JPS5837614A - Reflection type differential interference microscope - Google Patents

Reflection type differential interference microscope

Info

Publication number
JPS5837614A
JPS5837614A JP13482781A JP13482781A JPS5837614A JP S5837614 A JPS5837614 A JP S5837614A JP 13482781 A JP13482781 A JP 13482781A JP 13482781 A JP13482781 A JP 13482781A JP S5837614 A JPS5837614 A JP S5837614A
Authority
JP
Japan
Prior art keywords
prism
curvature
objective lens
differential interference
visual field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13482781A
Other languages
Japanese (ja)
Other versions
JPS6255765B2 (en
Inventor
Kenji Yamada
健司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP13482781A priority Critical patent/JPS5837614A/en
Publication of JPS5837614A publication Critical patent/JPS5837614A/en
Publication of JPS6255765B2 publication Critical patent/JPS6255765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a uniform visual field when the surface of an object having curvature such as the cornea is observed by disposing a double refractive prism in the position conjugate with the central point of curvature of an object to be inspected having a spherical surface with respect to an object lens or making said disposition possible. CONSTITUTION:A Wollaston prism 5 is disposed at the conjugate point C' with the center C of curvature of an object surface 17 with respect to an objective lens 6 in such a way that the branching points of an ordinary ray (o) and an extraordinary ray (e) by the prism 5 coincide. Consequently, the two rays (o) and (e) out from the prism 5 are made incident vertically to the surface 17 so as to be concentrated at the center C of the surface 17 by the lens 6 and are reflected by tracing the same route reversely. Then the differences in brightness and darkness in the visual field for observation are eliminated, hues are made constant and the differential interference image of the surface 17 is observed satisfactorily and accurately within the uniform visual field.

Description

【発明の詳細な説明】 本発明は、凸面又は凹面等曲率をイi−′rる物体表面
を観察する為の反射型微分干渉顕微鏡に関Tる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reflection type differential interference microscope for observing the surface of an object having a convex or concave uniform curvature.

一般的な反射型微分干渉顕微鏡は公知である。第1図に
その原理を示す。光源1を発した元は、集光レンズ2に
よって平行光束となり、ポーラライザー3によって直線
偏光となり、リーフミラー4で反射され、ウォラストン
プリズム5に入射する。ウォラストンプリズム5は周知
のように光学軸が互に垂直な2つの(梨形水晶板を貼合
わせたものである。ここで、入射11は水晶の複屈折性
のために振動方向が互に垂l?fな常光線0と異常光線
eの2つの偏元元廊1jに分1ζ・1[されて出てくる
。この29Y;脚はある角度゛の拡がりをもち、この拡
がりの中心が対物レンズ6の像側焦点に一致しているの
で、対物レンズ6を出た後、光線はそれぞれ元軸に平行
となる。平面物体7で反射された2光線は、それぞれ同
じ経路を逆にたどり、アナライザー8でこの偏光軸方向
に平行ス「偏光成分のみが透過する。そして2元線は互
いに干渉を起して物体面の微に111な凹凸に応じた像
を形成し、この干渉像が接眼レンズ9を拙して拡大観察
さ扛る。この場合、反射元腺は入射−11線の光路をぞ
のま\通り、再びウォラストンプリズム5で同一方向に
進む光線となり、それに付随した波面EO,E@は互に
平行となり、その1川隔は全空間にわたって一様であり
、視野は一様となる。
General reflective differential interference microscopes are well known. Figure 1 shows the principle. The light emitted from the light source 1 is converted into a parallel light beam by the condenser lens 2, converted into linearly polarized light by the polarizer 3, reflected by the leaf mirror 4, and incident on the Wollaston prism 5. As is well known, the Wollaston prism 5 is made by laminating two (pear-shaped) crystal plates whose optical axes are perpendicular to each other. Here, the incident light beam 11 has vibration directions that are mutually different due to the birefringence of the crystal. The ordinary ray 0 and the extraordinary ray e, which are perpendicular to each other, come out divided by 1ζ・1[. Since the focal point on the image side of the objective lens 6 coincides with the focal point on the image side of the objective lens 6, each of the rays becomes parallel to the original axis after exiting the objective lens 6.The two rays reflected by the plane object 7 each follow the same path in reverse. , in the analyzer 8, only the polarized light components are transmitted through parallel lines in the direction of the polarization axis.The binary lines then interfere with each other to form an image corresponding to the minute 111 unevenness of the object surface, and this interference image is The eyepiece lens 9 is used for magnification observation.In this case, the reflection source gland passes through the optical path of the incident -11 line, becomes a ray of light that travels in the same direction again at the Wollaston prism 5, and the wavefront associated with it EO and E@ are parallel to each other, and the distance between them is uniform over the entire space, and the field of view is uniform.

