JPS5838537B2 - Tsumemonosozai ni Texita 3 Jigenkenshiyukuseni no seizouhouhou - Google Patents

Tsumemonosozai ni Texita 3 Jigenkenshiyukuseni no seizouhouhou

Info

Publication number
JPS5838537B2
JPS5838537B2 JP3662374A JP3662374A JPS5838537B2 JP S5838537 B2 JPS5838537 B2 JP S5838537B2 JP 3662374 A JP3662374 A JP 3662374A JP 3662374 A JP3662374 A JP 3662374A JP S5838537 B2 JPS5838537 B2 JP S5838537B2
Authority
JP
Japan
Prior art keywords
tow
crimp
fiber
denier
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3662374A
Other languages
Japanese (ja)
Other versions
JPS50130561A (en
Inventor
隆 加藤
重雄 高岡
三四郎 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3662374A priority Critical patent/JPS5838537B2/en
Publication of JPS50130561A publication Critical patent/JPS50130561A/ja
Publication of JPS5838537B2 publication Critical patent/JPS5838537B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】 本発明はつめもの素材に適した3次元捲縮繊維の製造方
法に関し、更に詳しくは紡糸延伸後に弾性収縮差に基づ
く自己発振能を有する合成繊維から、簡単な装置で能率
よく、つめもの素材に適した3次元形態を有する低捲縮
山数高捲縮度繊維を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing three-dimensional crimped fibers suitable for materials for nails, and more specifically, the present invention relates to a method for producing three-dimensional crimped fibers suitable for materials for nails, and more specifically, it is possible to produce three-dimensionally crimped fibers using a simple device from synthetic fibers having self-oscillation ability based on the difference in elastic contraction after spinning and drawing. The present invention relates to a method for efficiently producing fibers with a low crimp count and a high degree of crimp, which have a three-dimensional shape suitable for use as a material for stuffing.

従来、つめ物用繊維としては押込み型クリンパ−による
機械捲縮付与繊維、偏心複合繊維又は溶融紡糸時に非対
称冷却された繊維など、いわゆる構造差捲縮の発現によ
るスパイラル形態の強い捲縮繊維で、且つ捲縮山数は捲
縮を引伸ばした繊維実長10crfL当り15〜40山
、捲縮度15〜60%程度の繊維が一般的に用いられて
いる。
Conventionally, fibers for stuffing are strongly crimped fibers with a spiral shape due to so-called structural differential crimp, such as mechanically crimped fibers using a push-type crimper, eccentric composite fibers, or fibers that are asymmetrically cooled during melt spinning. Fibers with a crimp count of 15 to 40 per 10 crfL of stretched fiber length and a crimp degree of about 15 to 60% are generally used.

第1図イは機械捲縮付与繊維の捲縮形態、第1図口は構
造差捲縮繊維の捲縮形態を示す写真である。
Figure 1A is a photograph showing the crimp form of mechanically crimped fibers, and Figure 1A is a photograph showing the crimp form of structurally crimped fibers.

しかしながら、これらの繊維からなるウェブではある程
度の初期カサはあるが、使用時の繰返し荷重やもみ効果
により繊維同志が絡み合うためにカサが減少し、その後
の乾燥やいわゆる叩きによってもほとんど回復しないと
いう欠点がある。
However, although webs made of these fibers have some initial bulk, the bulk decreases due to the fibers intertwining with each other due to repeated loads and kneading effects during use, and the disadvantage is that it hardly recovers even after subsequent drying or so-called beating. There is.

更に従来繊維の欠点は、つめ物、特に掛布団として使用
する場合沈みが小さくて固く且つ圧縮弾性が強くて、ゴ
ム系スポンジのような風合を呈することである。
Furthermore, the disadvantages of conventional fibers are that when they are used for stuffing, especially for quilts, they tend to sink less, are hard, and have strong compressive elasticity, giving them the feel of a rubber sponge.

このような従来繊維の欠点を解消すべく繊維の捲縮性能
について検討した結果、繊維の捲縮山数が繊維実長10
CrfL当り約2〜12.5で、かつ捲縮度が50%以
上の低捲縮山数、高捲縮度繊維でしかも3次元形態の捲
縮を有するものであれば、非常にカサ高で圧縮による沈
みが大きく、感触がソフトで更には着用によるカサ減り
が少なく、また叩きにより完全に回復するなど羽毛布団
に近いウェブ特性を有することが判明した。
In order to eliminate these drawbacks of conventional fibers, we investigated the crimp performance of fibers and found that the number of crimp ridges of fibers is 10
If it is about 2 to 12.5 per CrfL and has a low number of crimp threads and a high crimp degree of 50% or more, and has three-dimensional crimp, it will have a very high bulk. It was found that the web had properties similar to those of a down comforter, with a large amount of sinking due to compression, a soft feel, little loss of bulk due to wear, and complete recovery when beaten.

このような3次元形態で低捲縮山数高捲縮度を持った捲
縮繊維は従来の押込み型クリンパ−による機械的捲縮付
与とか偏心複合繊維によっては得られず、製造可能な方
法としてはわずかに仮撚法、擦過法があるにすぎない。
A crimped fiber with such a three-dimensional form and a low number of crimps and a high degree of crimping cannot be obtained by mechanical crimping using a conventional push-type crimper or by eccentric composite fibers, and therefore, it is not possible to obtain a crimped fiber using a method that can be manufactured. There are only a few false twisting methods and rubbing methods.

しかしながら、仮撚法および擦過法はトウデニールがせ
いぜい1000デニール以下のものしか採用できないた
め生産性が劣ると共に捲縮度を高(することが難しい。
However, since the false twisting method and the rubbing method can only employ tow denier of 1000 deniers or less, productivity is poor and it is difficult to increase the degree of crimp.

本発明はかかる従来技術の欠点をすべて解消し、3次元
形態を有する低捲縮山数高捲縮度のつめ物素材に適した
捲縮繊維を簡単な装置で、しかも能率よく安価に製造す
る方法を提供することを目的とするものである。
The present invention eliminates all of the drawbacks of the prior art, and produces crimped fibers having a three-dimensional shape, low crimp count, and high degree of crimp, suitable for nail materials, using a simple device, efficiently, and at low cost. The purpose is to provide a method.

