JPS5838233B2 - Sewage treatment method and equipment - Google Patents

Sewage treatment method and equipment

Info

Publication number
JPS5838233B2
JPS5838233B2 JP55185777A JP18577780A JPS5838233B2 JP S5838233 B2 JPS5838233 B2 JP S5838233B2 JP 55185777 A JP55185777 A JP 55185777A JP 18577780 A JP18577780 A JP 18577780A JP S5838233 B2 JPS5838233 B2 JP S5838233B2
Authority
JP
Japan
Prior art keywords
liquid
treatment
aeration
inflow zone
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55185777A
Other languages
Japanese (ja)
Other versions
JPS57110386A (en
Inventor
茂 稲見
登 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIHARA KANKYO EISEI KENKYUSHO KK
Original Assignee
NISHIHARA KANKYO EISEI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIHARA KANKYO EISEI KENKYUSHO KK filed Critical NISHIHARA KANKYO EISEI KENKYUSHO KK
Priority to JP55185777A priority Critical patent/JPS5838233B2/en
Publication of JPS57110386A publication Critical patent/JPS57110386A/en
Publication of JPS5838233B2 publication Critical patent/JPS5838233B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 この発明は、汚水処理方法及び装置、特にバッチ式活性
汚泥処理の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to sewage treatment methods and apparatus, particularly to improvements in batch activated sludge treatment.

従来バッチ式の汚水の活性汚泥処理装置は、ばつ気工程
の間のみに汚水が流入するのが一般的であり、流入時間
が限定されない汚水を対象とする場合は大容量の貯留槽
が必須の要件となっていた。
In conventional batch-type wastewater activated sludge treatment equipment, wastewater generally flows in only during the aeration process, and a large-capacity storage tank is essential when dealing with wastewater whose inflow time is not limited. It was a requirement.

: このためこのような廃水の処理には、バッチ処理は
採用されず、昼間のみに汚水が発生する工場廃水等、汚
水の流水が特定の条件にあてはまる時のみ採用されてい
た。
: For this reason, batch processing was not used to treat such wastewater, and was only used when the sewage flow met certain conditions, such as factory wastewater where sewage was generated only during the day.

しかしながら汚水の流入を沈殿工程、放流工程でも制限
しない連続流入としタンク内をばつ気、沈殿、,放流の
サイクルを繰り返す処理によれば、沈殿室や沈殿汚泥の
返送が必要ないというバッチ処理の効果はそのままで連
続的に流入する一般の汚水を効率よく処理することがで
きる。
However, if the inflow of sewage is continuous without being restricted in the sedimentation and discharge processes, and the cycle of aeration, sedimentation, and discharge is repeated in the tank, the effect of batch treatment is that there is no need for a sedimentation chamber or return of settled sludge. can efficiently treat general wastewater that continuously flows in as it is.

しかし、この連続流入でばつ気、沈殿、放流のサイクル
を繰り返す処理では沈殿、放流工程中に流入する汚水が
充分処理できるかどうか疑問があった。
However, there were doubts as to whether this continuous inflow process, which repeats the cycle of aeration, sedimentation, and discharge, would be able to adequately treat the wastewater that flows in during the sedimentation and discharge processes.

そこでタンク内の流入端付近に仕切壁を設け、流入ゾー
ンを形威し、下端でばつ気室と連通ずることによって前
記沈殿、排出工程中に流入する汚水も短絡することなく
、汚泥と接触処理できるようにすることが可能となった
Therefore, by installing a partition wall near the inlet end of the tank to define the inflow zone and communicating with the aeration chamber at the lower end, the sewage flowing in during the sedimentation and discharge processes can be treated in contact with the sludge without being short-circuited. It has become possible to do so.

そして、実際の処理施設でやってみるとこの流入ゾーン
を設けた装置は、流入ゾーンに適度の汚泥が滞溜する条
件下では、1 汚泥のバルキングが生ぜず、沈降性がよ
いことが判った。
When we tried it in an actual treatment facility, we found that equipment equipped with this inflow zone had good settling properties, with no sludge bulking occurring under conditions where a moderate amount of sludge accumulated in the inflow zone. .

これはこの流入ゾーンでは汚泥に対する有機物負荷が非
常に高いため、バルキングの原因となる微生物が増殖し
難い条件となるからと考えられる。
This is thought to be because the organic matter load on the sludge is extremely high in this inflow zone, creating conditions that make it difficult for microorganisms that cause bulking to grow.

また、流入ゾーンの高負荷条件により、汚泥は汚水中に
広く分散するため、有機物が汚泥に非常に効率よく吸着
されることもわかった。
It was also found that due to the high loading conditions in the inlet zone, the sludge is widely dispersed in the wastewater, so that organic matter is adsorbed into the sludge very efficiently.

