JPS5838649A - Detection of molten steel level in continuous casting installation - Google Patents

Detection of molten steel level in continuous casting installation

Info

Publication number
JPS5838649A
JPS5838649A JP13683281A JP13683281A JPS5838649A JP S5838649 A JPS5838649 A JP S5838649A JP 13683281 A JP13683281 A JP 13683281A JP 13683281 A JP13683281 A JP 13683281A JP S5838649 A JPS5838649 A JP S5838649A
Authority
JP
Japan
Prior art keywords
level
molten steel
detected
deviation
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13683281A
Other languages
Japanese (ja)
Other versions
JPH0242580B2 (en
Inventor
Gohei Iijima
飯島 剛平
Takao Wada
多加夫 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP13683281A priority Critical patent/JPS5838649A/en
Publication of JPS5838649A publication Critical patent/JPS5838649A/en
Publication of JPH0242580B2 publication Critical patent/JPH0242580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/185Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using optical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the erroneous detection by a level detector surely by determining the deviation between the detected value of the level of the molten steel in a mold and a model level of the molten steel. CONSTITUTION:The liquid level 8 in a mold device 4 is detected with a level detector 11 via an image pickup device 10, etc. On the other hand, the drawing speed of the molten steel 2 detected with a speed detector 7 and the valve opening obtained from the opening detector 12 of a control valve 5 are inputted to an arithmetic device 13, by which the model level of molten steel is calculated and the deviation from the level of the molten steel by the detector 11 is calculated. According to said deviation, the model level of the molten steel is corrected, and according to the degrees of said deviation, whether the detected level of the liquid surface 8 is normal or not is decided. For example, if the signal of the device 10 fluctuates irregularly in a short time, the deviation increases in accordance with the time thereof. At that time, it is detected that the level value detected by the detector 11 is abnormal and the detector functions erroneously, and the level of the molten steel is corrected.

Description

【発明の詳細な説明】 本発明け、連続鋳造設備におけるモールド装置の溶鋼レ
ベルを検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the level of molten steel in a molding device in a continuous casting facility.

従来から、連続鋳造設備におけるモールド装置の溶鋼レ
ベルの検出方法としては、モールド装置壁面に上下方向
に等間隔に埋込まれた熱電対を用いるものや、C066
等のγ線源とシンチレーションカクンタを用いるもの等
が実用化されている。
Conventionally, methods for detecting the molten steel level in a molding device in continuous casting equipment include using thermocouples embedded vertically at equal intervals in the wall surface of the molding device, and C066
A system using a gamma ray source and a scintillation kakunta has been put into practical use.

しかし、前者の方法では、熱電対の埋込み間隔に限度が
あって高精度な液面検出が内蔵している熱電対への伝熱
遅れを減少するためにモールド装置壁は薄く、そのため
モールド装置の寿命が短くなる。一方、後者の方法では
、放射線の漏洩の可能性があるため、安全性に問題があ
る。
However, in the former method, there is a limit to the spacing between thermocouples, and the walls of the molding device are thin in order to reduce the delay in heat transfer to the thermocouple, which has a built-in high-precision liquid level detection. Life expectancy will be shortened. On the other hand, the latter method poses a safety problem due to the possibility of radiation leakage.

このような従来技術の技術的課題を解決する溶鋼レベル
の検出方法として、モールド装置内部を撮像装置で1j
!惨し、その映像信号を溶一部に対応した論理値と背景
部に対応した論理値とに2値化して、前記一方の論理値
の長さの計数値に基づいて溶鋼レベルを検出する方法が
提案されている(特11alA56−5389)。
As a method for detecting the molten steel level that solves the technical problems of the conventional technology, the inside of the molding device is captured using an imaging device.
! Unfortunately, there is a method in which the video signal is binarized into a logical value corresponding to the molten part and a logical value corresponding to the background part, and the molten steel level is detected based on the counted value of the length of one of the logical values. has been proposed (Special Patent No. 11alA56-5389).