次に、この反射型微分干渉顕微鏡を曲率を持った物体表
面の観察に適用した場合f:第2図に示す。第2図では
照明系及び接眼レンズを簡単化のため省略した。この場
合、反射光線は物体表面17の曲率のために、ウォラス
トンプリズム5のところで交わらないので、2光束は同
一方向に進−チす、それに付1!Iff、 t、 fc
波面Eo、Eeは平行とはならず場所によって間隔が異
なってしまう。このため観察視野に明暗の縞或は色相の
差ができて一様な視野が得られない。このように、角腿
のように被検物体面自体が平面ではなくある曲率をイ1
″′f′石場合には、従来の反射型微分干渉顕微鏡によ
っては観察視野に均一な背景を得ることができず、観察
しにくいものであった。
Next, when this reflection type differential interference microscope is applied to observation of the surface of an object having curvature, f is shown in FIG. 2. In FIG. 2, the illumination system and eyepiece are omitted for simplicity. In this case, the reflected light rays do not intersect at the Wollaston prism 5 due to the curvature of the object surface 17, so the two light beams travel in the same direction. If, t, fc
The wavefronts Eo and Ee are not parallel and have different intervals depending on the location. For this reason, bright and dark stripes or differences in hue occur in the observation field, making it impossible to obtain a uniform field of view. In this way, the surface of the object being tested is not a flat surface, but has a certain curvature, like a square leg.
In the case of ``'f'' stones, it is difficult to observe them because it is not possible to obtain a uniform background in the observation field using a conventional reflection type differential interference microscope.

本発明は前述の問題点を解決し、曲率を持った物体表面
全観察した場合、一様な睨野が得られる反射!!、l倣
分干渉顕鍼γ8を得る車を目的とする。
The present invention solves the above-mentioned problems and provides a uniform reflection field when observing the entire surface of an object with curvature! ! , the objective is to obtain a model of interference acupuncture needle γ8.

本発明による反射型微分干渉顕微鏡シエ、ウォラストン
プリズム等の複屈折プリズムによる常光線と異常光線と
の分岐点が、対物レンズに1)IXするFji状被検物
体の表面の曲率中心との共役点に合致するようにウォラ
ストンプリズムを配置したものである。
In the reflection type differential interference microscope according to the present invention, the branching point between the ordinary ray and the extraordinary ray by a birefringent prism such as a Wollaston prism is conjugated with the center of curvature of the surface of the Fji-shaped object to be examined in the objective lens. Wollaston prisms are arranged to match the points.

Jソ下本発明をψ73図に基づいて説明する。The present invention will be explained based on diagram ψ73 below.

第31ylは本発明による反射〃牧分干渉卵微危ンの構
成を示す4は略図であり、反射型f1り分干渉頒微鉤と
して必jf3iな照明系や接眼レンズは第11#lに示
した従来のもの全その寸\用いろことができる。図示の
ごとく、対物レンズ6に関して物体表面170曲率中心
(C)との共役臓、(C’)にウォラストンプリズム5
による當ツ〔;線0と異常光ii$i1 aとの分岐点
が合致するようにウォラストンプリズム5が配↑dされ
ている。このj4%合、ウォラストンプリズム5を出た
2光線Oとeは、対物レンズによって物体表向170曲
率中心Cに集まり、物体表面に(匡直に入射″f−る。
No. 31yl shows the configuration of the reflective interferometer according to the present invention. No. 4 is a schematic diagram, and No. 11l shows the illumination system and eyepiece necessary for the reflection type f1 interferometer. You can use all the conventional ones in that size. As shown in the figure, the object surface 170 is conjugate with the center of curvature (C) with respect to the objective lens 6, and the Wollaston prism 5 is located in (C').
The Wollaston prism 5 is arranged so that the branch point between the line 0 and the extraordinary light ii$i1a coincides with each other. With this j4%, the two light beams O and e exiting the Wollaston prism 5 are focused by the objective lens at the center of curvature C 170 facing the object surface, and enter the object surface directly ("f-").

このため、反射光線は同じ経路を逆にたどり、ウォラス
トンプリズム5で同一方向に進む元となり、常光線に付
1!+′にする波面Eoと異常光線に付随する波面Ee
とが互いに平行となる。従って、綱察祝腎に明暗の差は
なくなり、色相も一定となり−4様な視野内で、物体表
面17の微分干渉像を十分良好にかつ正確に観察するこ
とができろ。
Therefore, the reflected rays follow the same path in reverse and become the source of traveling in the same direction at the Wollaston prism 5, adding 1! to the ordinary ray! +′ wavefront Eo and wavefront Ee associated with the extraordinary ray
are parallel to each other. Therefore, there is no difference in brightness and darkness in the image, the hue is constant, and the differential interference image of the object surface 17 can be observed satisfactorily and accurately within a -4-like field of view.