しかし流入ゾーンは流入水を受け入れ、ばつ気室に連通
しているため、流入ゾーンに適度の汚泥を維持するのが
難かしい。
However, since the inflow zone receives inflow water and communicates with the aeration chamber, it is difficult to maintain a suitable amount of sludge in the inflow zone.

つまり、連通部分の開口面積を大きくすると、流入ゾー
ンとばつ気室との混合が激しくなり過ぎ流入ゾーンでの
高負荷が達戒できず汚泥のバルキングが起りさらに有機
物の吸着が不充分となる。
In other words, if the opening area of the communicating portion is increased, the mixing between the inflow zone and the aeration chamber becomes too intense, making it impossible to achieve a high load in the inflow zone, resulting in sludge bulking and insufficient adsorption of organic matter.

又開口の面積を小さくすれば流入ゾーンは流入水のみが
存在する単なる貯留室となってしまう。
Furthermore, if the area of the opening is made small, the inflow zone becomes a mere storage chamber in which only inflow water exists.

この発明は、上記の問題点を除去し流入ゾーンへ主ばつ
気室内の液体を返送し、流入ゾーン内の汚泥濃度を適量
に保つことにより、バルキングを起さずに効率のよい処
理を行える汚水の処理方法及び装置を提供することを目
的とする。
This invention eliminates the above problems and returns the liquid in the main aeration chamber to the inlet zone, thereby maintaining the sludge concentration in the inlet zone at an appropriate level, allowing efficient treatment of wastewater without causing bulking. The purpose of the present invention is to provide a processing method and apparatus for this.

以下この発明の好適な実施例を図面第1図イ,口,八を
用いて説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to FIGS.

鉄筋コンクリートその他の適当な材料から構成されるほ
ぼ長方形のタンク1が設けられている。
A generally rectangular tank 1 made of reinforced concrete or other suitable material is provided.

このタンク1の一端3に入口2を備え、この人口2に近
接して仕切壁4が設けられ、この仕切壁4は例えばコン
クリートブロック壁で形或され、端3とで流入ゾーン5
を構或している。
One end 3 of this tank 1 is provided with an inlet 2 and adjacent to this inlet 2 a partition wall 4 is provided, for example in the form of a concrete block wall, which forms an inlet zone 5 at one end 3.
It is composed of

又前記仕切壁4の下端縁に開口部4aが設けてあり、入
口2からタンク1に流入する汚水が開口部4aを通って
クンク1の主ばつ気室6に流入するようになっている。
Further, an opening 4a is provided at the lower edge of the partition wall 4, so that the dirty water flowing into the tank 1 from the inlet 2 flows into the main air chamber 6 of the tank 1 through the opening 4a.

そしてこのクンク1内には複Hのジェットエアレーショ
ンノズルである気液混合拡散ノズル7が備えられ、これ
らのノズル7は使用中タンク1内に浸没するようにタン
ク底部の近い側壁に隣接して配置され、主ばつ気室6内
のポンプに連通ずる液体パイプ8及び空気パイプ9と接
続されている。
A gas-liquid mixing diffusion nozzle 7, which is a double-H jet aeration nozzle, is provided in this kunk 1, and these nozzles 7 are arranged adjacent to the side wall near the bottom of the tank so that they are immersed in the tank 1 during use. It is connected to a liquid pipe 8 and an air pipe 9 communicating with a pump in the main air chamber 6.

ブロア9aより空気パイプ9を通して圧送された空気と
液体パイプ8を通じて供給された液体がノズル7内で混
合されて噴射され、槽内がばつ気処理される。
Air forced through the air pipe 9 by the blower 9a and liquid supplied through the liquid pipe 8 are mixed in the nozzle 7 and injected to aerate the inside of the tank.

また ノズル7は流入ゾーン5にも設けられているため
、ここへの液体供給が主ばつ気部6内の液体の返送手段
となる。
Further, since the nozzle 7 is also provided in the inflow zone 5, the liquid supply to this nozzle serves as a means for returning the liquid in the main air vent 6.

一方タンク1内の主ばつ気室6他端には、タンク1内に
収容された汚水の沈殿処理後の上澄液を表面から放流す
るよう保持された上澄放流装置例えばデカンタ10が配
置されている。
On the other hand, at the other end of the main air chamber 6 in the tank 1, a supernatant discharge device, for example, a decanter 10, which is held so as to discharge the supernatant liquid from the surface of the sewage contained in the tank 1 after precipitation treatment, is disposed. ing.