ところが、このような撮像装置による溶鋼レベルの検出
方法では、溶鋼の火炎などによる光学的外乱によって画
像が乱れ、それによって検出誤差を生じることがある。
However, in this method of detecting the level of molten steel using an imaging device, the image may be disturbed by optical disturbances caused by flames of the molten steel, which may cause detection errors.

本発明は、上述の技術的課題を解決し、モールド装置内
の溶−レベルをa、実に検出し得るようにした溶鋼レベ
ルの検出方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned technical problems and to provide a method for detecting a molten steel level that can actually detect the molten steel level in a molding device.

以下、図面によって本発明の実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の簡略化した断面図である。FIG. 1 is a simplified cross-sectional view of one embodiment of the invention.

連続鋳造設備において、タンディツシュ装yjl内の溶
鋼2Viノズル3を介してモールリド装許4因に注入さ
れる。ノズル3の途中には制御弁5が備えられており、
この制御弁5の開度xK応じて溶f42の注入量Qiが
定まる。溶鋼2けモールド装置4の底部から引抜きロー
ル6によって引き抜かれる。この溶鋼2の引き抜き速度
Vtけ速度検出器7によって検出される。なお、制御弁
5の弁開度xii、溶@2の液面8がほぼ一定となるよ
うに制御されている。モールド装置4因において液面8
#−1、溶鋼2の酸化防止、冷却防止およびモールド装
置4の内面との潤滑のための、fフグと称する粉体9で
覆われる。
In a continuous casting facility, molten steel is injected into a mold lid through a 2Vi nozzle 3 in a tundish device. A control valve 5 is provided in the middle of the nozzle 3,
The injection amount Qi of the melt f42 is determined according to the opening degree xK of the control valve 5. The molten steel is pulled out from the bottom of the two-layer molding device 4 by a pulling roll 6. The drawing speed Vt of the molten steel 2 is detected by the speed detector 7. Note that the valve opening xii of the control valve 5 and the liquid level 8 of the melt@2 are controlled to be approximately constant. Liquid level 8 in mold equipment 4 factors
#-1, covered with a powder 9 called f-fugu to prevent oxidation and cooling of the molten steel 2 and to lubricate the inner surface of the molding device 4.

モールド装置4の斜め上方には液面8のレベルを検出す
るための撮像装置10が配置されており、この際像装置
10からの映像信号はレベル検出装置11に入力される
。レベル検出1111tにおいては、前記映像信号が溶
鋼2に対応した論理値と、背景部に対応した論理値とに
2値化される。しかも一方の論理値の長さが計数され、
その計数値に基づいて液面8のレベルが検出される。
An imaging device 10 for detecting the level of the liquid surface 8 is disposed diagonally above the molding device 4. At this time, a video signal from the imaging device 10 is input to a level detection device 11. In the level detection 1111t, the video signal is binarized into a logical value corresponding to the molten steel 2 and a logical value corresponding to the background portion. Moreover, the length of one logical value is counted,
The level of the liquid surface 8 is detected based on the counted value.

一方、速度検出器7によって検出された溶鋼2の引き抜
き速度VLと、1tlJ御弁5の開度検出器12によっ
て得られた弁開崩Xとは、演算装置13に入力される。
On the other hand, the drawing speed VL of the molten steel 2 detected by the speed detector 7 and the valve opening collapse X obtained by the opening degree detector 12 of the 1tlJ control valve 5 are input to the calculation device 13.

この演算装置13においては、前[、引き抜き速I!′
vLと開度Xとに基づいてモデル溶鋼レベルが算出され
るとともに、前記レベル検出装置11による溶鋼レベル
との偏差が算出される。
In this arithmetic unit 13, the front [, withdrawal speed I! ′
A model molten steel level is calculated based on vL and the opening degree X, and a deviation from the molten steel level measured by the level detection device 11 is calculated.

