JPS5837527A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPS5837527A
JPS5837527A JP56135574A JP13557481A JPS5837527A JP S5837527 A JPS5837527 A JP S5837527A JP 56135574 A JP56135574 A JP 56135574A JP 13557481 A JP13557481 A JP 13557481A JP S5837527 A JPS5837527 A JP S5837527A
Authority
JP
Japan
Prior art keywords
quartz
temperature
lod
glass
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56135574A
Other languages
Japanese (ja)
Inventor
Yasuji Hattori
吉村耕三
Kozo Yoshimura
後藤英夫
Hideo Goto
服部保次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56135574A priority Critical patent/JPS5837527A/en
Publication of JPS5837527A publication Critical patent/JPS5837527A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0205Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/048Protective parts

Abstract

PURPOSE:To reduce the wavelength dependence of radiated light and stably attain photodetection without excess loss by using a quartz glass lod and a quartz optical fiber. CONSTITUTION:An image formation lens 2 is stored in a metallic lens case 1 made of stainless steel or the like. A metallic protection case 3 made of stainless steel or the like is screwed with the lens case at its leading end and a quartz glass lod 4 of which both the ends are ground like a mirror is stored in the protection case 3. The refractive index of the center part of the glass lod 4 is larger than that of the peripheral part and an optical guide layer is formed on the center part. The quartz glass lod 4 is coupled with a quartz optical fiber 5 through a connector 8 and the optical fiber 5 is connected to a detection processing part 6 of a radiation thermometer.

Description

【発明の詳細な説明】 に適した光検出装置に関する。[Detailed description of the invention] The present invention relates to a photodetection device suitable for.

加熱炉や熱間圧延鋼板のような高温の対象物の温度を非
接触で測定す.る方法として、対象物の分光放射特性の
波長依存性が第1図に示す如くその対象物の温度に依存
することを利用し、その対象物の放射光を測定処理して
温度を求める放射温度針が用いられている。
Measures the temperature of high-temperature objects such as heating furnaces and hot-rolled steel plates without contact. As a method for determining the temperature, the wavelength dependence of the spectral radiation characteristics of the object is dependent on the temperature of the object, as shown in Figure 1. A needle is used.

被測定対象物が遠くにあったり、奥まった狭い所にあっ
たり、あるいは周囲温度が高かったりして放射温度1十
の光学系を通して直接被測定対象物を観測できない場合
は、何らかの手段によシ被測定対象物の放射光を検出し
て放射温度針へ導かねばならない。
If the object to be measured cannot be directly observed through an optical system with a radiation temperature of 10, because the object to be measured is far away, located in a recessed and narrow place, or the ambient temperature is high, use some other means to observe the object to be measured. The emitted light from the object to be measured must be detected and guided to the emitted temperature needle.

