JPS5836659A - Electric field curtain device - Google Patents

Electric field curtain device

Info

Publication number
JPS5836659A
JPS5836659A JP13553581A JP13553581A JPS5836659A JP S5836659 A JPS5836659 A JP S5836659A JP 13553581 A JP13553581 A JP 13553581A JP 13553581 A JP13553581 A JP 13553581A JP S5836659 A JPS5836659 A JP S5836659A
Authority
JP
Japan
Prior art keywords
electric field
phase
phases
electrode
curtain device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13553581A
Other languages
Japanese (ja)
Inventor
Toshio Watanabe
利夫 渡辺
Shizuo Sagami
相模 静夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP13553581A priority Critical patent/JPS5836659A/en
Publication of JPS5836659A publication Critical patent/JPS5836659A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles
    • B03C3/885Cleaning-out collected particles by travelling or oscillating electric fields, e.g. electric field curtains

Abstract

PURPOSE:To make best use of the capacity of an electric curtain device in said device by regulating inter-electrode distances and controlling the frequencies of applied voltage according to the number of phases of the electrode patterns. CONSTITUTION:Electrode patterns 2, 3, 4 of single phase, 3 phase, 4 phases are buried in an insulating member layer 5, and a dielectric layer 6 is provided, whereby a dielectric sheet 1 is formed. The frequency Hz of the voltage to be applied to said electrode patterns is controlled in a 30<=Hz<=50 range according to the number of phases 2, 3, 4 of the electrode patterns. Here, the distances l between the respective electrodes are set at 1-3mm.. Said range of the applied voltage is determined from empirical values. The max. transport capacity of electric charge particles is brought out by the control of the applied voltage and the regulation of the inter-electrode distances, whereby the device is operated efficiently.

Description

【発明の詳細な説明】 本発明は電界カーテン装置、詳しくは電極パターンの相
数と印加交番電界の周波数と、電極間距離との関係に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric field curtain device, and more particularly to the relationship between the number of phases of an electrode pattern, the frequency of an applied alternating electric field, and the distance between electrodes.

電界カーテン装f/IL#i絶縁層に電極パターンを配
置しかつ誘電層でコーティングすると共に、電極パター
ンに交番電界を印加するものであり、電極パターンの相
数と印加電圧の周波数と電極間距離との関係がその能力
にどのように影響するかが明らかでないのが実情である
Electric field curtain equipment f/IL#i An electrode pattern is arranged on an insulating layer and coated with a dielectric layer, and an alternating electric field is applied to the electrode pattern.The number of phases of the electrode pattern, the frequency of the applied voltage, and the distance between the electrodes are The reality is that it is not clear how the relationship with people affects their abilities.

本発明は上記の事情に鑑みなされたものであり、その目
的は電極パターンの相数と印加電圧の周波数と電極間距
離との関係を明らかとし、それらの関係をその電界カー
テン装置の能力を最大限に引き出すように定めた電界カ
ーテン装置を提供することである。
The present invention was made in view of the above circumstances, and its purpose is to clarify the relationship between the number of phases of an electrode pattern, the frequency of applied voltage, and the distance between electrodes, and to maximize the ability of the electric field curtain device by using these relationships. It is an object of the present invention to provide an electric field curtain device designed to draw out the electric field to the maximum extent possible.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は電界カーテン装量の概略説明図であり、誘電体
シー)1の内部に線状電極を平行に配置してυ相、V相
、W相の3相電極パターン2.3.4を形成し、各電極
パターン2.3゜4に交流高電圧(交番電界)を印加し
て、誘導体シート10表面付近に発生する不平等交番電
界の作用により荷電粒子5をi電反発で浮上させるとと
もに電極と直角方向に非接触で輸送させるように構成し
である。
FIG. 1 is a schematic explanatory diagram of electric field curtain loading, in which linear electrodes are arranged in parallel inside a dielectric sheet (1), and a three-phase electrode pattern (2.3.4) of υ phase, V phase, and W phase is used. is formed, and an AC high voltage (alternating electric field) is applied to each electrode pattern 2.3° 4, and the charged particles 5 are levitated by i-electric repulsion due to the action of the unequal alternating electric field generated near the surface of the dielectric sheet 10. The structure is such that it is transported in a direction perpendicular to the electrode without contact.

