JPS5838376B2 - Inorganic binder - Google Patents

Inorganic binder

Info

Publication number
JPS5838376B2
JPS5838376B2 JP8205081A JP8205081A JPS5838376B2 JP S5838376 B2 JPS5838376 B2 JP S5838376B2 JP 8205081 A JP8205081 A JP 8205081A JP 8205081 A JP8205081 A JP 8205081A JP S5838376 B2 JPS5838376 B2 JP S5838376B2
Authority
JP
Japan
Prior art keywords
weight
parts
alkali metal
blast furnace
furnace slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8205081A
Other languages
Japanese (ja)
Other versions
JPS589863A (en
Inventor
啓 礎崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP8205081A priority Critical patent/JPS5838376B2/en
Publication of JPS589863A publication Critical patent/JPS589863A/en
Publication of JPS5838376B2 publication Critical patent/JPS5838376B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明は、水硬性の無機結合材、さらに詳しくは高炉水
砕スラグにアルカリ金属水酸化物又はアルカリ金属水酸
化物とアルカリ金属炭酸塩もしくは炭酸水素塩及び有機
酸塩もしくは糖類を添加してなる無機質結合材に関する
ものである。
Detailed Description of the Invention The present invention provides a hydraulic inorganic binder, more specifically, granulated blast furnace slag containing an alkali metal hydroxide or an alkali metal hydroxide, an alkali metal carbonate or hydrogen carbonate, and an organic acid salt. Or it relates to an inorganic binder made by adding sugars.

従来、高炉スラグまたは転炉スラグなどの鉄鋼スラグや
フライアツシュなどは骨材資源やセメント、コンクリー
トの混和材として利用されているが、省資源,省エネル
ギーの立場からの積極的な利用ではなく、それらがもっ
ている性質を利用してセメントのもつ欠点の改善に役立
ているにとどまっている。
Traditionally, steel slag and fly ash such as blast furnace slag and converter slag have been used as aggregate resources and as admixtures for cement and concrete, but they have not been actively used from the standpoint of resource and energy conservation. The properties of cement are used to improve the shortcomings of cement.

しかし最近の重油の供給制限、高価格時代ではこれら資
源の付加価値の高い利用が要求される状況になってきて
いる。
However, in the recent era of limited supply and high prices of heavy oil, the situation has become such that high value-added use of these resources is required.

高炉スラグ、転炉スラグはいずれもCaO含有率が高く
かなり反応性があるが、とりわけ高炉水砕スラグは潜在
水硬性をもったものとして知られており、これをセメン
トに配合した高炉セメントや高硫酸塩スラグセメント等
がある。
Blast furnace slag and converter slag both have a high CaO content and are quite reactive, but granulated blast furnace slag in particular is known to have latent hydraulic properties, and it is used in blast furnace cement and high Examples include sulfate slag cement.

しかし、これら高炉水砕スラグ系セメントは初期強度が
低く、硬化物の表面硬度及び耐摩耗性等も乏しく、さら
に風化崩壊し易い欠点があり、その用途は相当に制限さ
れている。
However, these granulated blast furnace slag cements have low initial strength, poor surface hardness and abrasion resistance of the cured product, and are susceptible to weathering and disintegration, so their uses are considerably limited.

本発明は、これらの欠点を改良することを目的とするも
のであり、微粉末の高炉水砕スラグに少量のアルカリ金
属水酸化物、又はこれとアルカリ金属炭酸塩もしくは炭
酸水素塩を添加することにより、普通ボルトランドセメ
ント以上の初期強度の発現を可能とし、さらにこれに有
機酸塩あるいは糖類を添加することにより作業性の改善
、特に流動性を増し、機械的強度の増加などの特性を付
与した水硬性無機質結合材を提供しようとするものであ
る。
The purpose of the present invention is to improve these drawbacks by adding a small amount of alkali metal hydroxide, or alkali metal carbonate or hydrogen carbonate together with the same to finely powdered granulated blast furnace slag. This makes it possible to develop an initial strength higher than that of ordinary Boltland cement, and by adding organic acid salts or sugars to it, it improves workability, particularly increases fluidity, and imparts properties such as increased mechanical strength. The purpose of this invention is to provide a hydraulic inorganic binder that has the following properties.