すなわち本発明は、繊維軸に直角な断面方向に非対称構
造を有し、紡糸延伸後に弾性収縮差にもとづく自己発振
能を有する合成繊維からなる104デニール以上のトウ
を、トウ含水率が10〜200%、トウ巾密度がI X
104〜6X10’デニール/cIrLである十分収
束した状態でトウ屈曲装置に導き、屈曲1山当りの繊維
実長(ト)が8〜50朋になるように、かつフリー下で
測定した単繊維のコイル直径0と前記屈曲1山当りの繊
維実長(gとの関係が次式 を満足するように屈曲させると同時あるいは屈曲させた
後、該屈曲と実質的に同一ピッチで弾性収縮差にもとづ
く2次元捲縮を発現させ、次いで、0.1〜5mI?/
dの張力を与えるような作用をトウに加えて3次元捲縮
に変換し、続いて弛緩熱処理を行なって捲縮形態を固定
することを特徴とするつめもの素材に適した3次元捲縮
繊維の製造方法に関するものである。
That is, the present invention uses a tow of 104 denier or more made of synthetic fibers that has an asymmetrical structure in the cross-sectional direction perpendicular to the fiber axis and has a self-oscillation ability based on the difference in elastic contraction after spinning and drawing, and a tow with a water content of 10 to 200. %, tow width density is I
The single fiber was guided into a tow bending device in a sufficiently converged state of 104 to 6 x 10' denier/cIrL, and the actual fiber length (T) per bend was 8 to 50 mm, and the single fiber was measured under free condition. At the same time or after bending, the relationship between the coil diameter 0 and the actual fiber length per bend (g) satisfies the following formula, based on the difference in elastic contraction at substantially the same pitch as the bend. Develop two-dimensional crimp, then apply 0.1 to 5 mI?/
A three-dimensional crimped fiber suitable for a material for stuffing, which is characterized by applying an action such as d to the tow to convert it into three-dimensional crimp, and then performing a relaxation heat treatment to fix the crimp form. The present invention relates to a manufacturing method.

本発明方法によって得られる3次元形態を有する低捲縮
山数高捲縮皮繊維の捲縮形態を第1図ハに示す。
The crimped form of the low crimped, high crimped skin fiber having a three-dimensional form obtained by the method of the present invention is shown in FIG. 1C.

本発明方法の最大の特徴は、トウ屈曲装置において付与
する屈曲ピッチと弾性収縮差にもとづく自己発振能によ
り発振する捲縮ピッチとを特定の関係に保持し、かりト
ウ全体として捲縮を発現するように十分収束しておくこ
と、および屈曲後トウに張力作用を加えて、3次元捲縮
に変換することにある。
The most important feature of the method of the present invention is to maintain a specific relationship between the bending pitch imparted by the tow bending device and the crimp pitch that oscillates due to the self-oscillation ability based on the difference in elastic contraction, so that the tow as a whole develops crimp. The purpose is to sufficiently converge the tow as shown in FIG.

以下、順を追って本発明方法を詳細に説明する。Hereinafter, the method of the present invention will be explained in detail step by step.

本発明において繊維軸に直角な断面方向に非対称構造を
有する合成繊維とは、ポリエステル、ポリアミド、ポリ
オレフィン、ポリアクリロニトリルなどからなり、かつ
性質の異なる重合体が繊維の長さ方向にわたって互に密
着し、繊維軸に直角な断面方向に偏心的に配置されてい
る複合繊維、あるいは紡糸時に繊維軸に直角な断面方向
で冷却効果に差をもたせるなどによって構造差を付与し
た繊維で、複合繊維成分の組合せとしては同一ポリマー
の重合度差とか、共重合量に差をもたせたポリマーとか
、接合性のある異種ポリマ或いは接合性不十分な異種ポ
リマーであっても製造過程で剥離が完了しないものであ
れば適用可能である。
In the present invention, synthetic fibers having an asymmetric structure in the cross-sectional direction perpendicular to the fiber axis are made of polyester, polyamide, polyolefin, polyacrylonitrile, etc., and in which polymers with different properties are in close contact with each other along the length of the fiber, Composite fibers that are arranged eccentrically in the cross-sectional direction perpendicular to the fiber axis, or fibers that have structural differences due to differences in cooling effect in the cross-sectional direction perpendicular to the fiber axis during spinning, and are combinations of composite fiber components. For example, differences in the degree of polymerization of the same polymer, polymers with different amounts of copolymerization, different types of polymers with bonding properties, or different types of polymers with insufficient bonding properties, but if peeling is not completed during the manufacturing process. Applicable.

更に弾性収縮差にもとづく自己発振能とは、紡糸又は延
伸後に於てポリマーのガラス転移温度(複合糸の場合は
ガラス転移温度の低い方のポリマーの転移温度)以下の
温度に於ても、張力を除いた時自発的に捲縮を発生する
能力を意味し、一般的に紡糸や延伸後の熱処理とか薬液
処理によってひずみの緩和やポリマ固有の性質に起因す
る収縮差にもとづいて発生する捲縮発振能とは区別でき
る。
Furthermore, the self-oscillation ability based on the difference in elastic contraction means that even at temperatures below the glass transition temperature of the polymer (in the case of composite yarns, the transition temperature of the polymer with the lower glass transition temperature) after spinning or drawing, the tension Crimp refers to the ability to spontaneously generate crimp when removed, and generally crimp occurs due to relaxation of strain due to heat treatment or chemical treatment after spinning or drawing, or due to shrinkage difference due to the inherent properties of the polymer. It can be distinguished from oscillation ability.

本発明では熱収縮差にもとづく発振能は本質的には何ら
関係なく、利用しても補助的なものであって、弾性収縮
差による発振を活かし熱収縮差による発振を殺すところ
に特徴がある。
In the present invention, the oscillation ability based on the difference in thermal contraction is not essentially related at all, and even if used, it is an auxiliary one, and the present invention is characterized in that the oscillation due to the difference in elastic contraction is utilized to kill the oscillation due to the difference in thermal contraction. .

本発明は上記の如き自己発振能を有する合成繊維を、先
に記した特徴をもたすための手段として、屈曲装置に入
る前から捲縮が熱固定されるまで、各フィラメントをト
ウ全体の中で拘束された状態に保ち、フィラメントに自
由な捲縮発現を許さずトウ全体として特定の捲縮を出す
ものである。
The present invention provides synthetic fibers having self-oscillation ability as described above, as a means of providing the above-mentioned characteristics, by bending each filament over the entire tow from before entering the bending device until the crimp is heat-set. The filament is held in a restrained state, and the tow as a whole develops a specific crimp without allowing the filament to freely crimp.