そこで従来の放射温度針では、100〜200融16の
多成分ガラスファイバを多数本束ねたバンドルファイバ
によって被測定対象物の放射光を拾い、この放射光を検
出処理部へ導くことが行われていた。しかし、多成分ガ
ラスファイバはそれ自身の融点が700℃ー程度である
が、バンドルファイバ先端部の末端処理に有機系の樹脂
環を用いているため、バンドルファイバ先端部の耐熱性
は100〜200℃程度にすぎず、高温対象物に近接し
て温度を測定する場合には水冷や空冷環の冷却機構を必
要としていた。また多成分ガラスファイバは損失が大き
い九め伝送距離が十分にとれないこと、損失O液長依存
性が大きいため検出処理部で波長依存の補償を行わねば
ならないこと等の問題がある。更に被測定対象物の幾何
学的測定範囲は使用し九ファイバの開口数によって決ま
るため十分な分解能が得られない問題がある。なお、バ
ンドルファイバの先端部を高温雰囲気下にさらすことな
く高温対象物に近接して温WLを槻定できるように、バ
ンドルファイバの先端にガラス棒を結合し、このガラス
棒で放射光を拾って前記多成分のバンドルファイバを介
して検出処理部に送るということも行われている。しか
し、この場合のガラス棒は単なる棒であるため、外周に
汚れが付くとことから光が外へ漏れて伝送特性が安定せ
ず、また雰囲気の屈折率が変化すると視野が変化してし
オい、一定hat−劣化させていた。
Therefore, in conventional radiation temperature needles, the radiation light from the object to be measured is picked up by a bundle fiber made up of a large number of multi-component glass fibers of 100 to 200 f/16, and this radiation light is guided to the detection processing section. Ta. However, although multicomponent glass fiber itself has a melting point of about 700°C, since an organic resin ring is used for the end treatment of the bundle fiber tip, the heat resistance of the bundle fiber tip is 100 to 200°C. ℃, and when measuring the temperature close to a high-temperature object, a cooling mechanism such as water cooling or air cooling ring was required. In addition, multi-component glass fibers have problems such as not being able to provide a sufficient transmission distance due to large losses, and having to compensate for wavelength dependence in the detection processing section because the loss is highly dependent on liquid length. Furthermore, since the geometric measurement range of the object to be measured is determined by the numerical aperture of the nine fibers used, there is the problem that sufficient resolution cannot be obtained. In addition, in order to be able to measure the temperature WL close to a high-temperature object without exposing the tip of the bundle fiber to a high-temperature atmosphere, a glass rod is connected to the tip of the bundle fiber, and the emitted light is picked up by this glass rod. It is also practiced to send the signal to the detection processing unit via the multi-component bundle fiber. However, since the glass rod in this case is just a rod, if the outer periphery gets dirty, light will leak out and the transmission characteristics will become unstable, and if the refractive index of the atmosphere changes, the field of view will change. Yes, constant hat- was causing deterioration.

本発明は上述し九放射温度針に関する光検出の間一点に
鑑みて111発されたものであ)、放射温度針のみなら
ず、為温物体の位置検出や通過検出など高温物体の放射
光を用いてこの高温物体Kllする情報を得る針側i装
置に対し、放射光上波長依存性が少なく、澁損失で且つ
安定に送p込め、しかも耐熱性の^い光検出装置を提供
することt−目的とする。
The present invention was developed in view of one point during light detection related to the above-mentioned nine radiation temperature needles), and is capable of detecting not only the radiation temperature needle but also the radiation of high temperature objects such as position detection and passage detection of hot objects. To provide a photodetection device that has little wavelength dependence on emitted light, has low loss, stably transmits p, and is heat resistant, for a needle-side i device that obtains information about high-temperature objects. - aim.

斯かる目的を達成する本発明の光検出装置は、中心部に
光ガイド層を有し被測定物体からの光を受光する石英系
ガラスロッドと、この石英系ガラスUツドO出射偶に結
合され九石II&系光ファイバとを備える。なお、視野
を自由に選定するには、望ましくは石英系の結像レンズ
を上記石英系ガラスロッドの前方に備えると良い。
The photodetection device of the present invention that achieves the above object includes a silica-based glass rod having a light guide layer in the center and receiving light from an object to be measured, and a silica-based glass rod coupled to the quartz-based glass U/O output tube. It is equipped with a Kuishi II & system optical fiber. In order to freely select the field of view, it is preferable to provide a quartz-based imaging lens in front of the quartz-based glass rod.

以下、図面に基づいて本発明を説明する。第2図は本発
明を放射温度計に適用した場合の一実施例を光検出先端
を酸析して示し、第3図(荀。
The present invention will be explained below based on the drawings. FIG. 2 shows an embodiment in which the present invention is applied to a radiation thermometer, with the photodetecting tip being acid-precipitated, and FIG. 3 (Xun.

伽)ハ中心部に光ガイド層を有する石英系ガラスロッド
を説明するためのl1面図及び正面図である。
佽) C is a 11 side view and a front view for explaining a quartz-based glass rod having a light guide layer in the center.