すなわち、本発明は、ブレーン比表面積3,0 0 0
arts/ g以上の高炉水砕スラグioo重量部に対
し、アルカリ金属水酸化物1〜30重量部又はこのアル
カリ金属水酸化物1〜30重量部と共にアルカリ金属の
炭酸塩もしくは炭酸水素塩1〜30重量部、さらにO、
01〜5.0重量部の有機酸塩もしくは糖類を添加する
こと特徴とする。
That is, the present invention has a Blaine specific surface area of 3,000
1 to 30 parts by weight of an alkali metal hydroxide, or 1 to 30 parts by weight of an alkali metal carbonate or hydrogen carbonate together with 1 to 30 parts by weight of an alkali metal hydroxide, per ioo parts by weight of granulated blast furnace slag of 1 to 30 parts by weight of granulated blast furnace slag of 1 to 30 parts by weight. parts by weight, further O,
It is characterized by adding 01 to 5.0 parts by weight of an organic acid salt or saccharide.

以下本発明を詳しく説明する。The present invention will be explained in detail below.

高炉水砕スラグの化学組或の一例を示せばS i02
3 2〜36φ、Al20312〜20多、Ca035
〜43%、Mg00.5 〜l o %、TiO20.
1〜3係である。
An example of the chemical composition of granulated blast furnace slag is S i02.
3 2~36φ, Al20312~20, Ca035
~43%, Mg00.5~10%, TiO20.
Sections 1 to 3.

また、本発明において、高炉水砕スラグの粉末度が重要
であり、ブレーン比表面積で3, 0 0 0 cri
/ g以上を必要である。
In addition, in the present invention, the fineness of the granulated blast furnace slag is important, and the Blaine specific surface area is 3,000 cr.
/g or more is required.

粉末度が大きくなるにつれて強度発現も増大するが、初
期材◆の圧縮強度はブレーン比表面積が3, 0 0
0 cr?t/ g以上になると著しく増加する。
As the fineness increases, the strength development also increases, but the compressive strength of the initial material ◆ is due to the Blaine specific surface area of 3,00
0 cr? It increases significantly when it exceeds t/g.

強度発現性と経済性とを考慮すると、好ましいブレーン
比表面積は5,0 0 0 〜8,0 0 0crit
/ gである。
Considering strength development and economic efficiency, the preferable Blaine specific surface area is 5,000 to 8,000crit.
/ g.

また高炉水砕スラブの水和活性を高めるためにアルカリ
金属水酸化物を存在させることが重要で、その割合は高
炉水砕スラブ100重量部に対し1〜30重量部である
Furthermore, it is important to include an alkali metal hydroxide in order to enhance the hydration activity of the granulated blast furnace slab, and the proportion thereof is 1 to 30 parts by weight per 100 parts by weight of the granulated blast furnace slab.

1重量部未満では強度発現効果は小さく、また30重量
部を越えて存在させても強度はそれほど増大せず実用的
ではない。
If the amount is less than 1 part by weight, the effect of developing strength will be small, and if it is present in excess of 30 parts by weight, the strength will not increase so much and this is not practical.

好ましいアルカリ金属水酸化物の割合は2〜15重量部
である。
The preferred proportion of alkali metal hydroxide is 2 to 15 parts by weight.

アルカリ金属水酸fヒ物の具体例として水酸化ナトリウ
ム、水酸化カリウム、水酸化リチウムなどがあり、これ
らの強度増進作用にはほとんど差はないが工業的.経済
的に水酸化ナトリウムが最も好ましい。
Specific examples of alkali metal hydroxides include sodium hydroxide, potassium hydroxide, and lithium hydroxide, and although there is little difference in their strength-enhancing effects, they are not used industrially. Sodium hydroxide is most preferred economically.

アルカリ金属水酸化物とナトリウムカリウム、リチウム
などのアルカリ金属の炭酸塩もしくは炭酸水素塩を併用
しても類似の効果がある。
A similar effect can be obtained when an alkali metal hydroxide is used in combination with an alkali metal carbonate or hydrogen carbonate such as sodium potassium or lithium.

しかしながら、モルタルのフローダウン、コンクリート
のスランプロスが大きく、流動性が悪いのが問題となっ
ていたが有機酸塩または糖類を添加することにより著し
く改善するだけではなく圧縮強度をも画期的に増大させ
ることができる。
However, there were problems with mortar flow down, large concrete slump loss, and poor fluidity, but by adding organic acid salts or sugars, it not only significantly improved, but also improved compressive strength. can be increased.

その添加量はセメン}100重量部に対し、0.01〜
5.0重量部、好ましくは0.1〜0.5重量部である
The amount added is 0.01 to 100 parts by weight of cement.
The amount is 5.0 parts by weight, preferably 0.1 to 0.5 parts by weight.

o.oi重量部未満ではペースト、モルタル、コンクリ
ートの充分な流動性は得られず強度増進効果も少ない。
o. If the amount is less than oi parts by weight, sufficient fluidity of paste, mortar, and concrete cannot be obtained and the strength-enhancing effect is small.

