JPS5836207B2 - Boundary layer control device for circulating water tank - Google Patents

Boundary layer control device for circulating water tank

Info

Publication number
JPS5836207B2
JPS5836207B2 JP13332080A JP13332080A JPS5836207B2 JP S5836207 B2 JPS5836207 B2 JP S5836207B2 JP 13332080 A JP13332080 A JP 13332080A JP 13332080 A JP13332080 A JP 13332080A JP S5836207 B2 JPS5836207 B2 JP S5836207B2
Authority
JP
Japan
Prior art keywords
boundary layer
flow
dynamic pressure
flow velocity
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13332080A
Other languages
Japanese (ja)
Other versions
JPS5757905A (en
Inventor
彊 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP13332080A priority Critical patent/JPS5836207B2/en
Publication of JPS5757905A publication Critical patent/JPS5757905A/en
Publication of JPS5836207B2 publication Critical patent/JPS5836207B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 本発明は回流水槽の境界層制御装置に係り、特に、一般
流の流速を種々に変えても水槽壁面、底面等の境界面に
形成される境界層内の流速分布を容易に所望の流速分布
に改善できると共に、境界層の流速変動を減少させ、そ
れによる水槽内の一般流の流速分布を一定に維持し得る
回流水槽の境界層制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boundary layer control device for a circulating water tank, and in particular, even if the flow velocity of the general flow is varied, the flow velocity distribution within the boundary layer formed at the boundary surfaces such as the wall and bottom of the tank is controlled. The present invention relates to a boundary layer control device for a recirculation aquarium that can easily improve the flow velocity distribution to a desired flow velocity distribution, reduce flow velocity fluctuations in the boundary layer, and thereby maintain a constant flow velocity distribution of the general flow in the aquarium.

一般に、回流水槽は船舶や水産工学等の分野において模
擬実験用として使用されているが、特に漁具、漁網等の
実験を行なう水産関係において、例えば底引網のように
海底付近で使用されるものの実験を行なう際には、水槽
の底面付近に形成される境界層の影響により実験誤差が
太き《なるという問題があった。
In general, circulating water tanks are used for simulation experiments in fields such as shipping and fisheries engineering, but they are especially used in the fisheries industry where experiments are carried out on fishing gear, fishing nets, etc. When conducting experiments, there was a problem in that experimental errors became large due to the influence of the boundary layer that formed near the bottom of the tank.

このため、境界層外の一般流より流れの遅い境界層流を
加速させる境界層制御の方法として、従来より境界層内
に噴流を吹出す方法、及び境界層内流体を吸込む方法等
が提案されている。
For this reason, conventional boundary layer control methods that accelerate the boundary layer flow, which is slower than the general flow outside the boundary layer, have been proposed, such as a method of blowing a jet into the boundary layer and a method of sucking fluid within the boundary layer. ing.

しかしながら、従来のどちらの方法もその吹出量及びそ
の吸込量は一定に設定されており、流速が変動し易い境
界層を制御する方法としては満足なものではなかった。
However, in both of the conventional methods, the blowout amount and the suction amount are set constant, which is not satisfactory as a method for controlling a boundary layer where the flow velocity tends to fluctuate.

また、一般流の流速を種々に変えて実験する場合には、
その度に境界層内流速を測定しつつ吹出量あるいは吸込
量を手動で変える等の試行錯誤により層内流速分布を最
適な流速分布に設定していた。
In addition, when experimenting with various flow velocities of the general flow,
Each time, the flow velocity distribution in the boundary layer was set to the optimal flow velocity distribution through trial and error, such as manually changing the blowout amount or suction amount while measuring the flow velocity in the boundary layer.

本発明は以上のような問題を有効に解決するために創案
されたものである。
The present invention was devised to effectively solve the above problems.