第2図において、lFiステンレス勢の金属製レンズケ
ースであシ、これに結像レンズ2が収納されている。3
はステンレス勢の金覗製保饅ケースであシ、これは先端
でレンズケース1と螺合でき、両端面が鏡面研磨され九
石英系ガラスロッド4が内部に収納されている。この石
英系ガラスレッド4は単なるガラスロッドではなく、中
心m5011折率が周縁部よ〉も高いという屈折率分布
を持ち、この屈折率分布によシ中心部に元ガイド層が形
成され、外周の汚れ中雰■気の屈折率変化Kr1l係な
く一定の視野で光が入射し且つ外部に漏れることなく安
定に伝送できる。以下、この石英砂パツスロツド4をオ
プティカルロッドと呼称するが、石英系であるため波長
依存性が少なく且つ耐熱性が高い。5#i伝送光量を増
す丸め石英系ガラス7アイパを21芯や49芯の如く多
数本束ねて作ったバンドル7アイパであり、先増に取付
けたコネクタ8を保護ケース3の基端に螺合することに
より、オプティカルロッド4と結合されている。このバ
ンドルファイバ5の基熾は、この実施例で鉱放射温度針
の検出処理部に結合され、その光電変換部に放射光を送
り込むようになっている。なお、第2図中の7はオプテ
ィカルロッド4の支持金具である。
In FIG. 2, a metal lens case made of lFi stainless steel is shown, and the imaging lens 2 is housed in this case. 3
is a protective case made of stainless steel, which can be screwed onto the lens case 1 at its tip, has both end surfaces polished to a mirror finish, and has a quartz-based glass rod 4 housed inside. This silica-based glass red 4 is not just a glass rod, but has a refractive index distribution in which the center m5011 refractive index is higher than that of the periphery.Due to this refractive index distribution, an original guide layer is formed at the center, and the outer periphery Regardless of the refractive index change Kr1l of the dirty atmosphere, light enters with a constant field of view and can be stably transmitted without leaking to the outside. Hereinafter, this quartz sand rod 4 will be referred to as an optical rod, and since it is made of quartz, it has little wavelength dependence and high heat resistance. 5#i A bundle 7 Eyeper is made by bundling a large number of rounded quartz glass 7 Eyepers, such as 21 cores or 49 cores, to increase the amount of transmitted light.The connector 8 installed previously is screwed into the base end of the protective case 3. By doing so, it is coupled to the optical rod 4. In this embodiment, the base of the bundle fiber 5 is coupled to the detection processing section of the ore radiation temperature needle, and sends the radiation to the photoelectric conversion section thereof. Note that 7 in FIG. 2 is a support fitting for the optical rod 4.

このような構成にすると、結像レンズ2も石英系として
ガラス部を全て石英系とし、またレンズケースl及び保
護ケース3をステンレス製とし、金属部とガラス部の接
着及びバンドルファイバ4の端末処理に無機の接着剤を
用いることKよシ、光検出装置先端部の耐熱性は約10
00℃と大幅に改善される。また、オプティカルロッド
4Fi放射光を一定の視野で受は外部に漏らすことなく
石英系のバンドルファイバ5に送れ、オプティカルr−
ンイトツ゛4とバンドルファイバ5はともに石英系であ
る丸め波長依存性が少なく且つ伝送損失が少ないから、
オプティカルロッド4やバンドルファイバ5を相轟長く
しても、又、雰囲気の屈折率が変化したりオプティカル
ロッド4の外周に汚れが付いても高温物体の所望部分か
らの放射光を検出して波長Kffi存せず安定且つ確案
に検出処理部6へ送り込め、温度測定精度が極めて曳く
なる。更に、実施例の如くオプティカルロッド4の前方
に結像レンズ2を備えると、結像レンズ2の焦点距離を
選ぶことによシ分解能を自由に設定でき、高温対象物の
極く一部の温度中全体の平均温度を測定できる。
With such a configuration, the imaging lens 2 is also made of quartz and all the glass parts are made of quartz, and the lens case l and the protective case 3 are made of stainless steel, and the bonding of the metal part and the glass part and the terminal treatment of the bundle fiber 4 are made. However, the heat resistance of the tip of the photodetector is approximately 10
00℃, which is a significant improvement. In addition, the optical rod 4Fi can receive the synchrotron radiation with a fixed field of view and send it to the quartz-based bundle fiber 5 without leaking to the outside.
The fiber bundle 4 and the bundle fiber 5 are both made of quartz and have little dependence on rounding wavelengths and have little transmission loss.
Even if the optical rod 4 or bundle fiber 5 is lengthened, the refractive index of the atmosphere changes, or the outer periphery of the optical rod 4 becomes dirty, the emitted light from the desired part of the high-temperature object is detected and the wavelength The temperature can be stably and reliably sent to the detection processing unit 6 without Kffi, and the temperature measurement accuracy is extremely improved. Furthermore, if the imaging lens 2 is provided in front of the optical rod 4 as in the embodiment, the resolution can be freely set by selecting the focal length of the imaging lens 2, and the temperature of a very small part of the high-temperature object can be set freely. You can measure the average temperature throughout.

