JPS5836870Y2 - rotary compressor - Google Patents

rotary compressor

Info

Publication number
JPS5836870Y2
JPS5836870Y2 JP9581578U JP9581578U JPS5836870Y2 JP S5836870 Y2 JPS5836870 Y2 JP S5836870Y2 JP 9581578 U JP9581578 U JP 9581578U JP 9581578 U JP9581578 U JP 9581578U JP S5836870 Y2 JPS5836870 Y2 JP S5836870Y2
Authority
JP
Japan
Prior art keywords
pipe
compressor
cylinder
refrigerant
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9581578U
Other languages
Japanese (ja)
Other versions
JPS5512093U (en
Inventor
秀夫 平野
二郎 柚田
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP9581578U priority Critical patent/JPS5836870Y2/en
Publication of JPS5512093U publication Critical patent/JPS5512093U/ja
Application granted granted Critical
Publication of JPS5836870Y2 publication Critical patent/JPS5836870Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Description

【考案の詳細な説明】 本考案は、ロータリ圧縮機のインジェクション冷却の改
良に関するもので、その目的とするところは、圧縮機の
シリンダ内へ注入される凝縮冷媒液が高温の圧縮機内部
で加熱され、冷却効果が低下するのを防ぐとともに安定
したインジェクション冷媒流れを得ることにある。
[Detailed description of the invention] This invention relates to improvement of injection cooling for rotary compressors.The purpose of this invention is to heat the condensed refrigerant liquid injected into the cylinder of the compressor inside the compressor at a high temperature. The objective is to prevent the cooling effect from decreasing and to obtain a stable injection refrigerant flow.

一般にロータリ圧縮機の内部は高温であるため、インジ
ェクション冷却に耘ける圧縮機のシリンダへ注入される
凝縮冷媒液は圧縮機内部で導入管を介してシリンダに注
入される前に加熱され、そのため冷却効果の低下をきた
すのみならず、導入管内で気泡が発生し冷媒の流れが不
安定となった。
In general, the inside of a rotary compressor is high temperature, so the condensed refrigerant liquid injected into the cylinder of the compressor used for injection cooling is heated inside the compressor before being injected into the cylinder via the inlet pipe, so it is cooled. Not only was the effectiveness reduced, but bubbles were generated within the introduction pipe, making the flow of the refrigerant unstable.

上記欠点を除くために、従来法のような手段がとられて
いる。
In order to eliminate the above-mentioned drawbacks, conventional methods have been taken.

(1)注入冷媒量を増加J−1r4(2)注入冷媒液の
過冷却度を増加させる。
(1) Increase the amount of injected refrigerant J-1r4 (2) Increase the degree of supercooling of the injected refrigerant liquid.

しかし上記(1)の手段によると、注入冷媒量の増加に
より圧縮機入力の増加をきたすだけではなく、圧縮機温
度が低い場合には、起動時にシリンダ内に冷媒を注入す
るため、温度上昇がゆるやかになる一方、注入冷媒量を
増した結果、さらに温度の立上り特性が低下し、また低
負荷冷房運転時・着霜運転時、湿り状態で冷媒が圧縮機
に戻ってくるため吐出温度が低下して注入冷媒の受熱量
が減少し冷却効果が増加する一方、加えて注入冷媒量を
増したため更に吐出温度が低下し湿り状態になり、シリ
ンダ内で液圧縮が生じたり、潤滑油粘度低下による潤滑
不良が発生したりする危険性が増大し、さらにまた除霜
運転時、液冷媒が圧縮機に戻ってくるため、液圧縮や潤
滑不良の危険性がさらに大きくなった。
However, according to the method (1) above, not only does the increase in the amount of injected refrigerant cause an increase in the compressor input, but also when the compressor temperature is low, the refrigerant is injected into the cylinder at startup, which causes a temperature rise. However, as a result of increasing the amount of refrigerant injected, the temperature rise characteristics further deteriorate, and during low-load cooling operation or frosting operation, the refrigerant returns to the compressor in a wet state, resulting in a decrease in discharge temperature. This reduces the amount of heat received by the injected refrigerant and increases the cooling effect.In addition, as the amount of injected refrigerant increases, the discharge temperature further decreases and becomes wet, causing liquid compression in the cylinder and decreasing lubricating oil viscosity. The risk of poor lubrication has increased, and since the liquid refrigerant returns to the compressor during defrosting operation, the risk of poor liquid compression and lubrication has become even greater.

また、上記(2)の手段によると、室外ファンや室外熱
交換器などを利用して、注入冷媒の過冷却度を大きくし
なければならず、冷媒回路が長く、かつ複雑となった。
Furthermore, according to the method (2) above, the degree of supercooling of the injected refrigerant must be increased using an outdoor fan, an outdoor heat exchanger, etc., and the refrigerant circuit becomes long and complicated.