このデカンタ10は、ウエアを切欠いた排出パイプ10
aの両側に下降時のウエア位置を調整するためのフロー
}1 0dが取付けられており、(このフロートはスカ
ムバツフルの役目もする)@記排出パイプ10aと軸パ
イプ10cを連通する下降パイプ10bとから形或され
ている。
This decanter 10 has a discharge pipe 10 with a wear cutout.
A float }10d for adjusting the wear position during descent is installed on both sides of a, and a descending pipe 10b that communicates the discharge pipe 10a and the shaft pipe 10c (this float also serves as a scum baffle) is installed on both sides of the It is shaped from.

前記排出工程中のウエアの位置の微調整はフロート中に
水を入れることによって行われ所定の位置に保持される
Fine adjustment of the position of the garment during the ejection process is accomplished by filling the float with water to hold it in place.

液体を放流するには、軸パイプ10cを油圧駆動で回動
させて水面下に向けて下降させ、前記ウエアから越流し
た上澄液を下降パイプ10bを介して放流するよう構或
してある。
In order to discharge the liquid, the shaft pipe 10c is rotated by hydraulic drive and lowered below the water surface, and the supernatant liquid overflowing from the wear is discharged through the descending pipe 10b. .

尚前記下降パイプ10aは直管であるが」状の曲管とす
れば上限水位と下限水位の巾を大きくとってもフロー}
10a等がじゃまにならない。
Although the descending pipe 10a is a straight pipe, if it is made into a curved pipe, the flow will be maintained even if the width of the upper limit water level and the lower limit water level is made larger.
10a etc. do not get in the way.

上記汚水の処理に際して流入ゾーン5及び主ばつ気部6
の液体は順次ばつ気処理、沈殿処理、上澄放流処理され
る。
Inflow zone 5 and main aeration area 6 during the treatment of the sewage
The liquid is sequentially subjected to aeration treatment, precipitation treatment, and supernatant discharge treatment.

つまりタンク1内は例えばばつ気工程4.5hr沈殿工
程lhr上澄放流工程0.5hrのようなサイクルを繰
り返すよう制御される。
That is, the inside of the tank 1 is controlled to repeat a cycle of, for example, an aeration process of 4.5 hours, a precipitation process of 1 hour, and a supernatant discharge process of 0.5 hours.

この装置としてコントロールパネルが設けられる。A control panel is provided as this device.

そして、これら各工程の1サイクルの時間は変更できる
ようにしたほうが望ましい。
It is desirable to be able to change the time of one cycle of each of these steps.

これは流入水量が非常に多い時1サイクルの時間を短か
くすると1サイクルの間に流入する水量を少くできるか
らである。
This is because when the amount of water flowing in is very large, by shortening the time of one cycle, the amount of water flowing in during one cycle can be reduced.

又、沈殿工程放流工程時に流入する汚水は、流入ゾーン
5の底部から主ばつ気室7に流入するため両ゾーンの底
部の汚泥帯と接触し流入水がそのまま放流されることは
ない。
Furthermore, the sewage that flows in during the discharge step of the sedimentation step flows into the main aeration chamber 7 from the bottom of the inflow zone 5, so that it comes into contact with the sludge zone at the bottom of both zones, and the inflow water is not discharged as it is.

更に、ジェットエアレーションノズル7は気体を流体の
流速による剪断力で微細化するものであるからせまい間
隙を通過させることによって気泡を小さくする散気管等
と違い間欠的なばつ気処理を行っても目づまりの恐れが
ない。
Furthermore, since the jet aeration nozzle 7 atomizes the gas by shearing force caused by the flow velocity of the fluid, unlike an aeration pipe or the like which makes air bubbles smaller by passing through a narrow gap, it is not noticeable even when performing intermittent aeration treatment. There is no fear of clogging.

また、この装置によれは、流入した汚水は流入ゾーン5
でその有機物が汚泥に吸着され、その後主ばつ気室で吸
着された有機物が代謝され汚泥の活性化(吸着能力の増
大)が行われる。
Also, with this device, the inflowing sewage is transferred to the inflow zone 5.
The organic matter is adsorbed by the sludge, and then the adsorbed organic matter is metabolized in the main aeration chamber to activate the sludge (increase its adsorption capacity).

そして、この活性化された汚泥が流入ゾーン5に返送さ
れるため汚泥の吸着能力は充分であり、加えて流入ゾー
ン5では有機物負荷が非常に高く、汚泥濃度は、主ばつ
気室に比べ低いので吸着効果は非常によくなる。
Since this activated sludge is returned to the inflow zone 5, the sludge adsorption capacity is sufficient.In addition, the organic matter load in the inflow zone 5 is very high, and the sludge concentration is lower than that in the main aeration chamber. Therefore, the adsorption effect is very good.