本発明の目的は、境界層流中と一般流中との動圧を動圧
検出手段で検出し、境界層流の動圧値を一般流の動圧値
に近似させるように、制御手段が境界層流を加速する加
速手段の作動を制御するよう構成したことにより、一般
流の流速を種々に変えても、容易に境界層の流速分布を
所望の流速分布に改善できると共に、境界層の流速の変
動を防止し境界層の流速分布を一定に維持し得る回流水
槽の境界層制御装置を提供することにある。
An object of the present invention is to detect the dynamic pressures in the boundary layer flow and the general flow using a dynamic pressure detection means, and to detect the dynamic pressure in the boundary layer flow and in the general flow, and to control the control means so as to approximate the dynamic pressure value of the boundary layer flow to the dynamic pressure value of the general flow. By controlling the operation of the acceleration means that accelerates the boundary layer flow, even if the flow velocity of the general flow is varied, the flow velocity distribution of the boundary layer can be easily improved to a desired flow velocity distribution, and the boundary layer flow velocity distribution can be easily improved to a desired flow velocity distribution. It is an object of the present invention to provide a boundary layer control device for a circulating water tank that can prevent fluctuations in flow velocity and maintain a constant flow velocity distribution in the boundary layer.

上記目的は、本発明によれば次の構成により達成される
According to the present invention, the above object is achieved by the following configuration.

即ち、本発明の構成は回流水槽内に形成される境界層の
層内流速分布を制御し、流速分布を改善する回流水槽の
境界層制御装置において、上記回流水槽に設けられ、境
界層内流体を吸引し、あるいは境界層に噴流を吹出す等
して境界層を加速する加速手段と、上記境界層流中と境
界層外の一般流中とにそれぞれ設けられそれぞれの動圧
(一流速)を検出する動圧検出手段と、該動圧検出手段
から得られる一般流の動圧値と境界層内流の動圧値とを
比較し、境界層内流の動圧値を一般流の動圧値に近づけ
るように上記加速手段を作動制御する制御手段とを備え
て、上記動圧検出手段から得られる一般流の動圧値と境
界層内流の動圧値との差圧が予め設定した上限値を越え
るときには、上記制御手段により境界層を加速する加速
手段の強制加速力を増加させるようにし、一方上記差圧
が予め設定した下限値以下のときには制御手段により加
速手段の強制加速力を減少させるように制御するように
したことを特徴とする。
That is, the configuration of the present invention is a boundary layer control device for a circulating water tank that controls and improves the flow velocity distribution in the boundary layer formed in the circulating water tank, which is provided in the circulating water tank and controls the fluid in the boundary layer. Accelerating means for accelerating the boundary layer by sucking in or blowing a jet into the boundary layer, and an acceleration means provided in the boundary layer flow and in the general flow outside the boundary layer, respectively, and the respective dynamic pressures (first-flow velocity) The dynamic pressure detection means for detecting the flow compares the dynamic pressure value of the general flow obtained from the dynamic pressure detection means with the dynamic pressure value of the flow in the boundary layer, and the dynamic pressure value of the flow in the boundary layer is calculated as control means for controlling the operation of the acceleration means so as to approach the pressure value, and a differential pressure between the dynamic pressure value of the general flow obtained from the dynamic pressure detection means and the dynamic pressure value of the flow in the boundary layer is preset. When the differential pressure exceeds the preset upper limit, the control means increases the forced acceleration force of the acceleration means that accelerates the boundary layer, while when the differential pressure is less than the preset lower limit, the control means increases the forced acceleration force of the acceleration means. It is characterized in that it is controlled so as to reduce the.

以下に本発明の好適実施例を添付図面に従って詳述する
Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、1は回流水槽であり、2はその水路で
ある。
In FIG. 1, 1 is a circulating water tank, and 2 is its waterway.

水路2には水などの流体が図中右方向に流れており、3
は水路2の底壁である。
In waterway 2, fluid such as water flows to the right in the figure, and 3
is the bottom wall of waterway 2.

底壁3には、底壁3付近の境界層を吸込む吸込口4と吸
込口4から吸込んだ流体を再び水路2内に放出する放出
口5とが設けられ、吸込口4と放出口5とは水路2外に
配設された配管6により連通されている。
The bottom wall 3 is provided with a suction port 4 that sucks in the boundary layer near the bottom wall 3 and a discharge port 5 that discharges the fluid sucked from the suction port 4 into the water channel 2 again. are communicated with each other by a pipe 6 disposed outside the water channel 2.

