・炉心性能計算装置、
5・・・炉心状態予測装置、6・・・安定性計算装置、
7・・・安定性条件比較装置、 8・・・原子炉入口条件計算装置、 9・・・設定圧力制御装置、 lO・・・圧力制御系圧力設定点。 出願代理人 弁理士 菊 池 五 部 系 l 図 0    20   40   60   60   
100原子炉出力(γ) 第2@ 年 3 図 μノし光量 (DA)
FIG. 1 is a diagram showing channel stability, FIG. 2 is a block diagram of an embodiment of the present invention, FIG. 3 is a diagram showing the effect of system pressure on stability, and FIG. 4 is a diagram showing the effect of system pressure on stability. Conventional well 3...operator input device, 4...core performance calculation device,
5... Core state prediction device, 6... Stability calculation device,
7... Stability condition comparison device, 8... Reactor inlet condition calculation device, 9... Set pressure control device, lO... Pressure control system pressure set point. Application agent Patent attorney Kikuchi Five departments l Figure 0 20 40 60 60
100 Reactor power (γ) 2nd @ Year 3 Fig. μ-light amount (DA)

Claims (1)

【特許請求の範囲】[Claims] 原子炉の各種プロセス信号を収集するデータ収集装置と
、収集されたデータから炉心性能を計算する炉心性能計
算装置と、運転条件変更後における出力分布、炉心性能
を予測する炉心状態予測装置と、この装置の予測結果に
基き炉心部の安定性を評価する炉心安定性計算装置と、
この装置の計算結果に基き安定性余裕の変化を比較する
安定性条件比較装置と、この装置の比較結果安定性余裕
が基準値を下回ることがわかった時圧力制御系の設定圧
力変更を発する装置とを有することを特徴とする原子炉
安定化装置。
A data collection device that collects various process signals of the reactor, a core performance calculation device that calculates core performance from the collected data, a core state prediction device that predicts the power distribution and core performance after changes in operating conditions, and A core stability calculation device that evaluates the stability of the reactor core based on the prediction results of the device;
A stability condition comparison device that compares changes in the stability margin based on the calculation results of this device, and a device that issues a change to the set pressure of the pressure control system when the stability margin is found to be below a reference value as a result of this device comparison. A nuclear reactor stabilization device comprising:
JP56136538A 1981-08-31 1981-08-31 Reactor stabilizing device Pending JPS5838890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56136538A JPS5838890A (en) 1981-08-31 1981-08-31 Reactor stabilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56136538A JPS5838890A (en) 1981-08-31 1981-08-31 Reactor stabilizing device

Publications (1)

Publication Number Publication Date
JPS5838890A true JPS5838890A (en) 1983-03-07

Family

ID=15177526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56136538A Pending JPS5838890A (en) 1981-08-31 1981-08-31 Reactor stabilizing device

Country Status (1)

Country Link
JP (1) JPS5838890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4757363A (en) * 1984-09-14 1988-07-12 Harris Corporation ESD protection network for IGFET circuits with SCR prevention guard rings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4757363A (en) * 1984-09-14 1988-07-12 Harris Corporation ESD protection network for IGFET circuits with SCR prevention guard rings

Similar Documents

Publication Publication Date Title
US4337118A (en) Nuclear reactor power monitoring system
SE513236C2 (en) Power monitoring system in a nuclear reactor
SE513236C3 (en) System for power monitoring in a nuclear reactor
US4386623A (en) Nonlinear control of liquid level
JPS5838890A (en) Reactor stabilizing device
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JPS5965795A (en) Method of judging channel stability of reactor
JPS6176993A (en) Method and device for controlling feed water to nuclear reactor
Heller et al. Response surface optimization when experimental factors are subject to costs and constraints
JP3871733B2 (en) Reactor core monitoring device
JPS58106493A (en) Reactor stability control device
US3483081A (en) Stability improvement for nuclear reactor automatic control system
JP2945711B2 (en) Control rod removal monitoring device
JPS607392A (en) Method of monitoring output from nuclear reactor
JPS59116099A (en) Reactor water level control device
JPS58208692A (en) Method and device for controlling reactor power
JPH0566557B2 (en)
JPS6023699A (en) Hammering inhibiting controller for emergency drain discharge system
Aver'yanova et al. Using the Offset–Power Diagram to Monitor the Local Linear Power Density of Fuel Elements in a VVÉR-1000 Core
JPS58208695A (en) Method and device for monitoring reactor core stability
JPS60169796A (en) Controller for operation of nuclear reactor
JPS6123995A (en) Water-supply-pressure cooperation controller for nuclear reactor
JPS6271898A (en) Output controller for nuclear reactor
JPS61117486A (en) Nuclear-reactor nuclear thermal hydrualic power stability controller
JPS61107197A (en) Controller for feedwater to nuclear reactor