演算装置13においてモデル溶鋼レベルLmij第1式
に基づいて算出される Lm=L o+f/lt(Q o −Q i  )d 
t     −−−+1第1式において、Qoは溶鋼引
き抜き量(m/5ec)であり、Qlj溶鋼注入量(m
/5ee)であり、LOFi時刻toにおけるレベル−
であり、Amけモールド装置4の断面WICm2戻ある
。また第1式における溶鋼引き抜きll COK第2式
で示される。
Lm=Lo+f/lt(Qo-Qi)d calculated by the calculation device 13 based on the first equation of model molten steel level Lmij
t ---+1 In the first equation, Qo is the amount of molten steel withdrawn (m/5ec), and Qlj is the amount of molten steel injected (m/5ec).
/5ee), and the level at LOFi time to is -
The cross section WICm2 of the molding device 4 is as follows. In addition, the molten steel withdrawal in the first equation is expressed by the second equation.

Qo = Am ・VL    ・=(2)勢、2式に
おいて、vしけ溶鋼の引き抜き速度(m/5ec)であ
石。さらに溶鋼注入量Qiはタンディシュ内溶鋼ヘッド
を一定とすれば弁8度Xの関数となり@3式で示される
Qo = Am ・VL ・= (2) In equation 2, the drawing speed of v-barge molten steel (m/5ec) is the stone. Furthermore, if the molten steel head in the tundish is constant, the molten steel injection amount Qi becomes a function of the valve 8 degree X, and is expressed by @Equation 3.

Q + =f (x)    ・・・(3)したがって
、第1式、第2式および93式から、モデル溶鋼レベル
Lmii第4式であられされる。
Q + =f (x) (3) Therefore, from the first equation, the second equation, and the 93rd equation, the model molten steel level Lmii is calculated by the fourth equation.

Lm=Lo・+f (VL−上f(xl) d t  
・II)10    Am このように9して、引き抜き速度VLと、弁開度Xとを
演算装置13に入力することにより、上述の第4式に基
づいてモデル溶鋼レベルLmが算出される。このモデル
溶鋼レベルL m it 、レベル検出1vq11によ
って検出されたレベルとの偏差に后じて修正される。し
かも前記偏差はレベル検出器[11に表示されており、
その偏差の大小によって液面8の検出レベルが正常であ
るかどうかを判定することができる。
Lm=Lo・+f (VL-upper f(xl) d t
-II) 10 Am In this way, by inputting the drawing speed VL and the valve opening degree X to the calculation device 13, the model molten steel level Lm is calculated based on the above-mentioned formula 4. This model molten steel level L m it is corrected depending on the deviation from the level detected by level detection 1vq11. Moreover, the deviation is displayed on the level detector [11,
Depending on the magnitude of the deviation, it can be determined whether the detection level of the liquid level 8 is normal.

第2図は演算装置13のブロック図である。開度検出器
12で検出された弁開K x #−を第1伝達要素14
に与えられ、前述の93式に基づいて溶鋼注入量Qiが
算出される。この溶−注入量Qiを表わす信号と、速度
検出器7によって検出された引き抜き速度VLから92
式によって求められた溶鋼引き抜IQoを表わす信号と
は、加え合せ点15において加え合される。これらの各
信号と第2伝達要素16の伝達関数−Km−との積によ
り、前述の第4式に基づくモデル溶鋼レベルLmが得ら
れる。なお記号Kmけモールド装置4の断面積Amに関
連した定数であり、記号Sけラプラス演算子である。
FIG. 2 is a block diagram of the arithmetic unit 13. The valve opening K x #- detected by the opening detector 12 is transmitted to the first transmission element 14
is given, and the molten steel injection amount Qi is calculated based on the above-mentioned formula 93. From the signal representing this melt injection amount Qi and the withdrawal speed VL detected by the speed detector 7, 92
The signal representing the molten steel withdrawal IQo determined by the formula is added at a summing point 15. By multiplying each of these signals and the transfer function -Km- of the second transfer element 16, a model molten steel level Lm based on the above-mentioned formula 4 is obtained. Note that the symbol Km is a constant related to the cross-sectional area Am of the molding device 4, and the symbol S is a Laplace operator.