配管6には吸込口4から境界層内流体を配管6内に吸込
むためのポンプ7と吸込口4より吸込まれる流体の吸込
量を調節するためのバルブ8とがそれぞれ設けられてい
る。
The piping 6 is provided with a pump 7 for sucking fluid in the boundary layer into the piping 6 from the suction port 4 and a valve 8 for adjusting the amount of fluid sucked from the suction port 4.

水路2の一般流中と境界層流中とにはそれぞれ上下に位
置させて動圧検出手段Dであるピトー管9 10が設け
られている。
Pitot tubes 910, which serve as dynamic pressure detection means D, are provided above and below in the general flow and the boundary layer flow of the waterway 2, respectively.

ピトー管9で検出された一般流中の動圧p1 とピト
ー管10で検出された境界層中の動圧p2 とを入力と
して、一般流の動圧と境界層の動圧との差圧p1P2に
比例する電気信号を出力する差圧変換器11が設けられ
ている。
Using the dynamic pressure p1 in the general flow detected by the pitot tube 9 and the dynamic pressure p2 in the boundary layer detected by the pitot tube 10 as input, the differential pressure between the dynamic pressure of the general flow and the dynamic pressure of the boundary layer p1P2 A differential pressure converter 11 is provided that outputs an electrical signal proportional to .

差圧変換器11は、ここでは模式的に示されており、一
般に市販されているものを使用出来るが、その機構とし
ては例えばそのケーシング12を2室に区画するダイヤ
フラム13が設けられ、一方の室14とピトー管9との
間にはピトー管9で得られた一般流の動圧を室14へ伝
達するための伝達管16が介設され、同様にして他方の
室15とピトー管10との間には伝達管17が設げられ
ているようなものである。
The differential pressure transducer 11 is schematically shown here, and a commercially available one can be used, but its mechanism includes, for example, a diaphragm 13 that divides the casing 12 into two chambers, one of which is A transmission pipe 16 is interposed between the chamber 14 and the pitot tube 9 to transmit the dynamic pressure of the general flow obtained in the pitot tube 9 to the chamber 14, and in the same way, the other chamber 15 and the pitot tube 10 are A transmission pipe 17 is provided between the two.

また、原理的に言うと差圧変換器11には、室14 1
5の動圧差により変位する例えばダイヤフラム13の変
位量に基いて、これを一般流と境界層流との動圧差pI
I)2に比例した電気信号jpに変換する電気回路
(図示せず)が設けられている。
In principle, the differential pressure converter 11 has chambers 14 1
Based on the amount of displacement of the diaphragm 13, for example, which is displaced by the dynamic pressure difference of 5, this is calculated as the dynamic pressure difference pI between the general flow and the boundary layer flow.
I) An electric circuit (not shown) is provided for converting into an electric signal jp proportional to 2.

伝達管16,17にはそれぞれピトー管で得られた比較
的に早い動圧変動を平滑化した動圧変動に変換する機能
を有する空気溜18,19が設けられている。
The transmission pipes 16 and 17 are provided with air reservoirs 18 and 19, respectively, which have the function of converting relatively fast dynamic pressure fluctuations obtained by the pitot tubes into smoothed dynamic pressure fluctuations.

差圧変換器11と制御回路20とは電気的に接続され、
制御回路20は差圧変換器11から出力される一般流と
境界層流との動圧差1)1 1)2に比例した電気信
号Apを増幅する。
The differential pressure converter 11 and the control circuit 20 are electrically connected,
The control circuit 20 amplifies the electrical signal Ap proportional to the dynamic pressure difference 1)1 1)2 between the general flow and the boundary layer flow output from the differential pressure converter 11.

さらに、制御回路20はこの増幅値を予め設定された範
囲内に制御すべく、言い換えると一般流と境界層流との
動圧差(速度差)をある圧力差内に制御すべく、上述し
たポンプ7を作動するモータ21の回転数またはバルブ
8の開度を制御する制御信号を出力し、吸込口4からの
吸込量を調節するように構成されている。
Furthermore, in order to control this amplification value within a preset range, in other words, to control the dynamic pressure difference (speed difference) between the general flow and the boundary layer flow within a certain pressure difference, the control circuit 20 uses the pump described above. It is configured to output a control signal for controlling the rotational speed of a motor 21 that operates the valve 7 or the opening degree of the valve 8, thereby adjusting the amount of suction from the suction port 4.