こ\で、対物レンズ6の1@点距Fffp ? f s
物体表面11の曲率半径′f:r s物体表面17と対
物レンズとの距##’f−dとすると、ウォラストンプ
リズム5による2光線の分岐点と対物レンズとの距ll
#tは、 で与えられる。ウォラストンプリズムでは一般に常光線
と異常光線との分岐点がプリズム内部にあるため、実際
にはウォラストンプリズムを対物レンズから上式で与え
られる距離tの位置に配置すればよい。11シ、ウォラ
ストンプリズムの改良として知られているノマルスキー
プリズムを用いる場合には、プリズムと2光束の分岐点
が離4.ているため、プリズムと対物レンズとの距離は
上式のtの値よりも大きくなる。
Here, 1@point distance Fffp of objective lens 6? f s
If the radius of curvature of the object surface 11 is 'f: r s, the distance between the object surface 17 and the objective lens is ##'f-d, then the distance between the branch point of the two rays by the Wollaston prism 5 and the objective lens is ll
#t is given by In a Wollaston prism, the branch point between the ordinary ray and the extraordinary ray is generally located inside the prism, so in reality, the Wollaston prism may be placed at a distance t given by the above equation from the objective lens. 11. When using the Nomarski prism, which is known as an improvement on the Wollaston prism, the prism and the branching point of the two light beams are far apart.4. Therefore, the distance between the prism and the objective lens is larger than the value of t in the above equation.

第3図は物体面が凸面である場合を示したが、物体[f
jiが凹面であっても本発明は同じく有効であり、この
場合の主要部分の光路図を2t54図に示した。この場
合にも物体表面170曲率中心Cと対物レンズ6に関し
て共役な点C′ にウォラストンプリズム、正確には2
光束の分岐点が合致している。2光束の分岐点と対物レ
ンズ6との距離tは前記の式において曲率半径rを負と
して計算すれば同様に求められ、物体面が凹面であって
も観察視野に均一な背景を得ろことができろ。
Figure 3 shows the case where the object surface is a convex surface, but the object [f
The present invention is equally effective even if ji is a concave surface, and the optical path diagram of the main part in this case is shown in Figure 2t54. In this case as well, a Wollaston prism is placed at a point C' that is conjugate with respect to the center of curvature C of the object surface 170 and the objective lens 6.
The branch points of the luminous flux match. The distance t between the branching point of the two light beams and the objective lens 6 can be calculated in the same way by setting the radius of curvature r to be negative in the above equation, and even if the object surface is concave, it is possible to obtain a uniform background in the observation field. You can do it.

捷た、物体面の表面形状が完全な球面ではなくとも、観
察しようとする中心部の形状をある半径の球面にd工似
させ、この曲率半径においてnTJ 4己の式よりウォ
ラストンプリズムの配IW’を決W丁4ば一様な視野を
イ4することかできる。
Even if the surface shape of the curved object surface is not a perfect sphere, the shape of the center to be observed is made to resemble a spherical surface with a certain radius, and at this radius of curvature, the arrangement of the Wollaston prism is If IW' is determined, it is possible to obtain a uniform field of view.

また、第3図、第4図に示す実施例において、ウォラス
トンプリズム5と対物レンズ6との間の光路長を変える
手段を設けてat々の被検物体に応じてii(宜rJ!
、1節可能とすると好適であり、またそのような手段を
第1図に示す如き従来の反射偕倣分顕微鏡に設けて本発
明全実施しても良い。
Furthermore, in the embodiments shown in FIGS. 3 and 4, a means is provided to change the optical path length between the Wollaston prism 5 and the objective lens 6, so that the length of the optical path between the Wollaston prism 5 and the objective lens 6 can be adjusted depending on the object to be examined.
, it is preferable to enable one section of the microscope, and such a means may be provided in a conventional reflection scanning microscope as shown in FIG. 1 to carry out the entire invention.