トウを十分収束させるためにはトウデニールを104デ
ニール以上にすることが必要で、104デニール以下に
なるとトウ全体としての拘束が不足し、屈曲装置で賦形
しても張力作用により単繊維に分離し、熱固定処理の段
階で屈曲ピッチと関係なく熱収縮差にもとづく発振能に
よって従来見られたようなスパイラルに近い小さな捲縮
を発現する。
In order to converge the tow sufficiently, it is necessary to make the tow denier 104 denier or more; if it is less than 104 denier, the tow as a whole will not be restrained enough, and even if it is shaped with a bending device, it will separate into single fibers due to the tension action. During the heat-setting process, small crimps similar to conventional spirals appear due to the oscillation ability based on the difference in thermal contraction, regardless of the bending pitch.

従ってトウデニールは大きい方が望ましく、特に安定し
て生産するためには2X10’デニ一ル以上のトウが望
ましい。
Therefore, it is desirable that the tow denier be larger, and in particular, for stable production, a tow of 2×10' denier or more is desirable.

更に、トウを十分収束した状態はトウを湿潤状態に保つ
こと、トウ密度を高めることによって達成することがで
きる。
Furthermore, a well-converged state of the tow can be achieved by keeping the tow moist and increasing the tow density.

トウの湿潤状態としてはトウ含水率が10〜200%の
状態が必要で、10%未満になると収束性が不十分であ
り、200%を越えると屈曲装置においてスリップが大
きくなる。
The wet state of the tow requires a tow moisture content of 10 to 200%; if it is less than 10%, the convergence will be insufficient, and if it exceeds 200%, slip will increase in the bending device.

この際トウの収束状態および次工程における乾燥効率を
考慮すると、トウ含水率は15〜100%が特に好まし
い。
At this time, in consideration of the state of convergence of the tow and the drying efficiency in the next step, the moisture content of the tow is particularly preferably 15 to 100%.

トウの収束状態を向上させるために水と共に有機液体や
糊剤等の収束剤を用いることも可能である。
In order to improve the convergence state of the tow, it is also possible to use a convergence agent such as an organic liquid or a sizing agent together with water.

ここでトウ含水率とは乾燥繊維当たりの水分量で表わし
たものである。
Here, the tow moisture content is expressed as the amount of moisture per dry fiber.

トウ密度はトウ巾1crfL当たりのデニールで表わせ
ば104〜6×106デニール/cmが必要で、104
デニール/cIfL未満では収束性が不充分で熱固定処
理の段階で熱収縮差にもとづく捲縮が発現L、6X10
’デニール/のを越えるとフィラメントのマイグレーシ
ョンが大きくなって屈曲し難くなると同時に、屈曲装置
を出た後弾性収縮差にもとづく捲縮が発現する際に、と
なりの捲縮との接触が大きくなって深い捲縮となり得す
、捲縮度が低下するので、不都合である。
The tow density, expressed in denier per 1 crfL of tow width, is required to be 104 to 6 x 106 denier/cm, which is 104
If it is less than denier/cIfL, the convergence is insufficient and crimp occurs due to the difference in heat shrinkage during the heat setting process L, 6X10
If the filament exceeds a denier, the migration of the filament increases and becomes difficult to bend, and at the same time, when crimp occurs due to the difference in elastic contraction after leaving the bending device, the contact with the adjacent crimp increases. This is disadvantageous because it reduces the degree of crimp, which can lead to deep crimp.

ここでマイグレーションとは、トウカ厚みを有する時に
必然的に生ずる現象であり、屈曲装置へトウが入る時の
各フィラメントの速度(又は長さ:は同一であるのに対
して屈曲される場合トウの内層と外層では行路差を生じ
、特定のフィラメントに注目すると長さ方向に内層と外
層の間を変動する現象のことである。
Migration here is a phenomenon that inevitably occurs when the tow has a certain thickness, and while the velocity (or length) of each filament is the same when the tow enters the bending device, when the tow is bent, the This is a phenomenon in which a path difference occurs between the inner and outer layers, and when a particular filament is focused on, it fluctuates between the inner and outer layers in the length direction.

トウを十分収束した状態に保つためには更に他の方法も
考えられるが、通常トウデニール、トウ含水率およびト
ウ密度を考慮すれば本発明の目的を達成することができ
る。
Although other methods are conceivable for keeping the tow in a sufficiently converged state, the purpose of the present invention can generally be achieved by considering tow denier, tow moisture content, and tow density.

上述したように十分収束した状態のトウを、次いで実質
上ストレートになる程度の張力を付与して屈曲装置に導
く。
The tow, which has been sufficiently converged as described above, is then guided to a bending device by applying tension to the extent that it becomes substantially straight.

屈曲装置としては一対のギヤ、歯つき車、キャタピラあ
るいは特公昭33−10696に示される装置などを用
いることができるが、これに限定されるものではなくト
ウに座屈を与える作用を持つものであればよい。
As the bending device, a pair of gears, a toothed wheel, a caterpillar, or the device shown in Japanese Patent Publication No. 33-10696 can be used, but the device is not limited to these, and any device that has the effect of buckling the tow can be used. Good to have.

屈曲付与装置で付与する屈曲ピッチは、先に述べたよう
なつめ物としての最適範囲から屈曲1山当りの繊維実長
が8〜501m、すなわち繊維実長1OCrfL当り2
〜12.5山の屈曲とする。
The bending pitch imparted by the bending device is set such that the actual fiber length per bend is 8 to 501 m from the optimum range as described above for the filling material, that is, 2 m per actual fiber length 1OCrfL.
~12.5 peaks of bending.

なお、最終繊維の捲縮山数は張力作用の程度と熱固定処
理時の繊維の熱収縮により付与した屈曲よりも若干増加
するが、つめ物としての最適範囲をほぼ満足する。
Although the number of crimp ridges in the final fiber increases slightly compared to the bending imparted by the degree of tension and the thermal contraction of the fiber during heat-setting treatment, it almost satisfies the optimum range for a stuffing material.

この屈曲工程において重要なことは、屈曲1山当りの繊
維実長(Ljmrnと別に測定したフリー下での単繊維
のコイル直径(D)m11Lとの関係が次式を満足する
ようにコントロールして屈曲させることである。
What is important in this bending process is that the relationship between the actual fiber length per bend (Ljmrn) and the separately measured single fiber coil diameter (D) m11L under free conditions is controlled so that it satisfies the following equation. It means bending.