更に説明すると、オプティカルロッド4を第3図(a)
 、 (b) K示す如く屈折率分布がfiiえば、中
心部4mの屈折率n1が周縁部4bO屈折率n、よ如も
nl)nlであるステップ型のものとすれば、これは例
えば通電の光ファイバの製法であるMCVD法やVAD
法にょシ作られるステップ型光7アイパプリ7オームを
2馴φ程度の所定の径に加熱引伸して作ることができる
。これにより光検出装置の先端部を保護ケース3も含め
て5〜6馴φ程度の細径に仕上げることが可能であp1
狭い所にも先端部を挿し込める。オプティカル7tj)
”V h= 4の所要長は周囲の雰囲気温度によって異
なるが、製造上は光ファイバの太径紡糸技術を用いるこ
とによ)数調程度のものは容易に得られ、バンドルファ
イバ5及び検出処理部を高温物体から十分離すことがで
きる。オプティカルロッド4の屈折率分布を得るKは、
中心部4mにゲルマニウム(Ge)やリンCP)などの
ドーパントを入れて中心部4MO屈折率を上げる方法や
、周縁部4bにフッ素CF)やボロンCB)を入れて周
縁部4bの屈折率を下げる方法があるが、0.3〜0.
4JImという極〈短い波長をも対象とすゐKは後者の
方法が適している。
To explain further, the optical rod 4 is shown in FIG. 3(a).
, (b) If the refractive index distribution is fii as shown in K, then if it is a step type in which the refractive index n1 of the center part 4m is the refractive index n1 of the peripheral part 4bO, and the refractive index nl)nl of the peripheral part 4b, this is, for example, MCVD method and VAD method for manufacturing optical fiber
It can be made by heating and stretching a step-type optical 7-eye 7-ohm fabric to a predetermined diameter of about 2mm diameter. As a result, it is possible to finish the tip of the photodetector, including the protective case 3, to a small diameter of about 5 to 6 mm.
The tip can be inserted into tight spaces. optical 7tj)
``The required length of V h = 4 varies depending on the surrounding atmospheric temperature, but in production, a length of several tones can be easily obtained (by using optical fiber large-diameter spinning technology), K to obtain the refractive index distribution of the optical rod 4 is:
There is a method of increasing the refractive index of the center 4MO by adding a dopant such as germanium (Ge) or phosphorus CP) to the center 4m, or a method of lowering the refractive index of the periphery 4b by adding fluorine CF) or boron CB) to the periphery 4b. There is a method, but 0.3 to 0.
The latter method is suitable for IK, which also targets extremely short wavelengths such as 4JIm.