モデル溶鋼レベルLmを示す信号と、レベル検出器fi
llで検出された溶鋼レベルを示す信号とけ加え合せ点
17で比較される。それによってモデル溶鋼レベルLm
と、レベル検出器M11による溶鋼レベルとの偏差が得
られる゛。この偏差はレベル検出袋ツ11に与えられ、
レベル検出装置11では前記偏差が表示される。
A signal indicating the model molten steel level Lm and a level detector fi
It is compared at a summation point 17 with a signal indicating the molten steel level detected at ll. Accordingly, the model molten steel level Lm
The deviation from the molten steel level measured by the level detector M11 can be obtained. This deviation is given to the level detection circuit 11,
The level detection device 11 displays the deviation.

前記偏差は、前述の加え合せ点15にフィードバッグさ
れ、それによってモデル溶鋼レベルLmが補正される。
The deviation is fed back to the above-mentioned summing point 15, thereby correcting the model molten steel level Lm.

すなわち加え合せ点17からの偏差信号はリミッタ19
を介して比例要素20および積分要素21に並列に与え
られる。リミッタ19け、前記偏差が予め定めた一定値
以下であるときのみフィードバックしてモデル溶鋼レベ
ルLmを補正するためのものである。すなわち偏差が前
記一定値を超えた場合には、レベル検出異常と判定して
フィードバックが行なわれない。
In other words, the deviation signal from the addition point 17 is sent to the limiter 19.
It is applied in parallel to the proportional element 20 and the integral element 21 via. The limiter 19 is provided to correct the model molten steel level Lm by giving feedback only when the deviation is below a predetermined constant value. In other words, if the deviation exceeds the certain value, it is determined that the level detection is abnormal and no feedback is performed.

リミッタ19を通過した偏差信号は、比例要素20の伝
達関数Kfおよび積分要素21の伝達間l 数  にそれぞれ乗じられた後、加え合せ点22f で加え合さhlさらに加え合せ点15に1X′I見られ
る。このようKして、モデル溶鋼レベルLmが偏差に応
じ九PI#作によって補正される。
The deviation signal that has passed through the limiter 19 is multiplied by the transfer function Kf of the proportional element 20 and the transmission interval l number of the integral element 21, respectively, and then summed at a summing point 22f. Can be seen. In this way, the model molten steel level Lm is corrected according to the deviation by the 9 PI# operation.

レベル検出装置11で検出された溶鋼レベルが第3図で
示すよう(変動したとする。第3図において破線はモデ
ル溶鋼レベルLmを表示する。溶鋼2からの火炎等によ
って撮像装置1tloで得られた映像信号が急激に乱れ
、時刻t1から1−′までの炉時間TIにおいて溶鋼レ
ベル検出値が乱れたとする。また時刻t3において、モ
ールド装置4内に粉体9を大量に投入し、それKよって
溶鋼レベルがatしたとする。なお、このように粉体9
を大量に投入したことによる溶鋼レベルの変動は比較的
長時間持続する。
Assume that the molten steel level detected by the level detection device 11 fluctuates as shown in FIG. 3. In FIG. 3, the broken line indicates the model molten steel level Lm. Suppose that the detected video signal is suddenly disturbed, and the detected value of the molten steel level is disturbed during the furnace time TI from time t1 to 1-'.Furthermore, at time t3, a large amount of powder 9 is introduced into the molding device 4, and Therefore, it is assumed that the molten steel level is at.In addition, in this way, the powder 9
Fluctuations in the molten steel level caused by the injection of a large amount of molten steel last for a relatively long time.