このように流入ゾーンで充分吸着し、吸着し終った汚泥
が主ばつ気室に移流され、吸着された有機物が酸化分解
される方式だと処理効率がよい。
In this manner, the sludge is sufficiently adsorbed in the inlet zone, and the adsorbed sludge is advected to the main air chamber, where the adsorbed organic matter is oxidized and decomposed, resulting in good treatment efficiency.

第2図イ,口,ハには、この発明の装置の他の実施例を
示すもので流入汚水が高濃度例えばBOD 500■/
l以上、特に200■/l以上の場合に適した構或であ
る。
Figures 2A, 2C and 2C show other embodiments of the apparatus of the present invention, in which the inflowing sewage has a high concentration, for example, BOD 500 /
This structure is suitable for cases where the flow rate is 1 or more, particularly 200 .mu./l or more.

第2図イ及び口は、この実施例の平面図及び斜視図を示
し、タンク1はその一端に汚水を連続流入する流入ゾー
ン5が区分されてい−る。
Figures 2A and 2B show a plan view and a perspective view of this embodiment, and the tank 1 has an inflow zone 5 at one end thereof, into which wastewater continuously flows.

流入汚水が高濃度なため吸着にかなりの時間及び容積を
必要とし、流入ゾーン5は第1の流入ゾーン5Aと第2
の流入ゾーン5Bとを下端縁に開口部11aを備えた仕
切壁11によって区分されている。
Since the inflow wastewater is highly concentrated, it requires a considerable amount of time and volume for adsorption, and the inflow zone 5 is divided into the first inflow zone 5A and the second inflow zone 5A.
The inlet zone 5B is separated from the inflow zone 5B by a partition wall 11 having an opening 11a at the lower edge.

そして前記流入ゾーン5と主ばつ気室6とは隔壁12に
よって区分されている。
The inflow zone 5 and the main air chamber 6 are separated by a partition wall 12.

この隔壁12の第2の流入ゾーン5B側上部を切欠いて
あり、ここで前記第2の流入ゾーン5Bとばつ気室6と
は連通している。
The upper part of the partition wall 12 on the side of the second inflow zone 5B is cut out, and the second inflow zone 5B and the air chamber 6 communicate with each other here.

各槽の底部には、複数個のジェットエアレーションノズ
ルからなる拡散ノズル17が配置されタンク1内の液は
ポンプPにより液体パイプ8を介し、拡散ノズル17に
供給される。
A diffusion nozzle 17 consisting of a plurality of jet aeration nozzles is arranged at the bottom of each tank, and the liquid in the tank 1 is supplied to the diffusion nozzle 17 via a liquid pipe 8 by a pump P.

拡散ノズル17には空気パイプ9も接続され、ここで気
液混合が行われ、気液混合液は放射状に噴射される。
An air pipe 9 is also connected to the diffusion nozzle 17, where gas-liquid mixing is performed and the gas-liquid mixture is sprayed radially.

また第1の流入ゾーン5Aに配置した各拡散ノズル17
に主ばつ気室の液が圧送されるため、これがばつ気装置
兼液体返送手段となる。
Further, each diffusion nozzle 17 arranged in the first inflow zone 5A
Since the liquid in the main aeration chamber is fed under pressure, this serves as an aeration device and a liquid return means.

尚タンク1内の主ばつ気室6の一端に液体の表面から上
澄液を放流するデカンタ10が設けられている。
A decanter 10 is provided at one end of the main air chamber 6 in the tank 1 to discharge supernatant liquid from the surface of the liquid.

タンク1内はばつ気処理、沈殿処理、上澄放流処理の各
工程を順次繰り返すように制御される。
The inside of the tank 1 is controlled so that the steps of aeration treatment, precipitation treatment, and supernatant discharge treatment are repeated in sequence.

Cはこれらを制御するコントロールバネCである。C is a control spring C that controls these.

第3図にこの制御の一例のダイヤグラムを示す。FIG. 3 shows a diagram of an example of this control.

ばつ気工程4.5時間、沈殿工程1時間、上澄放流工程
Q.5時間の6時間サイクルとばつ気工程のみを1.5
時間とした3時間サイクルの2つのサイクルをもち適宜
切り換えることができるようになっている。
Aeration step 4.5 hours, precipitation step 1 hour, supernatant discharge step Q. 1.5 6 hour cycles of 5 hours and only the aeration step
It has two 3-hour cycles, which can be switched as needed.

そして、流入量が多い時に3時間サイクルに切り換える
Then, when the inflow amount is large, the cycle is switched to a 3-hour cycle.