伝送損失を考えると、オプティカルロッド4及びバンド
ルファイバ5#′iともに石英系であ夛且つその母材製
造には低損失通信用7アイパ母材の製造技術が応用でき
る九め、長波長側の損失は例tハ1.sJImK&イテ
o、s dB、4m ll[テ6り、短波長或において
も金属イオン勢の不純物による吸収損失は殆んど認めら
れず損失は〔淡側−4に比例するL−レ散乱のみである
から、例えば0.6J1111においてl OdB/1
−である、したがって、石英系母材を用咋光検出装置で
は、多成分系ファイバを用いた場合に比較して、広範な
波長範囲で低損失且つフラットな透過特性が得られる九
め、光検出端と光電変換処理系との間を比較的長い距離
にとっても実用土、滅責量が問題とならない、II#に
に色温度針においてはオプティカルロッド4及びバンド
ル7アイパ6の透過率0*長依存!kが少ないことによ
〕、従来の多成分系ファイバを用いた場合よ〕も温度較
正が容易に行え、しかも波長選定の自由度が高いという
利点がある。
Considering the transmission loss, both the optical rod 4 and the bundle fiber 5 #'i are made of quartz, and the manufacturing technology for the 7-IPA base material for low-loss communication can be applied to the manufacture of the base material. Loss is example tc1. sJImK&iteo, s dB, 4ml[te6] Even at short wavelengths, there is almost no absorption loss due to impurities in the form of metal ions, and the loss is only due to L-ray scattering, which is proportional to -4 on the light side. For example, at 0.6J1111, l OdB/1
-Therefore, when using a quartz base material, optical detection devices can obtain low loss and flat transmission characteristics over a wide wavelength range compared to when using multi-component fibers. Even if the distance between the detection end and the photoelectric conversion processing system is relatively long, in practical use, the amount of waste is not a problem, and the transmittance of the optical rod 4 and bundle 7 eyeper 6 is 0* for the II# color temperature needle. Long dependence! Due to the small value of k, temperature calibration can be performed more easily than when conventional multi-component fibers are used, and there is also the advantage that there is a high degree of freedom in wavelength selection.

ところで、オプティカルロッド4の受光角!−は、pラ
ド中心部(コア部)4mの屈折率n1と、ロッド周縁部
(クラッド部)4bO屈折率fi露によシ決を夛、次式
(1)で与えられる。
By the way, the acceptance angle of optical rod 4! - is given by the following equation (1), which is determined by the refractive index n1 of the rod center portion (core portion) 4m and the refractive index fi dew of the rod peripheral portion (cladding portion) 4b.

2g = 25in−″CFy石s?)    ・・−
・式(1)−例として、屈折率差291の母材を用い友
場合、flt” 1,487.111M1.45 f4
とすれば受光内意−は34°となる。従って、被測定物
体との距離、が2mである場合、被測定物体の直径1.
2購の範囲の輻射光がオプティカルロッド4に入射する
。被測定物体の狭い範囲の温度をl1lffiL良い場
合は、視舒制限をする必要があるが、実施例の如くオプ
ティカルロッド40前方に結像レンズ2を装着すること
によりこの目的が達成される。この場合、オプティカル
ロッド4のコアs4mの[径をD1結像レンズ2の焦点
距離をfとすると、新らたな受光角2φは、2φ−ji
 5in−”(D/!1 )    −= 式(2)で
与えられる。−例として、゛D−1.5swI、f冨5
0鋼であれば2φ−1,′Ioという狭視野な画角と1
k)、極〈狭い範囲の温度を測定できる。もちろん結像
レンズ2を交換してレンズの焦点距離を変えることKよ
シ任意の画角を得られる。
2g = 25in-''CFy stone?)...-
・Formula (1) - As an example, if a base material with a refractive index difference of 291 is used, flt" 1,487.111M1.45 f4
If so, the meaning of light reception is 34°. Therefore, when the distance to the object to be measured is 2 m, the diameter of the object to be measured is 1.
Radiant light within a range of 200 nm is incident on the optical rod 4. If the temperature of the object to be measured is within a narrow range, it is necessary to restrict the visibility, but this purpose can be achieved by mounting the imaging lens 2 in front of the optical rod 40 as in the embodiment. In this case, if the diameter of the core s4m of the optical rod 4 is D1 and the focal length of the imaging lens 2 is f, then the new acceptance angle 2φ is 2φ−ji
5in-"(D/!1) -= is given by equation (2). -For example, ゛D-1.5swI, f depth 5
0 steel has a narrow field of view of 2φ-1,'Io and 1
k) Extremely capable of measuring temperatures in a narrow range. Of course, any angle of view can be obtained by replacing the imaging lens 2 and changing the focal length of the lens.