ここで単繊維のコイル直径0は単繊維をほぼ半円〜円に
なる長さにカットし、20℃の水中または界面活性剤入
りの水中に分散して捲縮を発現させ、コイル直径を測定
することによって得られる数値で、いわゆる自己発振能
はコイル直径の逆数である。
Here, the coil diameter of a single fiber is 0. Cut the single fiber into a length that is approximately semicircular to circular, disperse it in water at 20°C or water containing a surfactant to develop crimp, and measure the coil diameter. The so-called self-oscillation ability is the reciprocal of the coil diameter.

(1)式で示される範囲を図示すると第2図の斜線で示
される範囲であり、この範囲を外れると屈曲装置で付与
された屈曲と弾性収縮差にもとづいて発現する捲縮とが
うまく合わず、良好な捲縮は得り もれない。
The range expressed by equation (1) is shown by diagonal lines in Figure 2. Outside this range, the bending applied by the bending device and the crimp that occurs based on the difference in elastic contraction do not match well. Good crimp is inevitable.

すなわち、−が3以下になると付与した屈曲に比べて自
己発振能が不足しているため、付与した屈曲に沿って全
(捲縮しないかあるいは僅かに発捲しても捲縮度が低く
、張力作用で完全に伸びきってしまうために目標とする
捲縮繊維は得られない。
In other words, when - is 3 or less, the self-oscillation ability is insufficient compared to the given bend, so there is no crimp along the given bend, or even if it is slightly curled, the degree of crimp is low, The target crimped fiber cannot be obtained because it is completely stretched due to the tension action.

一方、−が20以上になると逆に自り 己発振能が強すぎるため、付与した屈曲に沿って一度は
発捲してもその形態は非常にくずれやすく、張力作用に
よって完全に繊維がくずれて後の熱処理により屈曲ピッ
チには関係なく微細な捲縮を発現してしまい、目標とす
る3次元形態を有する低捲縮山数が得られない。
On the other hand, when - is 20 or more, the self-oscillation ability is too strong, so even if it is wound once along the given bend, its shape is very likely to collapse, and the fiber will completely collapse due to the tension action. Due to the subsequent heat treatment, fine crimps occur regardless of the bending pitch, making it impossible to obtain a low number of crimps with the targeted three-dimensional shape.

なおりが15mm以上になるとトウ全体として発捲する
力が弱くなり、屈曲装置を出たトウに張力を加えるとそ
の張力が5772fii’/d以下であっても捲縮が伸
び易く、目標とする捲縮繊維が得られ難いのでDは15
關以下の領域が好ましい。
When the crimp becomes 15 mm or more, the crimp force as a whole becomes weak, and when tension is applied to the tow after it exits the bending device, the crimp tends to stretch even if the tension is less than 5772 fii'/d, which is the goal. Since it is difficult to obtain crimped fibers, D is 15.
Areas below the limit are preferred.

屈曲装置を出たトウは屈曲装置により一方向にそろえら
れた2次元形態の捲縮を有しているのでこれを3次元形
態の捲縮に変換するためトウに0.1〜5■/dの張力
を与えるような処理を行なった後、弛緩熱処理を行なっ
て3次元形態の捲縮を固定する。
The tow that exits the bending device has two-dimensional crimps aligned in one direction by the bending device, so in order to convert these into three-dimensional crimps, the tow is 0.1 to 5 cm/d. After performing a treatment to impart tension, a relaxation heat treatment is performed to fix the three-dimensional crimp.

トウの張力が5■/dを越えると張力がオーバーとなる
ため集束されているトウが単繊維に開繊してしまい、弛
緩熱処理後のトウの捲縮は微細化して目標とする捲縮が
得られない。
If the tension of the tow exceeds 5■/d, the tension becomes excessive and the bundled tow opens into single fibers, and the crimp of the tow after relaxation heat treatment becomes finer and the target crimp is not achieved. I can't get it.

また0、1■/d未満の張力ではトウの形態に変化を与
えることができず、屈曲装置で付与された2次元の捲・
縮形態がそのまま弛緩熱処理によって固定されて目標と
する3次元形態の捲縮繊維を得ることができない。
In addition, if the tension is less than 0.1/d, the shape of the tow cannot be changed, and the two-dimensional winding and
The crimped form is fixed as it is by the relaxation heat treatment, making it impossible to obtain crimped fibers with the targeted three-dimensional form.

本発明によって得られる捲縮繊維の捲縮形態は屈曲装置
で付与された屈曲の形態には左右されない すなわち、一対のギヤからなる屈曲装置に銅線を通した
時の屈曲形態は第3図イに示す通りで、繊維を通した場
合もスリップによって若干ピッチは異なるがほぼ第3図
イのような形態であるのに対し、弾性収縮差にもとづく
自己発振能による捲縮を発現させた時には第3図口とな
り、さらに捲縮形態を3次元化させるための張力処理に
より第3図ハのよ5な捲縮形態になるのである。
The crimped form of the crimped fiber obtained by the present invention is not affected by the form of bending imparted by the bending device. In other words, the bending form when the copper wire is passed through the bending device consisting of a pair of gears is as shown in Fig. 3. As shown in Figure 3, even when the fiber is passed through, the pitch differs slightly depending on the slip, but the shape is roughly as shown in Figure 3 A. On the other hand, when crimp is developed due to self-oscillation ability based on the difference in elastic contraction, the pitch is slightly different depending on the slip. It becomes a three-dimensional crimp shape, and by applying tension to make the crimp shape three-dimensional, it becomes a five-dimensional crimp shape as shown in Figure 3C.

なお弾性収縮差にもとづいて発現する捲縮と熱収縮差に
もとづいて発現する捲縮の方向が同一の場合には、補助
的に屈曲装置を加熱することは何らさしつかえない。
Note that if the crimp developed based on the difference in elastic contraction and the crimp developed based on the difference in thermal contraction are in the same direction, there is no problem in heating the bending device auxiliary.

弾性収縮差にもとづく自己発振能による2次元形態の捲
縮を3次元形態に変換するため張力作用を加えたトウは
、続いて各フィラメントが十分束縛される程度に収束し
た状態のまま弛緩熱処理を行ない捲縮形態を固定する。
The tow is subjected to tension in order to convert its two-dimensional crimp into a three-dimensional form due to its self-oscillation ability based on the difference in elastic contraction, and is then subjected to relaxation heat treatment while each filament is converged to the extent that it is sufficiently constrained. to fix the crimped form.