0.5重量部を越えると凝結時間が著しく伸び利点はな
い。
If it exceeds 0.5 parts by weight, the setting time will be significantly increased and there will be no advantage.

本発明の無機質結合材を製造するには高炉水砕スラグと
アルカリ金属水酸化物、アルカリ金属の炭酸塩または炭
酸水素塩に有機酸塩もしくは糖類を混合するだけでよい
To produce the inorganic binder of the present invention, it is only necessary to mix granulated blast furnace slag, an alkali metal hydroxide, an alkali metal carbonate or bicarbonate, and an organic acid salt or saccharide.

本発明の無機質結合材は啼ネ普通ボルトランドセメント
と同様な用途に使用される。
The inorganic binder of the present invention can be used in the same applications as ordinary boltland cement.

さらに、普通ボルトランドセメントの添加剤として使用
されている。
Additionally, it is commonly used as an additive in Bortland cement.

例えば硬化促進剤、AE剤、起泡剤セメント減水剤など
と併用しても何等差支えない。
For example, it may be used in combination with a hardening accelerator, AE agent, foaming agent, cement water reducing agent, etc. without any problem.

以上説明した通り、高炉水砕スラグに特定量のアルカリ
金属水酸[ヒ物またはアルカリ金属水酸化物とアルカリ
金属の炭酸塩もしくは炭酸水素塩を添加することにより
普通ボルトランドセメント以上の初期強度発現を可能と
したが、凝結時間が早い、フローダウンが太きい等の欠
点を有していた。
As explained above, by adding a specific amount of alkali metal hydroxide [arsenic acid or alkali metal hydroxide and alkali metal carbonate or hydrogen carbonate] to granulated blast furnace slag, initial strength greater than that of ordinary Bortland cement can be developed. However, it had drawbacks such as fast setting time and large flow down.

これを有機酸塩もしくは糖類を添加することで解決し実
用上画期的なものとした。
This problem was solved by adding organic acid salts or sugars, resulting in a breakthrough in practical use.

従来のセメント減水剤ではこのような効果は得られない
Conventional cement water reducers cannot achieve this effect.

ここで有機酸塩とはグルコン酸、酒石酸、ステアリン酸
、ギ酸、酢酸.シュウ酸、マロン酸.コハク酸、マレイ
ン酸、フマル酸、リンゴ酸などのナトリウムおよびカリ
ウム塩を言い、糖類とはブドウ糖、果糖、シヨ糖、麦芽
糖,乳糖などを指す。
Here, organic acid salts include gluconic acid, tartaric acid, stearic acid, formic acid, and acetic acid. Oxalic acid, malonic acid. It refers to sodium and potassium salts such as succinic acid, maleic acid, fumaric acid, and malic acid, and sugars refer to glucose, fructose, sucrose, maltose, and lactose.

以下、実施例で詳細に説明する。Examples will be described in detail below.

実施例 1 高炉水砕スラグ(ブレーン比表面積5 6 7 0va
l/g)100重量部、水酸化ナトリウム7.5重量部
にグルコン酸ナトリウムまたはシヨ糖を添加したものに
骨材として表乾砂200重量部を混合し、これに水40
重量部を加え混練してセメントモルタルを得、フロー値
の経時変化を測定した。
Example 1 Granulated blast furnace slag (Blaine specific surface area 5 6 7 0 va
l/g), 7.5 parts by weight of sodium hydroxide, sodium gluconate or sucrose added, and 200 parts by weight of surface dry sand as aggregate, mixed with 40 parts by weight of water.
A cement mortar was obtained by adding parts by weight and kneading, and the change in flow value over time was measured.

フロー値測定はJIS R 5201に規定された方法
に準じて行なわれた。
Flow value measurement was performed according to the method specified in JIS R 5201.

高炉水砕スラグの粉末度および水酸化ナトリウムの添加
量を変えて同様の試験を行ったところ類似の傾向を示し
た。
Similar tests were conducted by changing the fineness of the granulated blast furnace slag and the amount of sodium hydroxide added, and similar trends were found.

また炭酸ソーダおよび炭酸水素ソーダを併用したところ
若干フロー値は上昇した。
Furthermore, when soda carbonate and sodium bicarbonate were used in combination, the flow value increased slightly.

実施例 2 実施例1と同様の配合において圧縮強度を測定した。Example 2 Compressive strength was measured in the same formulation as in Example 1.