なお、結像レンズ2を用いる場合は被測定物体の実像が
レンズ系を介してオプティカル−ラド40先端面に結像
していることが必要である。
Note that when the imaging lens 2 is used, it is necessary that a real image of the object to be measured be formed on the tip surface of the optical radar 40 via the lens system.

結像レンズ2としては、耐熱性中信頼性Q向上を考える
と石英系レンズであることが望ましい。
As the imaging lens 2, it is desirable to use a quartz lens in view of improving heat resistance and reliability Q.

以上、放射温度計に用いえ場合を例にあげて本発明の一
実施例を説明し九が、本殆@Q党検出俵置は放射温度針
のみならず高温物体の位置中通過あるいは分布など被測
定物体に関する情報をそれからの光を用いて求める針m
*置に適用で自ることは言う壕でもない。
The above describes one embodiment of the present invention, taking as an example the case where it can be used in a radiation thermometer. A needle m that uses light emitted from the object to obtain information about the object to be measured.
*It is not a moat to say that it is applied to the place.

本発明の効果をまとめあと、 (1)  石英系ガラス材で光伝送系を構成しているの
で、光検出喀と光電変換処理部との間を長くできる。
After summarizing the effects of the present invention, (1) Since the optical transmission system is made of quartz-based glass material, the distance between the photodetector and the photoelectric conversion processing section can be lengthened.

(2)中心部に光ガイド層を有する石英系のオプティカ
ルロッドを用いたので、光検出の先趨の耐熱性が大幅に
向上し、また、視野及び損失が安定し友。
(2) Since a quartz-based optical rod with a light guide layer in the center is used, the heat resistance of light detection is greatly improved, and the field of view and loss are stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放射温度計の原理を説明するための温度に対す
る分光放射特性図、第2図は本発明の一冥施例の一部破
断した構成図、第3図(a)。 (b)i!オプティカルロッドの一例を示すlI面図及
び正面図である。 図面中、 1はレンズケース、 2は結像レンズ、 3は保護ケース、 4は中心部に光ガイド層を有する石菓系ガラスロンド(
オプティカルロッド)、 5Fi石英系光7アイパよりなるバンドルツア6は検出
処理部、 8はコネクタである。 特許出願人 住東電気工業株式会社 代   理   人 弁環士光石士部(他1名) 第1図 第2図 第3図 (0) − (b)
FIG. 1 is a spectral radiation characteristic diagram with respect to temperature for explaining the principle of a radiation thermometer, FIG. 2 is a partially broken configuration diagram of one embodiment of the present invention, and FIG. 3(a). (b)i! FIG. 2 is a plane view and a front view showing an example of an optical rod. In the drawings, 1 is a lens case, 2 is an imaging lens, 3 is a protective case, and 4 is a glass rond with a light guide layer in the center.
A bundle tour 6 is a detection processing section, and 8 is a connector. Patent applicant: Sumito Electric Industry Co., Ltd. Representative: Shibe Mitsuishi, legal advisor (and 1 other person) Figure 1 Figure 2 Figure 3 (0) - (b)

Claims (1)