以上のように、本発明によれば、角膜のように!I’t
+体表面が曲率全方する場合でも、一様な視野で観察す
ることのできる反射型微分干渉−g鏡が得られる。なお
、本装置aにおいては、前述したとおりウォラストンプ
リズムの代りに、同じ機能を有し、常光線と異常光線と
の分岐点がプリズムの外部にあるノマルスキープリズム
を用いる事もでき同じく有効であることはいうまでもな
い。
As described above, according to the present invention, like the cornea! I't
+ Even if the body surface has the entire curvature, a reflective differential interference -g mirror can be obtained that allows observation with a uniform field of view. In addition, in this device a, as mentioned above, instead of the Wollaston prism, it is also possible to use a Nomarski prism which has the same function and whose branching point between the ordinary ray and the extraordinary ray is outside the prism, and is equally effective. Needless to say.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の装置の光路図、第3図、第4
図は本発明による反射me分干渉顕@鏡の光路図。 〔主要部分の符号の説明〕 5・・・ウォラストンプリズム (複屈折プリズム) 6・・・対物レンズ O・・・常光線 e・・・異常光線 出 杵゛1 人 二 日本光学工業株式会社第1区 オ8区 −G
Figures 1 and 2 are optical path diagrams of conventional equipment, Figures 3 and 4
The figure is an optical path diagram of a reflection me interference microscope according to the present invention. [Explanation of symbols of main parts] 5...Wollaston prism (birefringent prism) 6...Objective lens O...ordinary ray e...extraordinary ray output 1 person 2 Nippon Kogaku Kogyo Co., Ltd. No. 1st ward O 8th ward-G

Claims (1)

【特許請求の範囲】[Claims] 対物レンズの元軸上で1つ又核対物レンズに関して球状
表面被検物体の曲率中心点と共役な位置に、複屈折プリ
ズムによる常光線と異常光線との分岐点を位置せしめる
如く該複屈折プリズムを配置し又は配置可能としたこと
を特徴とする反射型微分干渉顕微鏡、鏡。
The birefringent prism is arranged so that the branch point of the ordinary ray and the extraordinary ray by the birefringent prism is located at a position on the principal axis of the objective lens and at a position conjugate with the center of curvature of the spherical surface of the object to be examined with respect to the nuclear objective lens. A reflection type differential interference microscope and a mirror, characterized in that a mirror is arranged or can be arranged.
JP13482781A 1981-08-29 1981-08-29 Reflection type differential interference microscope Granted JPS5837614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13482781A JPS5837614A (en) 1981-08-29 1981-08-29 Reflection type differential interference microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13482781A JPS5837614A (en) 1981-08-29 1981-08-29 Reflection type differential interference microscope

Publications (2)

Publication Number Publication Date
JPS5837614A true JPS5837614A (en) 1983-03-04
JPS6255765B2 JPS6255765B2 (en) 1987-11-20

Family

ID=15137392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13482781A Granted JPS5837614A (en) 1981-08-29 1981-08-29 Reflection type differential interference microscope

Country Status (1)

Country Link
JP (1) JPS5837614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203005A (en) * 1986-03-03 1987-09-07 Daikin Ind Ltd Apparatus for measuring three-dimensional free curved surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB774277A (en) * 1952-05-14 1957-05-08 Centre Nat Rech Scient Interference polarizing device for study of phase objects

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB774277A (en) * 1952-05-14 1957-05-08 Centre Nat Rech Scient Interference polarizing device for study of phase objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203005A (en) * 1986-03-03 1987-09-07 Daikin Ind Ltd Apparatus for measuring three-dimensional free curved surface

Also Published As

Publication number Publication date
JPS6255765B2 (en) 1987-11-20

Similar Documents

Publication Publication Date Title
US4515445A (en) Optical system for transmitted-light microscopy with incident illumination
US4255014A (en) Edge enhancement of phase phenomena
US2303906A (en) Polarized light compensating system
US3437395A (en) Optical system for inverted microscope
US4067646A (en) Eyeground inspecting contact lens
JPS58211731A (en) Conoscope optical system of polarization microscope
US2074106A (en) Metallographic illuminating system and prism therefor
Mallick et al. Common-path interferometers
US3277782A (en) Illuminating apparatus for a microscope system using polarized light
US3843227A (en) Light dissecting optical system
JPS5837614A (en) Reflection type differential interference microscope
US3454340A (en) Interferometry
US3547513A (en) Split field optical comparison system
US2014888A (en) Diagnostic instrument
Camacho et al. Polarization optics of GRIN lenses
JPH0235408A (en) Microscope
JPH0143042Y2 (en)
TW201944118A (en) Shearing interference microscope with Salva prism as shearing assembly including a light source, a polarizer, a converging lens, an object lens, a beam splitter mirror, a Salva prism, an analysis board, and a photosensitive component
US2694340A (en) Interference microscope
SU1337042A1 (en) Keratometer
US6549334B1 (en) Transmission illumination type differential interference microscope
JPH09178452A (en) Surface observing optical system
GB2055223A (en) Intermediate microscope imaging system
GB710495A (en) Improvements in or relating to microscopy
JP2748173B2 (en) Auto collimator