このように流入ゾーン5を2つに区分するとここで充分
汚泥と汚水が接触され汚水中の有機物の吸着が完了させ
られ、その後主ばつ気室6に流入するので、主ばつ気室
6で汚泥の活性化が充分行われ、汚水処理効率がよい。
By dividing the inflow zone 5 into two in this way, the sludge and sewage come into contact with each other sufficiently to complete the adsorption of organic matter in the sewage, and then flow into the main aeration chamber 6. is sufficiently activated, and wastewater treatment efficiency is high.

又このように流入ゾーンを複数に仕切ると、流入ゾーン
へ主ばつ気部の液を直送しないと流入ゾーンでの微生物
量を保持できないので、返送手段が必須となる。
Furthermore, when the inflow zone is divided into a plurality of sections in this way, the amount of microorganisms in the inflow zone cannot be maintained unless the liquid from the main vent is directly sent to the inflow zone, so a return means is essential.

第4図は流入ゾーン及び主ばつ気室の活性汚泥の酸素利
用速度( 0.U.R )の時間変化についてのグラフ
である。
FIG. 4 is a graph showing time changes in the oxygen utilization rate (0.U.R) of activated sludge in the inflow zone and main aeration chamber.

この発明の汚水処理方法及び装置に於ける流入ゾーンで
は0.U.Rが当初非常に高く、それから急激に減少す
る。
In the inflow zone of the sewage treatment method and apparatus of this invention, 0. U. R is initially very high and then decreases rapidly.

O.U.Rが高いことは、有機物を多量に吸着している
、逆に低いことは有機物が酸化分解され汚泥が活性化さ
れていることを示している。
O. U. A high R value indicates that a large amount of organic matter is adsorbed, whereas a low R value indicates that the organic matter is oxidized and decomposed and the sludge is activated.

従って流入ゾーンでの0.U.Rは、このように高くな
ることが必要で主ばつ気室では20以下であることが望
ましい。
Therefore, 0. U. It is necessary that R be as high as this, and it is desirable that R be 20 or less in the main air chamber.

逆に主ばつ気室の0.U.Rが高いと沈殿処理、放流処
理工程の間にCO2やN2が発生し汚泥が浮上する。
On the other hand, the main air chamber's 0. U. When R is high, CO2 and N2 are generated during the sedimentation treatment and discharge treatment steps, and sludge floats to the surface.

浮上時間と0.U.Hの関係は、実測によれば下表の通
りとなる。
Ascent time and 0. U. According to actual measurements, the relationship between H is as shown in the table below.

( MLS8 3 0 0 0 〜4 0 0 0m9
/ljの条件)したがって、沈殿および放流工程の90
分間に汚泥が浮上しないためには0.U.R 2 0■
/l以下にすることが望ましいこととなるわけである。
(MLS8 3000 ~ 4000m9
/lj conditions) Therefore, 90% of the precipitation and discharge steps
In order for sludge not to surface in 1 minute, 0. U. R20■
Therefore, it is desirable to make it less than /l.

更に、第5図に示したのは他の実施例で、特に生し尿、
消化脱離液などの窒素分を多量に含む高濃度有機性廃液
を処理に適したものである。
Furthermore, FIG. 5 shows another example, in particular raw human urine,
It is suitable for treating highly concentrated organic wastewater containing a large amount of nitrogen, such as digestive desorption fluid.

この例では、流入ゾーン5が、連続ばつ気室5C,脱窒
室5、D1従来の流入ゾーン5Eに区分されている。
In this example, the inlet zone 5 is divided into a continuous aeration chamber 5C, a denitrification chamber 5, and a conventional inlet zone 5E.

そしで、主ばつ気室6内の液はポンプPにより連続ばつ
気室5Cに返送される。
The liquid in the main air chamber 6 is then returned to the continuous air chamber 5C by the pump P.

ここで、主ばつ気室からの返送液は、更はばつ気され、
窒素分の酸化すなわち硝化が進められる。
Here, the liquid returned from the main ventilation chamber is further vented,
Oxidation of nitrogen content, that is, nitrification, progresses.

そして、連続ばつ気室5Cで硝化された液が脱窒室5D
に流入される。
Then, the liquid nitrified in the continuous aeration chamber 5C is transferred to the denitrification chamber 5D.
is flowing into the country.

脱窒室5Dには汚水も流入され、攪拌機により混合接触
される。
Dirty water also flows into the denitrification chamber 5D and is mixed and contacted by a stirrer.

脱窒室は攪拌のみなので嫌気的状態となり、流入汚水中
の有機物および硝化液があるので硝酸塩の還元、脱窒が
行われる。
The denitrification chamber is in an anaerobic state because only stirring is performed, and nitrate reduction and denitrification occur because of the presence of organic matter and nitrification liquid in the inflowing wastewater.