高炉水砕スラグの粉末度および水酸化ナトリウムの添加
量を変えて同様の測定を行ったところ類似の傾向を示し
た。
Similar measurements were performed by changing the fineness of the granulated blast furnace slag and the amount of sodium hydroxide added, and similar trends were found.

また炭酸ソーダもしくは炭酸水素ソーダを併用したとこ
ろ若干28日強度の増加が見られた。
In addition, when soda carbonate or soda hydrogen carbonate was used in combination, a slight increase in the 28-day strength was observed.

Claims (1)

【特許請求の範囲】[Claims] 1 ブレーン比表面積が3,0 0 0cvt/ g以
上の微粉末の高炉水砕スラグ100重量部に対し、アル
カリ金属水酸化物1〜30重量部又はアルカリ金属水酸
化物l〜30重量部とアルカリ金属炭酸塩もしくはアル
カリ金属炭酸水素塩1〜30重量部及び有機酸塩もしく
は糖類を0.01〜5重量部添加してなる無機質結合材
1. 1 to 30 parts by weight of an alkali metal hydroxide or 1 to 30 parts by weight of an alkali metal hydroxide and an alkali to 100 parts by weight of finely powdered granulated blast furnace slag with a Blaine specific surface area of 3,000 cvt/g or more. An inorganic binder containing 1 to 30 parts by weight of a metal carbonate or alkali metal hydrogencarbonate and 0.01 to 5 parts by weight of an organic acid salt or saccharide.
JP8205081A 1981-05-29 1981-05-29 Inorganic binder Expired JPS5838376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8205081A JPS5838376B2 (en) 1981-05-29 1981-05-29 Inorganic binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8205081A JPS5838376B2 (en) 1981-05-29 1981-05-29 Inorganic binder

Publications (2)

Publication Number Publication Date
JPS589863A JPS589863A (en) 1983-01-20
JPS5838376B2 true JPS5838376B2 (en) 1983-08-23

Family

ID=13763679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8205081A Expired JPS5838376B2 (en) 1981-05-29 1981-05-29 Inorganic binder

Country Status (1)

Country Link
JP (1) JPS5838376B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207857A (en) * 1983-05-13 1984-11-26 電気化学工業株式会社 Chemical resistant heat resistant binder
JP2668598B2 (en) * 1989-12-08 1997-10-27 日本化薬株式会社 Hydraulic composition and high-strength composite material
BRPI0417144B1 (en) 2003-12-01 2017-03-28 Gcp Applied Tech Inc method for modifying a cementitious composition
KR101014869B1 (en) * 2010-01-13 2011-02-15 전남대학교산학협력단 Alkali-activated binder with no cement including complex alkali-activated agents and mortar or concrete composition using the same
JP7193437B2 (en) * 2019-10-18 2022-12-20 公益財団法人鉄道総合技術研究所 Geopolymer composition

Also Published As

Publication number Publication date
JPS589863A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
EP2658823B1 (en) Lightweight fly ash based composition
CN108793893A (en) Heat resistance concrete and preparation method thereof
KR101363896B1 (en) Accelerate dry concrete mix composition
JP2023543526A (en) Ultra-low carbon clinker-free cement, its manufacturing method and use
JP2001163656A (en) Hydraulic composition and building material produced from the same
CN115925306B (en) Dicalcium silicate activator and preparation method and application thereof
WO2022229432A1 (en) Binder composition comprising pozzolanic material and fine filler
CN111732395A (en) Waste concrete-based regenerated dry powder masonry mortar and preparation method thereof
JP2019151517A (en) Concrete composition and hardened concrete
KR20010079397A (en) A composites for Blast-furnace slag mortar
US11702365B2 (en) Corrosion mitigating cement compositions
CN113735481B (en) Composite early strength mineral admixture and preparation method and application thereof
KR101937772B1 (en) Eco-friendly composition for high performance concrete using alkali activator
JPS5838376B2 (en) Inorganic binder
JP2710354B2 (en) Underwater concrete / mortar binder
JPH0131466B2 (en)
JPS6013990B2 (en) Manufacturing method of molded body
JP2503235B2 (en) Curing accelerator
KR100732536B1 (en) Process of producing non-alkaline accelerators admixtures for concrete complex
CN111302682A (en) Alkali activation slurry containing alkali activation liquid and inorganic powder
US20230192565A1 (en) Activation system, including at least one alkaline metal salt and calcium and/or magnesium carbonate for activating ground granulated blast furnace slag and binder comprising the same for the preparation of mortar or concrete composition
Devi et al. Review on blended concretes
CN108424106A (en) A kind of high-strength sleeve connection mortar of assembled that graphene is modified
KR100566948B1 (en) Recycling method for waste concrete
JPH0116785B2 (en)