ζこで、電界カーテン装置の搬送力(粒子5を輸送する
力)は次の要因(パラメータ)によって決定される。
ζ Here, the transport force (power to transport particles 5) of the electric field curtain device is determined by the following factors (parameters).

■誘電体シート表面の電界強電。■Strong electric field on the surface of the dielectric sheet.

■粒子5の質量、比重、帯電量、n電車。■Mass, specific gravity, amount of charge, n electric current of particle 5.

■粒子5の対空気抵抗係数。■Air resistance coefficient of particle 5.

■印加電圧の周波数。■Frequency of applied voltage.

■電極パターンの相数。■Number of phases of electrode pattern.

■電極間距離。■Distance between electrodes.

そこで、本発明者は第2図に示す電界カーテン装置にお
いて種々の実験をした結果法のことを見いだした。
Therefore, the inventor of the present invention discovered a method as a result of various experiments using the electric field curtain device shown in FIG.

第2図において、5は絶縁部材層、6Fi誘電層であり
、誘電体シート1を構成している。
In FIG. 2, reference numeral 5 denotes an insulating member layer and a 6Fi dielectric layer, which constitute the dielectric sheet 1. In FIG.

第3図は相数のいかんに拘らず隣接する電極間に発生す
る不平等交番電界の半周期([つの電極の極性が反転す
る周期)に要する時間(T)(多相の場合には位相差と
一致する)と搬送能力との関係を示す表図である。
Figure 3 shows the time (T) required for a half cycle (period in which the polarity of two electrodes is reversed) of the unequal alternating electric field generated between adjacent electrodes regardless of the number of phases (in the case of multiphase, the FIG. 4 is a table showing the relationship between the phase difference (matching the phase difference) and the conveyance capacity.

ただし、電極間ピッチpFizs■C電極間距離t#′
izo■、電極巾はα5■)、印加電圧3KV (IL
M8)の最大搬送力を示す位置をloomとしである。
However, the inter-electrode pitch pFizs■C the inter-electrode distance t#'
izo■, electrode width α5■), applied voltage 3KV (IL
The position showing the maximum conveying force of M8) is designated as loom.

第3図の表図より、印加電圧の位相差T(単相の場合に
#i〒−1/2.となる。fは印加電圧の周波数)が約
125■鱈で最大の搬送力となる。
From the table in Figure 3, the phase difference T of the applied voltage (in the case of single phase, #i - 1/2. f is the frequency of the applied voltage) is approximately 125 ■ The maximum conveying force is obtained for cod. .

つまり、単相では40 Hz s 3相では27 H2
%4相では20 Hzが最適印加電圧の周波数となる〇
第4図は4相の場合の印加電圧波形と位相差を示し九表
図であり、Tが位相差、土が周波数T となる。
That is, 40 Hz s for single phase and 27 H2 for 3 phase
% In 4-phase, 20 Hz is the frequency of the optimum applied voltage. Figure 4 is a table showing the applied voltage waveform and phase difference in case of 4-phase, where T is the phase difference and soil is the frequency T.

次に、隣接する電極間の実効電圧V、電極間距離tの関
係をV/z x一定とし、実効電圧Vと電極間距離tを
変化させた場合に同一の搬送能力(量大搬送力)を示す
位相差を実験したら第5図表図に示す結果を得た。
Next, the relationship between the effective voltage V between adjacent electrodes and the distance t between the electrodes is set to V/z When we experimented with the phase difference showing this, we obtained the results shown in Figure 5.

し九がって、最大搬送能力を示す相数側の周波数Hys
、電極間距離tの関係は 最大搬送能力=75ir了H2・・・・・・・・・・・
・(1)となる。
Therefore, the frequency Hys on the phase number side indicating the maximum carrying capacity
, the relationship between the electrode distance t is the maximum conveyance capacity = 75ir H2...
・It becomes (1).

(1)式でテwaxをIZ5XIOsee、t = 2
 mとすれば、単相の場合の周波数は40H2,3相の
場合は301m、4相の場合は20Hzとなる。
In equation (1), te wax is IZ5XIOsee, t = 2
If m, the frequency in the case of single phase is 40H2, in the case of three phases, it is 301 m, and in the case of four phases, it is 20Hz.