第3図のごとく変動する溶鋼レベルに応じて、溶鋼レベ
ル検出値とモデル溶鋼レベルLmとの偏差は第4図のよ
うKあられれる。すなわち、定常状態では偏差はほぼ零
であり、レベル検出装置11によるレベル検出値が正確
であることがわかる。
In response to the molten steel level changing as shown in FIG. 3, the deviation between the detected molten steel level value and the model molten steel level Lm varies as shown in FIG. 4. That is, in a steady state, the deviation is almost zero, and it can be seen that the level detection value by the level detection device 11 is accurate.

ところが、撮像装W110による映像信号が短時間T1
だけ乱れた場合KFi、その時間TIK対応して偏差が
大となる。そのためレベル検出装置1111によるレベ
ル検出値が異常であり、誤動作であることを知ることが
できる。さらに、粉体9を大量に投入した場合には前記
偏差は時間経過に応じて小となる。したがって偏差を監
視しておけば、レベル検出装置11による誤検出を判定
することができる。演算装置13によって誤検出と判定
された場合にはこの間の溶鋼レベルとして、(a)モデ
ル溶鋼レベルを出力する、あるいは(旬誤検出以前の溶
鋼レベルを保持する、などの方法により、溶鋼レベルを
修正することができる。
However, the video signal from the imaging device W110 is short-lived at T1.
When KFi is disturbed, the deviation becomes large corresponding to the time TIK. Therefore, it can be known that the level detection value by the level detection device 1111 is abnormal and that it is a malfunction. Furthermore, when a large amount of powder 9 is introduced, the deviation becomes smaller over time. Therefore, if the deviation is monitored, erroneous detection by the level detection device 11 can be determined. If the arithmetic unit 13 determines that the molten steel level has been erroneously detected, the molten steel level can be determined by (a) outputting the model molten steel level, or (maintaining the molten steel level before the erroneous detection). Can be fixed.

上述の実施例では撮像装置10による映像信号によって
溶鋼レベルを検出するようKしたが、零発明け、赤外線
やスリット光などによって溶鋼レベルを検出するように
したレベル検出装置などに関連して広〈実施され得る。
In the above-mentioned embodiment, the molten steel level is detected by the video signal from the image pickup device 10, but the invention is widely used in connection with a level detection device that detects the molten steel level by infrared rays, slit light, etc. can be implemented.

上述のごとく零発#4によれば、レベル検出装置による
検出値と、モデル溶鋼レベルとの偏差力;急#に大とな
ることをもって前記検出値が異常であると判定するよう
Kしたので、レベル検出装置による誤検出を確実に防止
溶鋼レベルの修正を行なうことができる。
As mentioned above, according to zero firing #4, the deviation force between the detected value by the level detection device and the model molten steel level; because it is determined that the detected value is abnormal when it suddenly becomes large, Erroneous detection by the level detection device can be reliably prevented and the molten steel level can be corrected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面−、第2図は演算装置
13のブロック図、第3図ルベル検出装置11によるレ
ベル検出値を示すグラフ、第4図は偏差を示すグラフで
ある。 1・・・タンディツシュ装置、2・・・溶鋼、5・・・
開度検出器、7・・・速度検出器、8・・・液面、11
・・・レベル検出装置、13・・・演算装置 代理人   弁理士 西教圭−郊
FIG. 1 is a cross section of an embodiment of the present invention, FIG. 2 is a block diagram of the arithmetic unit 13, FIG. 3 is a graph showing the level detected by the level detection device 11, and FIG. 4 is a graph showing deviation. . 1... Tandish device, 2... Molten steel, 5...
Opening degree detector, 7... Speed detector, 8... Liquid level, 11
...Level detection device, 13...Arithmetic device agent Patent attorney Kei Nishi-Kou

Claims (1)