本考案はこのような難点を改良するもので、以下本考案
をその実施例を示す図面を参考に説明する。
The present invention is intended to overcome these drawbacks, and will be described below with reference to drawings showing embodiments thereof.

Aは圧縮機、Bは吐出管、Cは凝縮器、Dは減圧装置で
あるキャピラリチューブ、Eは蒸発器、Fは吸入管で、
これらは冷媒管を介して連通され、周知の冷却回路を形
成している。
A is a compressor, B is a discharge pipe, C is a condenser, D is a capillary tube which is a pressure reducing device, E is an evaporator, F is a suction pipe,
These are communicated via refrigerant pipes to form a well-known cooling circuit.

昔た、前記凝縮器Cと前記キャピラリチューブDとを連
通ずる冷媒管の途中より冷媒バイパス管Gを分岐し、導
入管15に連通している。
In the past, a refrigerant bypass pipe G was branched from the middle of a refrigerant pipe that communicated the condenser C and the capillary tube D, and communicated with the introduction pipe 15.

前記圧縮機Aは内部に電動機部2と圧縮部3を有し、・
・シリンダ4で囲まれている。
The compressor A has an electric motor section 2 and a compression section 3 inside,
- Surrounded by cylinder 4.

この圧縮部3は環状の圧縮室8を形成するシリンダ5と
、前記シリンダ5内で前記電動機部2の駆動軸6に偏心
して装着され前記シリンダ5の側壁に沿って回転するピ
ストンγよりなる。
The compression section 3 consists of a cylinder 5 forming an annular compression chamber 8, and a piston γ that is eccentrically mounted on the drive shaft 6 of the electric motor section 2 within the cylinder 5 and rotates along the side wall of the cylinder 5.

また、前記圧縮室8には、前記・・シリンダ4内の電動
機部2を経て吐出管Bに至る吐出弁10を有する吐出ポ
ート9と、前記冷媒バイパス管Gにより導かれた液冷媒
を注入する開口部12とを有する。
In addition, liquid refrigerant guided through the refrigerant bypass pipe G and a discharge port 9 having a discharge valve 10 leading to the discharge pipe B via the electric motor section 2 in the cylinder 4 is injected into the compression chamber 8. It has an opening 12.

また、第2図に示すように、前記本考案の導入管15は
、圧縮機Aの内部で二重管構造とし、インジェクション
管16と外管11とよりなる。
Further, as shown in FIG. 2, the introduction pipe 15 of the present invention has a double pipe structure inside the compressor A, and is composed of an injection pipe 16 and an outer pipe 11.

前記インジェクション管16は一端で冷媒バイパス管G
と連通し、他端で細管14を介して、下軸受11にある
開口部12に連通し、また前記外管1γは、一端でハウ
ジング4に、他端で接続管13に溶接され、・・シリン
ダ4の側管端は大気に開口されている。
The injection pipe 16 has one end connected to the refrigerant bypass pipe G.
The outer tube 1γ is welded to the housing 4 at one end and to the connecting tube 13 at the other end. The side pipe end of the cylinder 4 is open to the atmosphere.

したがって、前記インジェクション管16と外管11に
より作られる空間部は空気で満されている。
Therefore, the space created by the injection tube 16 and the outer tube 11 is filled with air.

なお、1はノ・シリンダ4内の下方に貯溜したオイルで
ある。
Note that 1 is oil stored in the lower part of the cylinder 4.

上記構成において、圧縮機Aより吐出された冷媒は、吐
出管Bを経て凝縮器Cに至り液化され、凝縮冷媒液はキ
ャピラリチューブDにより減圧され蒸発器Eによりガス
化され、吸入管Fを通じて前記圧縮機Aに吸入される。
In the above configuration, the refrigerant discharged from the compressor A passes through the discharge pipe B to the condenser C and is liquefied, and the condensed refrigerant liquid is decompressed by the capillary tube D and gasified by the evaporator E, and then passes through the suction pipe F to the condenser C. It is sucked into compressor A.

また前記凝縮器Cで凝縮された冷媒液は、冷媒バイパス
管24を経て、本考案の導入管15のインジェクション
管16を通り、細管14を経て開口部12より、シリン
ダ5の圧縮室8に注入され、蒸発潜熱によシ前記圧縮室
8内のガスを冷却する。
The refrigerant liquid condensed in the condenser C is injected into the compression chamber 8 of the cylinder 5 through the refrigerant bypass pipe 24, the injection pipe 16 of the introduction pipe 15 of the present invention, the thin pipe 14, and the opening 12. The gas in the compression chamber 8 is cooled by latent heat of vaporization.