この脱窒処理により、有機物および窒素分の減少した汚
水が流入ゾーン5Eをへて主びつ気室6へ流入する。
As a result of this denitrification treatment, wastewater with reduced organic matter and nitrogen content flows into the main air chamber 6 through the inflow zone 5E.

流入ゾーン5E主ばつ気室6などは前述したものと同一
なので説明は省略する。
The inflow zone 5E, main air chamber 6, etc. are the same as those described above, so their description will be omitted.

この装置によれば、窒素分を多量に含有する高濃度有機
性廃液を窒素分の除去も含めて有効に処理できる。
According to this device, highly concentrated organic waste liquid containing a large amount of nitrogen can be effectively treated, including the removal of nitrogen.

以上のような汚水の処理方法及び装置によれば?入ゾー
ン内は流入水と主ばつ気室からの返送液の混合物となり
適量の汚泥を含むため汚泥に対する有機物負荷は主ばつ
気室に比べ非常に大きいが適切なものとなり汚泥のバル
キングを防止できる。
According to the above sewage treatment method and equipment? The inlet zone is a mixture of inflow water and liquid returned from the main aeration chamber, and contains an appropriate amount of sludge, so the organic matter load on the sludge is much higher than in the main aeration chamber, but is still appropriate, and bulking of the sludge can be prevented.

又単一の槽にて処理ができるので沈殿槽が不要となり又
一般のバッチ処理のような汚水の貯留槽もいらない。
Furthermore, since the treatment can be carried out in a single tank, there is no need for a sedimentation tank, and there is no need for a storage tank for sewage as in general batch processing.

流入ゾーンは、汚泥が低濃度で有機物負荷が高いため吸
着が非常によく行われ、吸着が終った後で主ばつ気室で
酸化分解されるため処理効果がよい。
In the inlet zone, the sludge has a low concentration and a high organic matter load, so adsorption is very good, and after the adsorption is finished, it is oxidized and decomposed in the main aeration chamber, so the treatment effect is good.

また流入ゾーンがあるため連続流入であっても短絡を防
止できる。
Furthermore, since there is an inflow zone, short circuits can be prevented even with continuous inflow.

この発明の汚水の処理方法及び装置は前述の各実施例の
他に流入ゾーンと主ばつ気室を別槽としパイプで連通し
てもよく仕切壁を傾斜してもよく、又仕切壁の下方を複
数個所開口し、その他の部分を底面までのばしてもよい
In addition to the above-mentioned embodiments, the wastewater treatment method and apparatus of the present invention may be configured such that the inflow zone and the main air chamber are separate tanks and communicated with each other through a pipe, or the partition wall may be inclined, or the It is also possible to open in multiple places and extend the other parts to the bottom.

こうすると仕切壁の固定も簡単となる。又流入ゾーンは
処理対象となる汚水の性状によっては常時ばつ気処理、
常時攪拌処理等主ばつ気室と同一のサイクルでばつ気処
理、沈殿処理、放流処理を繰り返さなくてもよい。
This will also make it easier to fix the partition wall. In addition, depending on the nature of the wastewater to be treated, the inflow zone may be constantly aerated or treated.
There is no need to repeat aeration treatment, precipitation treatment, and discharge treatment in the same cycle as in the main aeration chamber, such as constant stirring treatment.

父上記実施例ではばつ気、沈殿、放流のサイクル制装置
もタイマーで制御しているが、槽内の液水位として、下
方よりWL1,WL2,WL3を設定し、次のように制
御してもよい。
In the above example, the cycle control device for aeration, sedimentation, and discharge is also controlled by a timer, but the liquid level in the tank may be set as WL1, WL2, and WL3 from below and controlled as follows. good.

WL1でデカンタを下方から上方へ駆動し放流を停止し
ブロアをオンとしばつ気工程とする。
At WL1, the decanter is driven from the bottom to the top to stop the discharge and the blower is turned on for the aeration process.

WL2でブロアをOFFとし沈殿工程とする。At WL2, turn off the blower and start the precipitation step.

W,Lsでデカンタを上方から下方へ駆動し放流工程に
する。
Use W and Ls to drive the decanter from above to below for the discharge process.

この水位の設定は流入パターンにより最適に定めること
ができる。
The setting of this water level can be optimally determined based on the inflow pattern.

次にタンクの形状についても各実施例ではほぼ長方形を
用いたが円形とすることもできこの場合は流入ゾーンを
中央部に設けると容積効率がよく好ましい。
Next, regarding the shape of the tank, although a substantially rectangular shape was used in each embodiment, it may also be circular, and in this case, it is preferable to provide the inflow zone in the center for better volumetric efficiency.