本実施例においては、制御手段Cは主に空気溜18 1
9と差圧変換器11および制御回路20により構成され
、また境界層流の加速手段Aは主にポンプ7、モータ2
1,吸込口4および配管6により構威されている。
In this embodiment, the control means C mainly includes the air reservoir 18 1
9, a differential pressure converter 11, and a control circuit 20, and the boundary layer flow acceleration means A mainly includes a pump 7 and a motor 2.
1, a suction port 4 and piping 6.

以上要するに、本実施例の装置は、回流水層1の境界層
内流体を吸引し加速する加速手段Aと、一般流中に設け
られその動圧P1 を検出するピトー管9及び境界層内
代表位置に設けられその動圧P2を検出するピトー管1
0からなる動圧検出手段Dと、動圧検出手段Dから得ら
れる一般流の動圧値P1 と境界層内流の動圧値P2
との差圧P1P2 に基づき、これを所定の範囲内に制
御すべく、加速手段Aを作動制御する制御手段Cとから
構成されている。
In summary, the device of this embodiment includes an accelerating means A that sucks and accelerates the fluid in the boundary layer of the circulating water layer 1, a pitot tube 9 that is installed in the general flow and detects the dynamic pressure P1, and a representative fluid in the boundary layer. Pitot tube 1 installed at a position and detecting the dynamic pressure P2
Dynamic pressure detection means D consisting of 0, dynamic pressure value P1 of the general flow obtained from the dynamic pressure detection means D, and dynamic pressure value P2 of the flow in the boundary layer.
and a control means C that controls the operation of the acceleration means A based on the differential pressure P1P2 between the accelerating means A and the pressure difference P1P2 within a predetermined range.

次に本実施例の作用について述べる。Next, the operation of this embodiment will be described.

底壁3付近を流れる流体の流速は、底壁3が存在するた
めに摩擦等により、一般流の流速Uよりも遅くなり、底
壁3付近には、底壁3からの距離Zでの流速分布を示す
第2図のような大きな速度勾配を有する境界層が形成さ
れる。
The flow velocity of the fluid flowing near the bottom wall 3 is slower than the flow velocity U of the general flow due to friction etc. due to the presence of the bottom wall 3. A boundary layer is formed with a large velocity gradient as shown in FIG. 2, which shows the distribution.

ところが、ポンプ7を作動させて吸込口4から境界層を
配管6内に吸込むと、第3図に示すように、吸込口4付
近には流速U2の下向きの流れが起こり、吸込む前の水
平方向の流速U1 は流速U1 と流速U2 とを合成
した図中U3で示すような流速となり、境界層流は加速
される。
However, when the pump 7 is operated and the boundary layer is sucked into the pipe 6 from the suction port 4, as shown in FIG. The flow velocity U1 becomes a flow velocity shown by U3 in the figure, which is a combination of the flow velocity U1 and the flow velocity U2, and the boundary layer flow is accelerated.

この結果、吸込口4の下流側での流速分布は第2図の流
速分布から第3図に示す流速分布へと改善される。
As a result, the flow velocity distribution on the downstream side of the suction port 4 is improved from the flow velocity distribution shown in FIG. 2 to the flow velocity distribution shown in FIG. 3.

(第3図の斜線で示す部分Vの容積にあたる流体が吸込
口4より吸取られたと考えることができる。
(It can be considered that the fluid corresponding to the volume of the shaded portion V in FIG. 3 is sucked out from the suction port 4.

)また吸込口4から吸込む吸込量を増減することにより
、境界層流の加速の程度を調節することができる。
) Furthermore, by increasing or decreasing the amount of suction sucked in from the suction port 4, the degree of acceleration of the boundary layer flow can be adjusted.