ここにおいて、インジェクション管16と外管1γによ
り形成される空間により、昔た、その空間内に存在する
空気により、従来のように直接圧縮機Aの高温部と接す
ることなく、かつ、外管1γとインジェクション管16
との間の熱抵抗が大きいので、インジェクション管16
の受熱量が少なくなり、インジェクション管16内の冷
媒の温度が上昇することが少ない。
Here, the space formed by the injection pipe 16 and the outer pipe 1γ allows the air existing in that space to avoid direct contact with the high-temperature part of the compressor A as in the past, and the outer pipe 1γ and injection tube 16
Since the thermal resistance between the injection tube 16 and
The amount of heat received by the refrigerant is reduced, and the temperature of the refrigerant in the injection pipe 16 is less likely to rise.

その結果、従来より少量の注入冷媒量による冷却が可能
となり、圧縮機入力を減少できるだけでなく、圧縮機温
度が低く、注入冷媒量が多いために生じた問題、つまり
、起動時の立上り特性の低下、低負荷冷房運転時・着霜
運転時・除霜運転時の液圧縮・潤滑不良の危険性を緩和
できるものである。
As a result, it is now possible to perform cooling with a smaller amount of refrigerant injected than before, which not only reduces the compressor input, but also solves problems that arise due to low compressor temperatures and large amounts of injected refrigerant, that is, the start-up characteristics at startup. This can alleviate the risk of liquid compression and lubrication failure during low-load cooling, frosting, and defrosting operations.

また、導入管15において注入冷媒の受熱量が減少する
ので、インジェクション管16内で気泡が発生しなくな
り、安定した注入冷媒の流れが得られる。
Further, since the amount of heat received by the injected refrigerant in the introduction pipe 15 is reduced, bubbles are no longer generated in the injection pipe 16, and a stable flow of the injected refrigerant can be obtained.

以上の作用は、導入管15のインジェクション管16と
外管11との間に断熱材を介在させれば冷媒液の導入管
15に釦ける加熱がさらに減少しさらに良好な結果が得
られる。
The above effect can be improved by interposing a heat insulating material between the injection pipe 16 and the outer pipe 11 of the introduction pipe 15, since heating of the refrigerant liquid to the introduction pipe 15 can be further reduced.

また、インジェクション管16に赤外線反射処理を施せ
ば高温となった外管17からの輻射の影響を防げられる
ので更に冷却効果が向上する。
Furthermore, if the injection tube 16 is subjected to infrared reflection treatment, the influence of radiation from the high temperature outer tube 17 can be prevented, and the cooling effect can be further improved.