熱固定温度としてはガラス転移温度以上が必要であり、
製品になってから熱固定温度以上に加熱されると熱収縮
差にもとづく微細な捲縮が発現し、目的とするカサ高検
、風合等が負われることがあるので、これらを勘案して
熱固定温度を決定する。
The heat setting temperature must be higher than the glass transition temperature,
If the product is heated above the heat-setting temperature, fine crimp will occur due to the difference in heat shrinkage, which may affect the desired bulk, texture, etc. Determine the fixed temperature.

第4図は本発明方法を実施する工程の1例を示すもので
、未延伸トウ1を延伸デニール換算で104デニール以
上になるように集束した後、フィードローラ一群2とド
ローローラ一群4との間で延伸し、弾性収縮差にもとづ
く自己発振能をもたせる。
FIG. 4 shows an example of the process of carrying out the method of the present invention, in which unstretched tow 1 is bundled to have a stretched denier of 104 denier or more, and then a group of feed rollers 2 and a group of draw rollers 4 are assembled. It has a self-oscillating ability based on the difference in elastic contraction.

延伸浴3には熱水を用いて延伸と同時に十分な水分をト
ウに付与するが、含水率が10%以下の場合には延伸抜
水または適当な収束剤を付与する。
Hot water is used in the stretching bath 3 to impart sufficient moisture to the tow at the same time as stretching, but if the moisture content is less than 10%, stretching water is removed or a suitable binding agent is applied.

ドローローラ一群4を出た延伸トウはダンサローラー5
あるいは張力付与ガイド(図示せず)によって実質上ス
トレートになる程度の張力を付与される。
The stretched tow leaving the group of draw rollers 4 is transferred to the dancer roller 5
Alternatively, tension is applied by a tension applying guide (not shown) to the extent that it becomes substantially straight.

続いてトウ巾コントロールガイド6を通してトウ密度を
調整し、屈曲装置7に導いて屈曲させる。
Subsequently, the tow density is adjusted through the tow width control guide 6, and the tow is guided to the bending device 7 and bent.

屈曲を付与されたトウはニップローラー8で持ち上げら
れ、この間に弾性収縮差にもとづく自己発振能により発
現した2次元捲縮な、張力作用により3次元化し、トウ
全体として第3図へのような捲縮を発現する。
The bent tow is lifted by the nip roller 8, and during this time, it becomes three-dimensional due to the two-dimensional crimp and tension action developed by the self-oscillation ability based on the difference in elastic contraction, and the tow as a whole becomes as shown in Figure 3. Develops crimp.

捲縮の形成が完了したトウはネット9上に移行され、弛
緩熱処理装置10で捲縮形態を熱固定する。
The tow with completed crimp formation is transferred onto a net 9, and the crimp form is heat-set in a relaxation heat treatment device 10.

以下実施例によって本発明を具体的に説明する。EXAMPLES The present invention will be specifically explained below with reference to Examples.

なお、本発明において用いる捲縮特性の定義および測定
方法は次の通りである。
The definition and measurement method of crimp characteristics used in the present invention are as follows.

捲縮山数:繊維実長1oC111当りの山数(山/10
C1n)。
Number of crimp ridges: Number of crimps per actual fiber length 1oC111 (crest/10
C1n).

ここで1゜は繊維を平面上にフリーの状態で置いたとき
の長さ、■はその繊維にデニール当9300■の荷重を
かげたときの長さ 実施例 1 0−クロロフェノールに溶解し、25℃で測定した固有
粘度〔η〕が0.65と0.55である2種のポリエチ
レンテレフタレートを吐出孔径0.6mm、吐出孔数4
8個の複合紡糸口金から紡糸温度280℃、ポリマ吐出
量143f/m111、紡糸速度1600 m/rtm
でバイメタル型に複合紡糸し、16.6デニールの未延
伸糸を得た。
Here, 1° is the length when the fiber is placed in a free state on a flat surface, and ■ is the length when the fiber is subjected to a load of 9300 mm per denier.Example 1 Dissolved in 0-chlorophenol, Two types of polyethylene terephthalate with an intrinsic viscosity [η] of 0.65 and 0.55 measured at 25°C were prepared with a discharge hole diameter of 0.6 mm and a discharge hole number of 4.
Spinning temperature from 8 composite spinnerets: 280°C, polymer discharge rate: 143 f/m, spinning speed: 1600 m/rtm
Composite spinning was carried out into a bimetal type to obtain an undrawn yarn of 16.6 denier.

次いでこの未延伸糸を、延伸糸デニール換算で約105
デニールになるように集束してトウとなし、80℃の熱
水延伸浴を用いて延伸速度100m1minで、延伸倍
率2.5倍、2.8倍、3.1倍および3.6倍に変更
して延伸し、フリー下で測定した単繊維のコイル直径の
)がそれぞれ16.0mg、1.0.3mm、 4.6
mmおよび2.3mmの延伸糸トウを得た。
Next, this undrawn yarn has a drawn yarn denier of approximately 105
Gather it into denier and form a tow. Using a hot water drawing bath at 80°C, the drawing speed is 100ml/min, and the drawing ratio is changed to 2.5x, 2.8x, 3.1x, and 3.6x. The coil diameters of the single fibers, which were stretched and measured under free conditions, were 16.0 mg, 1.0.3 mm, and 4.6, respectively.
Drawn yarn tows of 2.3 mm and 2.3 mm were obtained.

引続いて該トウをトウ含水率20%、トウ巾密度4X1
0’デニール/crrtの十分収束した状態に保ってト
ウ張力40m9/dで1対のギヤからなる屈曲装置に送
り、第1表に示す条件で屈曲させた後、はぼ3■/dの
張力を与えるようにトウを約2m持ち上げてケン縮形態
を3次元化し、155℃×30分の弛緩熱処理を行なっ
た。
Subsequently, the tow was heated to a tow moisture content of 20% and a tow width density of 4×1.
After keeping the tow in a sufficiently converged state of 0' denier/crrt and sending it to a bending device consisting of a pair of gears with a tow tension of 40 m9/d, and bending it under the conditions shown in Table 1, the tow was held under a tension of 3 m9/d. The tow was lifted by about 2 m to give a three-dimensional shape to the crimped shape, and a relaxation heat treatment was performed at 155° C. for 30 minutes.