【特許請求の範囲】[Claims] モールド装置内部の溶鋼レベルをレベル検出装置によっ
て検出するとともに、タンディツシュ装置から注入され
る溶鋼量とモールド装置から引き抜かれる溶鋼量とから
モデル溶鋼レベルを算出し、そのモデル溶鋼レベルと前
記レベル検出装置による溶鋼レベルとの偏差に応じて前
記モデル溶鋼レベルを修正し、かつ前記偏差が短時間に
大となることをもってレベル検出装置によるレベル検出
値が異常であると判断するようKしたことを特徴とする
連続鋳造設備の溶鋼レベルの検出方法。
The level of molten steel inside the molding device is detected by a level detection device, and a model molten steel level is calculated from the amount of molten steel injected from the tandish device and the amount of molten steel pulled out from the molding device, and the level of molten steel is calculated based on the model molten steel level and the level detection device. The model molten steel level is corrected according to the deviation from the molten steel level, and when the deviation becomes large in a short period of time, it is determined that the level detected by the level detection device is abnormal. Method for detecting molten steel level in continuous casting equipment.
JP13683281A 1981-08-31 1981-08-31 Detection of molten steel level in continuous casting installation Granted JPS5838649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13683281A JPS5838649A (en) 1981-08-31 1981-08-31 Detection of molten steel level in continuous casting installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13683281A JPS5838649A (en) 1981-08-31 1981-08-31 Detection of molten steel level in continuous casting installation

Publications (2)

Publication Number Publication Date
JPS5838649A true JPS5838649A (en) 1983-03-07
JPH0242580B2 JPH0242580B2 (en) 1990-09-25

Family

ID=15184541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13683281A Granted JPS5838649A (en) 1981-08-31 1981-08-31 Detection of molten steel level in continuous casting installation

Country Status (1)

Country Link
JP (1) JPS5838649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859929A1 (en) * 2003-09-23 2005-03-25 Realisations Tech Sert Soc Et Automatic start-up of molten metal continuous casting installation using camera to detect and computer to control metal levels in casting mould

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884738A (en) * 1972-02-17 1973-11-10
JPS5325535A (en) * 1976-08-23 1978-03-09 Sumitomo Chem Co Ltd Purification of substituted phenylacetic acids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884738A (en) * 1972-02-17 1973-11-10
JPS5325535A (en) * 1976-08-23 1978-03-09 Sumitomo Chem Co Ltd Purification of substituted phenylacetic acids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859929A1 (en) * 2003-09-23 2005-03-25 Realisations Tech Sert Soc Et Automatic start-up of molten metal continuous casting installation using camera to detect and computer to control metal levels in casting mould

Also Published As

Publication number Publication date
JPH0242580B2 (en) 1990-09-25

Similar Documents

Publication Publication Date Title
JPH0349047B2 (en)
JPS5838649A (en) Detection of molten steel level in continuous casting installation
EP0052514B1 (en) A method and apparatus for controlling the centrifugal casting of a metal pipe
JPH0229419B2 (en) RENZOKUCHUZOIGATANIOKERUCHUZOKONOHADANKENSHUTSUHOHO
JPS5679025A (en) Safety device for automatic transmission
JP3517329B2 (en) Digital counting rate meter
JP3037963B2 (en) Integral flow meter
JPH04342855A (en) Exhaust gas temperature abnormality detecting device of internal combustion engine
JP3944398B2 (en) Mold level control method in mold for continuous casting machine
KR970001967B1 (en) Thermometer
JP3221990B2 (en) Mold level measuring device
KR101058896B1 (en) Melt Level Estimation System
JPH046536B2 (en)
JPS5698981A (en) Monitoring device for prevention of crime
JPH07244189A (en) Correction method for reactivity measurement value with reactivity meter
JPH01185422A (en) Method for measuring temperature of molten iron
JPS61226155A (en) Detection of slag outflow
JP3308361B2 (en) Radioactivity detector for continuous cast slabs
JPS5960611A (en) Abnormality monitoring device
JPS5947622B2 (en) Method for detecting molten steel level
JPS62206675A (en) Flame picture processing method
JPS58124911A (en) Abnormal state detecting device
JPS5850435A (en) Vibration monitor
JPS63203260A (en) Method for predicting breakout in continuous casting
JP2004020227A (en) Method for measuring change of angle using angular speed detecting sensor, and device thereof