【特許請求の範囲】[Claims] 中心部に光ガイド層を有し被測定物体からの光を受光す
る石英系ガラスロッドと、この石英系ガラスロッドの出
射側に結合された石英系光ファイバへを備えた光検出装
置。
A light detection device comprising: a silica-based glass rod having a light guide layer in the center and receiving light from an object to be measured; and a silica-based optical fiber coupled to the output side of the silica-based glass rod.
JP56135574A 1981-08-31 1981-08-31 Photodetector Pending JPS5837527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135574A JPS5837527A (en) 1981-08-31 1981-08-31 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135574A JPS5837527A (en) 1981-08-31 1981-08-31 Photodetector

Publications (1)

Publication Number Publication Date
JPS5837527A true JPS5837527A (en) 1983-03-04

Family

ID=15154994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135574A Pending JPS5837527A (en) 1981-08-31 1981-08-31 Photodetector

Country Status (1)

Country Link
JP (1) JPS5837527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687220A1 (en) * 1992-02-07 1993-08-13 Electricite De France Device and probe for measuring the temperature of a fluid from the infrared radiation emitted
US5345305A (en) * 1993-04-22 1994-09-06 Chen Chi Der Aquarium light meter
US6490022B1 (en) 1999-01-07 2002-12-03 Citizen Watch Co., Ltd. LCD device and method of manufacture thereof
CN113588117A (en) * 2021-08-10 2021-11-02 电子科技大学 High-stability radiation temperature measurement miniature probe for turbine disc of aircraft engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687220A1 (en) * 1992-02-07 1993-08-13 Electricite De France Device and probe for measuring the temperature of a fluid from the infrared radiation emitted
US5345305A (en) * 1993-04-22 1994-09-06 Chen Chi Der Aquarium light meter
US6490022B1 (en) 1999-01-07 2002-12-03 Citizen Watch Co., Ltd. LCD device and method of manufacture thereof
CN113588117A (en) * 2021-08-10 2021-11-02 电子科技大学 High-stability radiation temperature measurement miniature probe for turbine disc of aircraft engine
CN113588117B (en) * 2021-08-10 2022-10-14 电子科技大学 High-stability radiation temperature measurement miniature probe for turbine disc of aircraft engine

Similar Documents

Publication Publication Date Title
CN106415220B (en) The measurement method of measurement instrument of optical characteristics, fiber optic sensor system and optical characteristics
US4362943A (en) Method of measuring the refractive index profile and the core diameter of optical fibers and preforms
JPS6156449B2 (en)
CN103940456B (en) A kind of interference-type reflective probe formula optical fiber microsensor and preparation method thereof
CN107907239B (en) Temperature sensing device based on chalcogenide glass material and construction method thereof
US4161656A (en) Methods for measuring dopant concentrations in optical fibers and preforms
Wang et al. Optical probe based on double-clad optical fiber for fluorescence spectroscopy
US4714829A (en) Fibre optic sensing device and method
CN108279039A (en) A kind of two-parameter sensing device of temperature and refractive index based on optical fiber misconstruction and Sagnac rings
US4380394A (en) Fiber optic interferometer
Xue et al. Investigation of a D-shaped plastic optical fiber assisted by a long period grating for refractive index sensing
Saunders Optical fiber profiles using the refracted near-field technique: a comparison with other methods
CN105241593A (en) Surface stress gauge of curved glass
JPS5837527A (en) Photodetector
GB2122337A (en) Fibre optic sensing device
US6809805B2 (en) Residual stress measuring device for optical fiber
Canning et al. Silica-based fibre Fresnel lens
CN206618509U (en) Faraday's rotating mirror structure single mode centreless single mode both-end dislocation optical fiber temperature-measurement device
CA1159691A (en) Infrared light transmission path
Hodges et al. Spectral properties of several infrared transmitting fiber optics
Zur et al. Theory of noncontact point thermal sensing by fiber-optic radiometry
Olshansky et al. Measurement of differential mode attenuation in graded-index fiber optical waveguides
Makovetskii et al. A study of the optical properties of a multimode silica optical fiber with a reflective shell from a fluorinated thermoplastic polymer
JPS6035046Y2 (en) Standard dimension display device
CN214174138U (en) Optical fiber sensor and measuring device