L その結果、第1表に示すようにL及び−が木登り 明を満足する場合には、目的とする捲縮形態を有する捲
縮特性が得られた。
L As a result, as shown in Table 1, when L and - satisfy the tree climbing condition, crimp characteristics having the desired crimp form were obtained.

しかしLが8朋より小り さ゛場合あ4°゛は50m1り太き゛場合では・。However, L is smaller than 8 ho In this case, 4° is 50m thicker.

が(1)式の範囲に入っているにもかかわらず、捲縮の
形態維持性が悪く、目的とする捲縮特性を得ることがで
きなかった。
Although it was within the range of formula (1), the crimp shape retention was poor and the desired crimp characteristics could not be obtained.

また−が3以下の場合には、D → 発振能不足のため張力作用で捲縮の伸びが起こり、目的
とする捲縮特性を有する繊維は得られなかっし た。
In addition, when - is 3 or less, the crimp elongation occurs due to the tension action due to insufficient D → oscillation ability, and a fiber having the desired crimp characteristics could not be obtained.

また−が20以上の場合には発振能が過剰なり ため張力作用で完全に繊維がバラバラとなり、従来見ら
れたような微細ケン縮を有する繊維しか得られなかった
Moreover, when - is 20 or more, the oscillation ability becomes excessive and the fibers are completely separated by the action of tension, resulting in only fibers having fine crimps as seen in the past.

なおギヤモジュールとはギヤ外径を(歯数+2)で除し
た値である。
Note that the gear module is the value obtained by dividing the gear outer diameter by (number of teeth + 2).

実施例 2 実施例1と同様な2種のポリエチレンテレフタレートを
、吐出孔径0.6mm、吐出孔数24個の複合紡糸口金
から、紡糸温度280℃、ポリマー吐出量146 y
/=、紡糸速度を1150m/mでバイメタル型に複合
紡糸して47.5デニールの未延伸糸を得た。
Example 2 Two types of polyethylene terephthalate similar to those in Example 1 were spun from a composite spinneret with a discharge hole diameter of 0.6 mm and a discharge hole number of 24 at a spinning temperature of 280°C and a polymer discharge rate of 146 y.
/=, the spinning speed was 1150 m/m, and composite spinning was performed in a bimetal type to obtain an undrawn yarn of 47.5 denier.

次いでこの未延伸糸を延伸糸デニール換算で約■05デ
ニールになるように集束してトウとなし、80℃の熱水
延伸浴を用いて延伸速度10゜rrL/Nnで、延伸倍
率を2.8.3.2.3.5および3.8倍に変更して
延伸し、フリー下で測定した単繊維のコイル直径0がそ
れぞれ16.2mm、13.1關、7.2山および4.
2mmの延伸糸を得た。
Next, this undrawn yarn was bundled into a tow to have a denier of about 05 in terms of drawn yarn denier, and was drawn at a drawing rate of 10°rrL/Nn using an 80°C hot water drawing bath at a drawing ratio of 2.0°. 8.3.2. The coil diameter 0 of the single fiber measured under free conditions after stretching at 3.5 and 3.8 times was 16.2 mm, 13.1 mm, 7.2 mm, and 4.8 mm, respectively.
A drawn yarn of 2 mm was obtained.

引続いて第2表に示す条件以外は実施例1と同様に処理
L した結果、第2表に示すようにLおよび−が木兄D
* *明を満足する場合にのみ目的とする捲縮特性をもつ繊
維が得られた。
Subsequently, L was processed in the same manner as in Example 1 except for the conditions shown in Table 2. As a result, as shown in Table 2, L and - were
* *Fibers with the desired crimp characteristics were obtained only when the brightness was satisfied.

実施例 3 実施例2で得られた未延伸糸を、延伸糸デニール換算で
約105デニールになるように集束してトウとなし、8
0℃の熱水延伸浴を用いて延伸速度100 m/mvt
で、延伸倍率3.5で延伸してフリー下で測定した単繊
維のコイル直径0が7.2mmの延伸糸を得た。
Example 3 The undrawn yarn obtained in Example 2 was bundled into a tow to have a denier of approximately 105 in terms of drawn yarn denier.
Stretching speed 100 m/mvt using 0°C hot water stretching bath
Then, a drawn yarn having a single fiber coil diameter 0 of 7.2 mm was obtained by drawing at a drawing ratio of 3.5 and measured under free conditions.

この延伸糸をトウ含水率20%、トウ巾密度4×104
デニール/cIrLの十分収束した状態でギヤモジュー
ル6の屈曲装置に導き、屈曲ピッチ山が37山/山にな
るように屈曲させ、次いで3次元捲縮に変換するための
トウ張力を第3表に示すように変更し、155℃X30
分の弛緩熱処理を行なった。
This drawn yarn has a tow moisture content of 20% and a tow width density of 4×104
Table 3 shows the tow tension for guiding the sufficiently converged denier/cIrL to the bending device of the gear module 6, bending it so that the bending pitch peaks are 37 peaks/peak, and then converting it to three-dimensional crimp. Change as shown, 155℃ x 30
Relaxation heat treatment was performed for 30 minutes.

なお−は5,1であった。Note that - was 5.1.

第3表から明らかなより うに捲縮形態を3次元に変換するためのトウ張力は0.
1 mlI/ d未満では捲縮度が低くなり、5■/d
を越えると捲縮数が多くなりすぎるので、0.1〜5■
/dにすることが必要である。
As is clear from Table 3, the tow tension for converting the crimp form into three dimensions is 0.
If it is less than 1 ml/d, the degree of crimp will be low, and if it is less than 5 ml/d.
If the number exceeds 0.1 to 5, the number of crimps will become too large.
/d.

比較例 1 実施例1の未延伸糸を延伸糸デニール換算で105デニ
ールになるように集束してトウとなし、3.1倍で延伸
した後90關にカットし、155°Cで30分間熱処理
した。
Comparative Example 1 The undrawn yarn of Example 1 was bundled into a tow to have a drawn yarn denier of 105 denier, stretched at 3.1 times, cut to 90 mm, and heat-treated at 155°C for 30 minutes. did.