上記実施例から明らかなように、本考案のロータリ圧縮
機は、圧縮途上のシリンダ内に凝縮冷媒液を断続的に噴
射して冷却するロータリ圧縮機において、前記凝縮冷媒
液をシリンダ内へ導入する導入管を前記圧縮機内で、一
端を前記シリンダの開口部に連通し他端を前記凝縮冷媒
液導入口とするインジェクション管と、一端を閉塞し他
端を大気中に開口し前記大気開口端を前記圧縮機の−・
シリンダに固定した外管との二重管構造とし、前記イン
ジェクション管と前記圧縮機の高温部が直接接触しない
ように、前記インジェクション管と外管との間に空間部
を設けたものであるため、簡単な構造で圧縮機内部での
注入冷媒の加熱を防止でき、その結果、冷却効果の低下
を防止できるのみならず、注入冷媒量の減少を可能とし
、圧縮機入力を減少させ、起動時の立上り特性を向上さ
せ、低負荷冷房運転時・着霜運転時・除霜運転時の液圧
縮・潤滑不良の危険性を緩和し、注入冷媒流れの安定化
が可能である上に製造も容易であるなどの効果を奏する
As is clear from the above embodiments, the rotary compressor of the present invention cools the cylinder by intermittently injecting the condensed refrigerant liquid into the cylinder during compression, and introduces the condensed refrigerant liquid into the cylinder. An inlet pipe is provided in the compressor, and includes an injection pipe having one end communicating with the opening of the cylinder and the other end serving as the condensed refrigerant liquid inlet, and an injection pipe having one end closed and the other end open to the atmosphere and the atmosphere open end being connected to the cylinder. - of the compressor
It has a double pipe structure with an outer pipe fixed to the cylinder, and a space is provided between the injection pipe and the outer pipe to prevent direct contact between the injection pipe and the high temperature part of the compressor. , with a simple structure, it is possible to prevent heating of the injected refrigerant inside the compressor, and as a result, not only can the cooling effect be prevented from decreasing, but also the amount of injected refrigerant can be reduced, reducing the compressor input, and reducing the This improves the start-up characteristics of the refrigerant, reduces the risk of poor liquid compression and lubrication during low-load cooling operation, frosting operation, and defrosting operation, stabilizes the flow of injected refrigerant, and is easy to manufacture. It produces effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示すロータリ圧縮機の要部
断面図、第2図は同ロータリ圧縮機の導入管部の断面図
である。 A・・・圧縮機、4・・・・・シリンダ、5・・・シリ
ンダ、15・・・導入管、16・・・インジェクション
管、17・・・外管。
FIG. 1 is a sectional view of a main part of a rotary compressor showing an embodiment of the present invention, and FIG. 2 is a sectional view of an inlet pipe portion of the rotary compressor. A...Compressor, 4...Cylinder, 5...Cylinder, 15...Introduction pipe, 16...Injection pipe, 17...Outer pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮途上のシリンダ内に凝縮冷媒液を断続的に噴射して
冷却するロータリ圧縮機を構成し、前記凝縮冷媒液をシ
リンダ内に導入する導入管を、前記圧縮機内で一端を前
記シリンダの開口部に連通し他端を前記凝縮冷媒液導入
口とするインジェクション管と、一端を閉塞し他端を大
気中に開口し前記大気開口端を前記圧縮機の・・シリン
ダに固定した外管との二重管構造とし、前記インジェク
ション管と前記圧縮機の高温部が直接接触しないよう、
前記インジェクション管と外管との間に空間部を設けた
ロータリ圧縮機。
A rotary compressor that intermittently injects condensed refrigerant liquid into a cylinder in the middle of compression for cooling is configured, and an introduction pipe for introducing the condensed refrigerant liquid into the cylinder is connected within the compressor so that one end thereof is connected to the opening of the cylinder. an injection pipe, the other end of which is connected to the condensed refrigerant liquid inlet; and an outer pipe, one end of which is closed, the other end of which is open to the atmosphere, and the end of which is open to the atmosphere is fixed to the cylinder of the compressor. A double pipe structure is used to prevent direct contact between the injection pipe and the high temperature part of the compressor.
A rotary compressor in which a space is provided between the injection pipe and the outer pipe.
JP9581578U 1978-07-11 1978-07-11 rotary compressor Expired JPS5836870Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9581578U JPS5836870Y2 (en) 1978-07-11 1978-07-11 rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9581578U JPS5836870Y2 (en) 1978-07-11 1978-07-11 rotary compressor

Publications (2)

Publication Number Publication Date
JPS5512093U JPS5512093U (en) 1980-01-25
JPS5836870Y2 true JPS5836870Y2 (en) 1983-08-19

Family

ID=29029119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9581578U Expired JPS5836870Y2 (en) 1978-07-11 1978-07-11 rotary compressor

Country Status (1)

Country Link
JP (1) JPS5836870Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159122U (en) * 1987-04-06 1988-10-18

Also Published As

Publication number Publication date
JPS5512093U (en) 1980-01-25

Similar Documents

Publication Publication Date Title
US4918942A (en) Refrigeration system with dual evaporators and suction line heating
RU94030805A (en) Method of control of pressure at delivery side in device with transcriptional cycle of steam compression
JPS5836870Y2 (en) rotary compressor
US2434118A (en) Restrictor tube for refrigerating systems
JPH0337391A (en) Rotary compressor
CN106369856A (en) Refrigeration device
CN105508242A (en) Rotary type compressor and refrigeration cycle device provided with same
JPH022478B2 (en)
JPH1163728A (en) Structure of cooling heat pump
KR20030087151A (en) Device for prevention dewing of refrigerator
JPH05340368A (en) Cooler for rotary compressor
JPS5852394Y2 (en) hermetic compressor
JPH06117388A (en) Hermetic rotary compressor
JPH086204Y2 (en) Air conditioner
JP2848418B2 (en) Hermetic electric compressor
CN208108582U (en) A kind of energy-saving freezer with wind-guiding function
CN207113679U (en) Condensing heat-exchange mechanism and gravity type Cryo Heat Tube
JPH021518Y2 (en)
JPS58130926A (en) Heat pump device
JPS585114Y2 (en) gas compression equipment
KR900003941Y1 (en) Refrigerator used heat pipe
JPS60222584A (en) Rotary compressor
JPS5926864B2 (en) Heat pump refrigeration cycle
JPH0350397A (en) Rotary type compressor
CN113883056A (en) Cylinder assembly and manufacturing method thereof, rotary compressor and manufacturing method thereof