返送手段は、ジェットエアレーションノズルへの液供給
ポンプの他単なるポンプ輸送、主ばつ気室のばつ気ノズ
ルを流入ゾーンに向けて配置しばつ気処理により流入ゾ
ーンに向けての液流をおこし、主ばつ気室の液を返送す
ることもできる。
In addition to the liquid supply pump to the jet aeration nozzle, the return means includes simple pump transport, and the aeration nozzle of the main air chamber is placed facing the inflow zone to generate a liquid flow toward the inflow zone by air treatment. It is also possible to return the liquid in the air chamber.

加えてデカンタと主ばつ気室との開口位置について比較
的小型の装置たとえばタンクの巾と長さ比が1:4以下
の装置では、デカンタを終端部より中央部側に寄せ開口
からの流れを前記デカンタの背面を通過させるようにす
るとよい。
In addition, regarding the opening position of the decanter and the main air chamber, for relatively small equipment, such as equipment with a tank width to length ratio of 1:4 or less, it is recommended to move the decanter closer to the center than the end to reduce the flow from the opening. It is preferable to allow the liquid to pass through the back side of the decanter.

このタンクに流入した汚水に凝集剤を添加し凝集性の強
化を行ってもよ<AA塩、Ca塩などの無機凝集剤を添
加すればリン酸塩の除去も行える効果を有する。
A flocculant may be added to the wastewater flowing into the tank to strengthen the flocculating property. Adding an inorganic flocculant such as AA salt or Ca salt has the effect of removing phosphates.

また空気の代りに酸素ガス等を送ってもよく、こうする
と少量のガス供給で同様の処理が行える。
Further, oxygen gas or the like may be sent instead of air, and in this case, the same processing can be performed with a small amount of gas supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イはこの発明の実施例を示す汚水処理装置の断面
図、第1図口は第1図イの平面図、第1図ハは第1図口
のA−A断面図、第2図イはこの発明の他の実施例を示
す平面図、第2図口は第2図イのジェットエアレーショ
ンの要部拡大断面図、第2図ハは第2図イの斜視図、第
3図はこの発明の汚水処理のサイクルダイヤグラム、第
4図はこの発明の汚水処理装置の流入ゾーンと主ばつ気
室の酸素利用速度・時間特性図、第5図は他の実施例を
示す断面図である。 1・・・・・・タンク、2・・・・・・入口、3・・・
・・・一端,.4・・・・・・バツフル、4a・・・・
・・開口部.,5・・・・・・流入ゾーン、5A・・・
・・・第1の流入ゾーン、5B・・・・・・第2の流入
ゾーン、6・・・・・・主ばつ気室、8・・・・・・液
体パイプ、9・・・・・・空気パイプ、10・・・・・
・デカンタ、P・・・・・・ポンフ、C・・・・・・制
御装ffi (コントロールパネル)。
Figure 1A is a sectional view of a sewage treatment equipment showing an embodiment of the present invention, Figure 1A is a plan view of Figure 1A, Figure 1C is a sectional view taken along line AA of Figure 1A, Figure A is a plan view showing another embodiment of the present invention, the opening of Figure 2 is an enlarged sectional view of the main part of the jet aeration shown in Figure 2 A, Figure 2 C is a perspective view of Figure 2 A, and Figure 3 4 is a cycle diagram of the sewage treatment of this invention, FIG. 4 is a diagram of the oxygen utilization rate and time characteristics of the inflow zone and main air chamber of the sewage treatment apparatus of this invention, and FIG. 5 is a sectional view showing another embodiment. be. 1...tank, 2...inlet, 3...
···one end,. 4...Batsuful, 4a...
··Aperture. , 5...Inflow zone, 5A...
...First inflow zone, 5B...Second inflow zone, 6...Main air chamber, 8...Liquid pipe, 9...・Air pipe, 10...
・Decanter, P... Ponfu, C... Control device ffi (control panel).

Claims (1)