一方、電界カーテン装置への入力は基本的に電圧のみが
必要で電流は殆んど必要としない。
On the other hand, the input to the electric field curtain device basically requires only voltage and almost no current.

しかし、電極間はコンデンサー的作用を必然的に有して
おり、入力電流の殆んど全ては容量電流(Capacl
tlve CurrenT)として消費されてしまう。
However, the space between the electrodes inevitably has a capacitor-like effect, and almost all of the input current is a capacitive current (Capacitive current).
tlveCurrenT).

また、電極間絶縁材料(シリコンゴム等の高分子物質)
tiこの容量電流によって劣化が促進され容量電流が大
の場合には最終的に絶縁破壊を発生してしまう。
In addition, interelectrode insulating materials (polymer substances such as silicone rubber)
This capacitive current accelerates deterioration, and if the capacitive current is large, dielectric breakdown will eventually occur.

容量電流1 tj: l−4CV=2tfCV=afと
なル・但し、Cはコンデンサ容量、a−2πCV(定数
)。
Capacitance current 1 tj: l-4CV=2tfCV=af, where C is capacitor capacitance and a-2πCV (constant).

このことから、印加の電圧の周波数は極力小さい程良い
From this, the frequency of the applied voltage is preferably as small as possible.

また、印加電圧の電源が有する高圧トランスは周波数が
大きい程効率良く小型、低コスト化できる。
Furthermore, the higher the frequency of the high-voltage transformer included in the power source of the applied voltage, the more efficiently the transformer can be made smaller and lower in cost.

以上のことを総合的に考えると電極間距離tが1〜3■
の電界カーテン装置では30〜50Hzの電圧を印加す
ることが最適であることが判明した。
Considering the above things comprehensively, the distance t between the electrodes is 1~3■
It was found that it is optimal to apply a voltage of 30 to 50 Hz in the electric field curtain device.

1+、電極間距@t#′it〜3■が適切である。1+, and the inter-electrode distance @t#'it~3■ is appropriate.

これFitが1−以下であると、v7tを一定とする為
にはVを小さくする必要があるが、電極間に欠損(気泡
、不純物の混入)のある場合絶縁破壊を発生し易く、か
つ電極間距離のnWを上げなけれは彦らないので好まし
くない、一方、tを3−以上とするとV/lを一定とす
るためにVを大きくしなければならず印加電源のトラン
スのコストが高くなって好ましくない。
If Fit is less than 1, it is necessary to reduce V in order to keep v7t constant, but if there is a defect between the electrodes (bubbles, impurities), dielectric breakdown is likely to occur, and the electrode On the other hand, if t is set to 3 or more, V must be increased to keep V/l constant, which increases the cost of the transformer for the applied power. I don't like it.

また、5相以上の電界カーテンは電源を含めてコストが
高く、それに比例した効果が得られないので実用上好ま
しくない。
Furthermore, an electric field curtain with five or more phases is not preferred in practice because it is expensive including the power supply and cannot provide a proportional effect.

なお、電界カーテン装置に印加する電圧の波形はサイン
波、矩形波、三角波のいずれで良い。
Note that the waveform of the voltage applied to the electric field curtain device may be any of a sine wave, a rectangular wave, and a triangular wave.

本発明は以上の様になり、電界カーテン装置の能力を最
大限に引き出すことができ、効率良く動作できる・
As described above, the present invention can maximize the ability of the electric field curtain device and operate efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電界カーテン装置の概略説明図、第2図は3相
電カーテン装置の断面図、第3図は搬送能力と位相差と
の関係を示す表図、第4図は4相の場合の位相説明図、
第5図は電極間距嶋と位相差との関係を示す表図である
。 出願人 富士ゼロックス株式会社 代理人 弁理士 米 原 正 章 弁理士 浜 本   忠
Figure 1 is a schematic explanatory diagram of the electric field curtain device, Figure 2 is a sectional view of the 3-phase electric curtain device, Figure 3 is a table showing the relationship between conveyance capacity and phase difference, and Figure 4 is for the case of 4-phase. Phase diagram of
FIG. 5 is a table showing the relationship between the distance between the electrodes and the phase difference. Applicant Fuji Xerox Co., Ltd. Agent Patent Attorney Masaaki Yonehara Patent Attorney Tadashi Hamamoto