得られた繊維は第1図口のようなスパイラル捲縮で捲縮
山数21.2山/10crIl、捲縮度58.3%であ
った。
The obtained fiber was spirally crimped as shown in Figure 1, the number of crimps was 21.2/10crIl, and the degree of crimp was 58.3%.

実施例 4 ※※
各実施例で得られたサンプルのうち実施例1のサンプル
A 4 (A)、s、 5 (B)、実施例2のサンプ
ル應3(CI、 崖6(D)、A、10(E)を90m
mにカットし、カードで開繊したウェブについてカサ特
性を測定し、第4表に示す結果を得た。
Example 4 ※※
Among the samples obtained in each example, samples A 4 (A), s, 5 (B) of Example 1, sample 3 (CI, cliff 6 (D), A, 10 (E) of Example 2) 90m
The bulk properties of the webs cut into lengths of 50 mm and opened with a card were measured, and the results shown in Table 4 were obtained.

なお、比較のために比較例1で得られた原綿をカードで
開繊したウェブおよび羽毛についても測定した。
For comparison, the web and feathers obtained by opening the raw cotton obtained in Comparative Example 1 with a card were also measured.

本発明によって得られたA〜Dのウェブは初期カサが非
常に太きいと同時に圧縮率が高く、ソフトで且つ繰返し
によるカサ減りが小さく、更に叩きにより回復も大きく
羽毛の特性に近いものであった。
The webs A to D obtained by the present invention have very thick initial bulk, high compression ratio, are soft, have little loss of bulk due to repeated use, and have high recovery properties when beaten, and have properties close to that of feathers. Ta.

ここでウェブのカサ特性の測定は木綿のさらしで円周7
0crrLの円筒状の袋をつくり、その中へ予めカード
を通したサンプル40f!を全面均等になるように詰め
込み、圧縮試験機(東洋副機製テンシロン)にかげ、圧
縮荷重O〜10 tiI/crj、間で圧縮テストを行
って第5図のような圧縮−力サカーブを作成し、この圧
縮−力サカーブから次の値を求めた。
Here, the bulk characteristics of the web are measured using a cotton cloth with a circumference of 7
Sample 40f made by making a 0 crrL cylindrical bag and passing a card into it in advance! Packed evenly over the entire surface, exposed to a compression tester (Tensilon manufactured by Toyo Soiki Co., Ltd.), and performed a compression test at a compression load of 0 to 10 tiI/crj to create a compression-force saccurve as shown in Figure 5. , the following values were obtained from this compression-force surcurve.

なお、圧縮テストは50回繰返し行なう。Note that the compression test is repeated 50 times.

初期カサは2回目の圧縮テストにおける圧縮カサカーブ
の荷重0.29/cstにおけるカサ、圧縮下のカサは
同じく荷重10 ’if /crtlにおけるカサであ
り、圧縮率は〔(初期カサ−圧縮下カサ)/初期カサ〕
×100である。
The initial bulk is the bulk at a load of 0.29/cst on the compression bulk curve in the second compression test, and the bulk under compression is the bulk at a load of 10'if/crtl, and the compression ratio is [(initial bulk - bulk under compression) /Initial umbrella]
×100.

50回圧縮後方サは500回目圧縮テストにおける圧縮
−カサカーブの荷重0.25’/caにおけるカサであ
り、叩き回復後カサは50回圧縮後のサンプルを手で十
分叩き、改めて圧縮テストを行なったときの2回目の圧
縮−カサカーブの荷重0.2fl/crAにおけるカサ
である。
The 50th compression rear sa is the bulk at the compression-bulb curve load of 0.25'/ca in the 500th compression test, and after recovery from hitting, the sample after 50 compressions was sufficiently tapped by hand and the compression test was performed again. This is the bulk at the second compression-bulk curve load of 0.2 fl/crA.

カサ保持率は〔(叩き回復後カサ/初期カサ〕×100
である なお第5図において、イは比較例1、口は羽根、ハはサ
ンフルA、Dの圧縮−カサ曲線である。
Umbrella retention rate is [(Umbrella after hit recovery/Initial Umbrella)] x 100
In FIG. 5, A is the compression-bulk curve of Comparative Example 1, the mouth is the blade, and C is the compression-bulk curve of Sunflu A and D.

実施例 5 相対粘度2.50のポリカプロアミドよりなる重合体A
とポリカプロアミド80部及びポリヘキサメチレンアジ
パミド20部よりなる相対粘度280の共重合体Bとを
、それぞれ260℃で溶融し、バイメタル型複合紡糸口
金より吐出させ、スチーム処理した後で未延伸糸巻取用
ドラムに巻き取った。
Example 5 Polymer A consisting of polycaproamide with a relative viscosity of 2.50
and Copolymer B, which has a relative viscosity of 280 and is composed of 80 parts of polycaproamide and 20 parts of polyhexamethylene adipamide, are each melted at 260°C, discharged from a bimetallic composite spinneret, treated with steam, and then untreated. The drawn yarn was wound onto a drum for winding.

未延伸糸トウの繊度は1100デニール(20フイラメ
ント)である。
The fineness of the undrawn yarn tow is 1100 denier (20 filaments).

この未延伸糸トウを360本集束して3.6倍に延伸し
、トウ含水率20%、トウ巾密度4.4×104デニー
ル/crnの十分に収束した状態で実施例1と同様にモ
ジュール6のギヤからなる屈曲装置に導いて屈曲させた
後、弾性収縮差にもとづく捲縮を発現させ、次に0.5
η/dの張力をトウに与えてケン縮形態を3次元化し、
そのままの状態で150℃×30分間弛緩熱処理を行な
った。
360 of these undrawn yarn tows were bundled and stretched 3.6 times, and in a sufficiently converged state with a tow moisture content of 20% and a tow width density of 4.4 x 104 denier/crn, a module was prepared in the same manner as in Example 1. After being guided through a bending device consisting of 0.6 gears and bent, crimp is developed based on the difference in elastic contraction, and then 0.5
A tension of η/d is applied to the tow to make the contracted form three-dimensional,
Relaxation heat treatment was performed at 150° C. for 30 minutes in that state.

なお延伸繊維のフリー下で測定したコイル直径0は5.
2朋、屈曲ピッチLは36山で−は6,9で木兄り 明の範囲を満足していた 得られた繊維の捲縮山数は7.2山/10cIfL、捲
縮度は59%で目標とする特性が得られた。
Note that the coil diameter 0 measured when the drawn fiber is free is 5.
2. The bending pitch L was 36, and the - was 6.9, satisfying the range of wood grains. The number of crimp threads of the obtained fiber was 7.2 threads/10 cIfL, and the degree of crimp was 59%. The target characteristics were obtained.