【特許請求の範囲】 1 汚水をタンク内部の一端に設けた流入ゾーンに沈殿
工程、放流工程でも制御することなく流入する工程と、
前記流入ゾーンの液体を主ばつ気室に流入する工程と主
ばつ気室に流入した液体を前記流入ゾーンへ返送する工
程と、少くとも前記主はつ気室内の液体をばつ気処理、
沈殿処理、上澄放流処理のサイクルで運転する制御工程
と、前記タンクの主ばつ気室一端で沈殿処理された上澄
液体を放流する工程とから或る汚水の処理方法。 2 タンク内部の一端に設けた沈殿工程、放流工程でも
制限することなく流入する流入ゾーンと、この流入ゾー
ンと連通して設けた主ばつ気室と、この主ばつ気室内に
配置したばつ気装置と、主ばつ気室内の液体を前記流入
ゾーンに返送する返送手段と、少くとも前記主ばつ気室
内の液体をばつ気処理、沈殿処理、上澄放流処理のサイ
クルで運転制御する制御装置と、前記タンク内の主ばつ
気室に保持され前記制御装置の指示によって沈殿処理後
の上澄液を放流するよう配置した上澄放流装置とから戊
る汚水の処理装置。 3 流入ゾーンは、複数の区分された槽からなる特許請
求の範囲第2項記載の汚水の処理装置。 4 流入ゾーンへ返送する手段は、流入ゾーン内に設置
されたジエト・エアレーションのためのジェットノズル
へ、主ばつ気部の液を圧送することによる特許請求の範
囲第2項または第3項記載の汚水の処理装置。
[Claims] 1. A step in which wastewater flows into an inlet zone provided at one end of the tank without being controlled during the settling step and the discharge step;
a step of flowing the liquid in the inflow zone into the main aeration chamber; a step of returning the liquid that has flowed into the main aeration chamber to the inflow zone; and aeration treatment of at least the liquid in the main aeration chamber;
A method for treating wastewater comprising a control step of operating in a cycle of precipitation treatment and supernatant discharge treatment, and a step of discharging the supernatant liquid subjected to the precipitation treatment at one end of the main aeration chamber of the tank. 2. An inflow zone provided at one end of the tank interior through which the water flows without restriction during the sedimentation process and discharge process, a main air chamber provided in communication with this inflow zone, and an aeration device placed within this main air chamber. a return means for returning the liquid in the main aeration chamber to the inflow zone; and a control device for controlling the operation of at least the liquid in the main aeration chamber in a cycle of aeration treatment, precipitation treatment, and supernatant discharge treatment; and a supernatant discharge device held in a main aeration chamber in the tank and arranged to discharge supernatant liquid after precipitation according to instructions from the control device. 3. The sewage treatment device according to claim 2, wherein the inflow zone comprises a plurality of divided tanks. 4. The means for returning the liquid to the inflow zone is the method described in claim 2 or 3 by forcefully feeding the liquid in the main air vent to a jet nozzle for jet aeration installed in the inflow zone. Sewage treatment equipment.
JP55185777A 1980-12-27 1980-12-27 Sewage treatment method and equipment Expired JPS5838233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55185777A JPS5838233B2 (en) 1980-12-27 1980-12-27 Sewage treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55185777A JPS5838233B2 (en) 1980-12-27 1980-12-27 Sewage treatment method and equipment

Publications (2)

Publication Number Publication Date
JPS57110386A JPS57110386A (en) 1982-07-09
JPS5838233B2 true JPS5838233B2 (en) 1983-08-22

Family

ID=16176702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55185777A Expired JPS5838233B2 (en) 1980-12-27 1980-12-27 Sewage treatment method and equipment

Country Status (1)

Country Link
JP (1) JPS5838233B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465983A (en) * 1987-09-07 1989-03-13 Ricoh Kk Digital color copying machine

Also Published As

Publication number Publication date
JPS57110386A (en) 1982-07-09

Similar Documents

Publication Publication Date Title
US5611927A (en) System for removing nutrients from wastewater
US20030042199A1 (en) Wastewater treatment process
CZ311694A3 (en) Process and apparatus for treatment of waste water or sewage containing nitrogenous compounds
JPS5849497A (en) Biological purification plant for sewage and operating method thereof
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
US4353800A (en) Method and an apparatus for biological treatment of waste waters
NZ215601A (en) Sewage treatment tank with baffled vertical loop circulation and delayed air release feature
JPS5838233B2 (en) Sewage treatment method and equipment
JPH0233438B2 (en)
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
US4915829A (en) Activated-sludge aeration system
JPH0148834B2 (en)
JPH03213197A (en) Device for treating putrescible waste liquor
JP2673488B2 (en) Method and apparatus for treating organic wastewater
CN114380389B (en) Device and method for treating rural sewage with ultralow energy consumption
KR102300414B1 (en) High efficiency advanced wastewater treatment system
KR101203944B1 (en) Denitrification system using micro bubble floating device
JPS607832Y2 (en) Sewage treatment equipment
JPS6350078B2 (en)
JPH11151497A (en) Waste water treating device
JPS5943240B2 (en) Intermittent cycle activated sludge treatment method
JPH08117789A (en) Operation control of two-stage activated sludge circulation variation
KR200294723Y1 (en) advanced wastwater treatment system using a submerged type membrane
JPS6075397A (en) Treatment of waste water
JPS5913917B2 (en) Polluted liquid treatment equipment