Claims (1)

【特許請求の範囲】[Claims] 該電体シートに、隣接する電極間距離が1〜3■の単相
、3相、4相の電極パターンを埋設した電界カーテン装
置忙おいて、前記電極パターンに印加する電圧の周波数
Hisを30≦Hsw(50の範囲で電極パターンの相
数に応じて制御することを特徴とする電界カーテン装置
In an electric field curtain device in which single-phase, three-phase, and four-phase electrode patterns with a distance between adjacent electrodes of 1 to 3 cm are embedded in the electric sheet, the frequency His of the voltage applied to the electrode patterns is set to 30 ≦Hsw (An electric field curtain device characterized by controlling according to the number of phases of an electrode pattern in the range of 50.
JP13553581A 1981-08-31 1981-08-31 Electric field curtain device Pending JPS5836659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13553581A JPS5836659A (en) 1981-08-31 1981-08-31 Electric field curtain device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13553581A JPS5836659A (en) 1981-08-31 1981-08-31 Electric field curtain device

Publications (1)

Publication Number Publication Date
JPS5836659A true JPS5836659A (en) 1983-03-03

Family

ID=15154042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13553581A Pending JPS5836659A (en) 1981-08-31 1981-08-31 Electric field curtain device

Country Status (1)

Country Link
JP (1) JPS5836659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411394A1 (en) * 2001-06-22 2004-04-21 Sharp Kabushiki Kaisha Developing device and image forming device
CN106540929A (en) * 2016-12-01 2017-03-29 张祖锋 A kind of three-phase electric curtain of travelling wave dust pelletizing system and its construction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287438A (en) * 1976-01-16 1977-07-21 Onoda Cement Co Ltd Method of operating electric field apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287438A (en) * 1976-01-16 1977-07-21 Onoda Cement Co Ltd Method of operating electric field apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411394A1 (en) * 2001-06-22 2004-04-21 Sharp Kabushiki Kaisha Developing device and image forming device
EP1411394A4 (en) * 2001-06-22 2011-09-28 Sharp Kk Developing device and image forming device
CN106540929A (en) * 2016-12-01 2017-03-29 张祖锋 A kind of three-phase electric curtain of travelling wave dust pelletizing system and its construction method
CN106540929B (en) * 2016-12-01 2019-06-11 苏州中环建科环境科技有限公司 A kind of three-phase electric curtain of travelling wave dust pelletizing system and its construction method

Similar Documents

Publication Publication Date Title
US4210949A (en) Device for electrically charging particles
KR20070043927A (en) Ion generation method and apparatus
JP2010165690A (en) Static eliminator
DE2966426D1 (en) Device for charging a dielectric layer electrostatically
KR960026129A (en) Plasma processing method and plasma processing apparatus
JPS59113458A (en) Apparatus for evenly charging moving web
KR850005050A (en) Electric impulse method and apparatus for material treatment
US2697793A (en) Induction-conduction charging of electrostatic generators
Moussaoui et al. Neutralization of charged dielectric materials using a dielectric barrier discharge
JPS5836659A (en) Electric field curtain device
AU557832B2 (en) Electrostatically seperating particulate materials
US4765803A (en) Method and device for agglomerating electrically nonuniformly charged-up solid or liquid particles suspended in gas streams
Belgacem et al. Experimental analysis of the transport and the separation of plastic and metal micronized particles using travelling waves conveyor
MD1004G2 (en) Ozone generator
Lackowski Unipolar charging of aerosol particles in alternating electric field
EP0418449A1 (en) Ion dispersing device by remote action
JPS5629260A (en) Corona charging method in electrophotography or the like
Kober et al. An experimental setup for bucket brigade toner transport
CN203763667U (en) Electrostatic field treatment device
GB1374445A (en) Method and device for influencing biological phenomena
SU1434371A1 (en) Method of metering out loose,particularly dielectric, material
JPS6136783A (en) Method and device for destaticization
JPH08333103A (en) Phase regulating multiple electrode-type ozonizer
JPS57139760A (en) Electric charging method of electrostatic charge developer
Sugawara Generation of a highly uniform and large area corona discharge source adaptable to surface treatment