なお相対粘度は98%H2S04(25°C)25CC
に対しポリマ0.25fを溶解して測定した。
The relative viscosity is 98% H2S04 (25°C) 25CC
The measurement was performed by dissolving 0.25f of polymer in the water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は捲縮形態を表わす写真で、42口は従来法で得
られた繊維、ハは本発明方法で得られた繊維、第2図は
本発明方法における単繊維のコイル直径0と屈曲ピッチ
(I)との関係を示すグラフ、第3図イは屈曲装置で銅
線を屈曲させたときの形態、口は屈曲装置を繊維が出た
時の捲縮形態、ハは繊維を屈曲させた後に張力処理を行
ない3次元捲縮を発現させたときの形態、第4図は本発
明方法を実施する際の工程の1例を示す概略図、第5図
は各種ウェブの圧縮−カサ線図である。
Figure 1 is a photograph showing the crimped form, 42 fibers are fibers obtained by the conventional method, C are fibers obtained by the method of the present invention, and Figure 2 is the coil diameter 0 and bending of the single fiber in the method of the present invention. Graph showing the relationship with pitch (I), Figure 3 A is the form when the copper wire is bent with a bending device, the mouth is the crimp form when the fiber comes out from the bending device, and C is the form when the fiber is bent Figure 4 is a schematic diagram illustrating an example of the process of carrying out the method of the present invention, and Figure 5 is a diagram showing the compression and umbrella lines of various webs. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維軸に直角な断面方向に非対称構造を有し、紡糸
、延伸後に弾性収縮差にもとづく自己発振能を有する合
成繊維からなる1×104デニール以上のトウを、トウ
含水率が10〜200%、トウ巾密度が1×104〜6
×104デニール/cIrLである十分収束した状態で
トウ屈曲装置に導き、屈曲1山当りの繊維実長(旬が8
〜50mmになるように、かつフリー下で測定した単繊
維のコイル直径0と前記屈曲1山当りの繊維実長(ト)
との関係が次式を満足するように屈曲させると同時ある
いは屈曲させた後、該屈曲と実質的に同一ピッチで弾性
収縮差にもとづく2次元捲縮を発振させ、次いで0.1
〜5■/dの張力を与えるような作用をトウに加えて3
次元捲縮に変換し、続いて弛緩熱処理を行なって捲縮形
態を固定することを特徴とするつめもの素材に適した3
次元捲縮繊維の製造方法。
1 A tow of 1 x 104 denier or more made of a synthetic fiber that has an asymmetrical structure in the cross-sectional direction perpendicular to the fiber axis and has a self-oscillation ability based on the difference in elastic contraction after spinning and drawing, and a tow moisture content of 10 to 200%. , tow width density is 1×104~6
×104 denier/cIrL, which is a sufficiently converged state, is guided to a tow bending device, and the actual fiber length per bend (when the fiber length is 8
The coil diameter of the single fiber measured under free conditions so that the diameter is ~50 mm and the actual fiber length per bend (T)
Simultaneously or after bending so that the relationship between
3 by applying an action to the tow that gives a tension of ~5■/d.
3. Suitable for materials for nails, which is characterized by converting into dimensional crimp, followed by relaxation heat treatment to fix the crimp form.
A method for producing dimensional crimped fibers.
JP3662374A 1974-04-02 1974-04-02 Tsumemonosozai ni Texita 3 Jigenkenshiyukuseni no seizouhouhou Expired JPS5838537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3662374A JPS5838537B2 (en) 1974-04-02 1974-04-02 Tsumemonosozai ni Texita 3 Jigenkenshiyukuseni no seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3662374A JPS5838537B2 (en) 1974-04-02 1974-04-02 Tsumemonosozai ni Texita 3 Jigenkenshiyukuseni no seizouhouhou

Publications (2)

Publication Number Publication Date
JPS50130561A JPS50130561A (en) 1975-10-15
JPS5838537B2 true JPS5838537B2 (en) 1983-08-23

Family

ID=12474928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3662374A Expired JPS5838537B2 (en) 1974-04-02 1974-04-02 Tsumemonosozai ni Texita 3 Jigenkenshiyukuseni no seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5838537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891855A (en) * 1981-11-27 1983-05-31 株式会社クラレ Synthetic fiber staple cotton for beddings and production thereof
JP6472273B2 (en) * 2015-03-04 2019-02-20 東洋紡Stc株式会社 Short fiber for granular cotton, granular cotton, and stuffed cotton product using the same

Also Published As

Publication number Publication date
JPS50130561A (en) 1975-10-15

Similar Documents

Publication Publication Date Title
FR2466537A1 (en) POLYAMIDE FIBERS SPONTANEOUSLY FRISTING
US3991548A (en) Composite yarns
US2174878A (en) Yarn and method of producing same
US3256134A (en) Yarn treating process and product
JPS6040522B2 (en) Method for manufacturing trilobal cross-section polyamide fiber
JPS5838537B2 (en) Tsumemonosozai ni Texita 3 Jigenkenshiyukuseni no seizouhouhou
JP3445656B2 (en) Cartridge filter and manufacturing method thereof
JPH11309275A (en) Bulky fabric for doll, hair and method for manufacturing the same
JP2002519528A (en) Elastane fiber and manufacturing method
JPH0441733A (en) Preparation of polyester raw fiber for wadding
JPH0978385A (en) Production of combined textured yarn
US4513565A (en) Sewing thread
SU563441A1 (en) Manufacturing texturized split film filaments
JPH034652B2 (en)
US4115990A (en) Voluminous filamentary yarn and method of manufacture
JP3572865B2 (en) Latent three-dimensional crimp self-extending yarn, method for producing the same, and composite yarn
JPS6211083B2 (en)
JPH0733608B2 (en) Special false twisted yarn
DE2255460A1 (en) Texturised core yarns of continuous filaments - having varying longitudin-ally bulk and resembling folded fancy yarns
JPS6120661B2 (en)
JPS63282326A (en) Production of silk like false twisted processed yarn
JP2019094595A (en) Polyester false twist yarn
JPH0226940A (en) Wavelike fiber and production thereof
JPS5917222B2 (en) Pleating method for polyester fiber knitted fabric
JPS6252055B2 (en)