一般流の流速により生ずる動圧p1 はピトー管9で検
出され、また境界層内代表位置の流速により生ずる動圧
p2はピトー管10で検出される。
The dynamic pressure p1 caused by the flow velocity of the general flow is detected by the pitot tube 9, and the dynamic pressure p2 caused by the flow velocity at a representative position in the boundary layer is detected by the pitot tube 10.

流速の変動に伴って、ピトー管9,10で検出される動
圧も変動するが、これら動圧変動は伝達管16 17に
それぞれ設けられた空気溜1819により平滑化された
動圧変動に変換される。
As the flow velocity changes, the dynamic pressure detected in the pitot tubes 9 and 10 also changes, but these dynamic pressure fluctuations are converted into dynamic pressure fluctuations smoothed by air reservoirs 1819 provided in the transmission pipes 16 and 17, respectively. be done.

特に、境界層内の流速の変動は通常不規則で比較的に早
い変動であり、第4図に示すような変動をする。
In particular, the fluctuations in the flow velocity within the boundary layer are usually irregular and relatively fast fluctuations, as shown in FIG.

(第4図は、時間tに対して流速変動に伴う変動圧力値
Pを示したものである。
(FIG. 4 shows the fluctuating pressure value P accompanying the flow rate fluctuation with respect to time t.

)。しかしながら、空気溜を設けたことにより早い圧力
変動は平滑化ないしは平均化され、第5図に示すような
、なだらかな変動となる。
). However, by providing the air reservoir, rapid pressure fluctuations are smoothed or averaged, resulting in gentle fluctuations as shown in FIG.

このように圧力変動が平均化されるため、通常では制御
が困難な変動流に対しても、安定な制御を行なうことが
できる。
Since pressure fluctuations are averaged in this way, stable control can be performed even for fluctuating flows that are normally difficult to control.

平均化された動圧は伝達管16.17を介して、それぞ
れ差圧変換器110室14 15に伝達され、一般流と
境界層流との動圧差pI P2に比例した電気信号j
pに変換され、制御回路20に入力される。
The averaged dynamic pressure is transmitted via transmission pipes 16, 17 to differential pressure transducers 110 and chambers 14 and 15, respectively, and an electric signal j proportional to the dynamic pressure difference pI P2 between the general flow and the boundary layer flow is transmitted.
p and is input to the control circuit 20.

入力された電気信号Apは増幅され、この増幅値が予め
設定した上限値より大きい場合には、すなわち一般流と
境界層流との速度差が予め設定した速度差より大きい場
合には、制御回路20はポンプ7を作動するモータ21
の回転数を増加させる制御信号を、またはバルブ8の開
度を増す制御信号を出力し、吸込口4からの吸込量は増
大され境界層流は加速される。
The input electric signal Ap is amplified, and if this amplification value is larger than a preset upper limit, that is, if the speed difference between the general flow and the boundary layer flow is larger than the preset speed difference, the control circuit 20 is a motor 21 that operates the pump 7
A control signal that increases the rotational speed of the valve 8 or a control signal that increases the opening degree of the valve 8 is output, so that the amount of suction from the suction port 4 is increased and the boundary layer flow is accelerated.

一般にはpI>p2であり、A p > 0であるため
、制御回路は増幅値が設定値以下になるように制御され
る。
Generally, pI>p2 and A p > 0, so the control circuit is controlled so that the amplification value is equal to or less than the set value.

また、増幅値が予め設定した下限値(Jp>00範囲で
の許容値を意味する)より小さい場合には、制御回路2
0はモータ21の回転数またはバルブ8の開度を減少さ
せる制御信号を出力し、吸込口4の吸込量は減少し境界
層流は減速される。
In addition, if the amplification value is smaller than a preset lower limit value (meaning an allowable value in the range of Jp>00), the control circuit 2
0 outputs a control signal that reduces the rotational speed of the motor 21 or the opening degree of the valve 8, the suction amount of the suction port 4 is reduced, and the boundary layer flow is decelerated.

このようにして、境界層流の流速は、一般流と境界層流
との速度差が予め設定した速度差内に収まるように制御
される。
In this way, the flow velocity of the boundary layer flow is controlled so that the velocity difference between the general flow and the boundary layer flow falls within a preset velocity difference.

従って、境界層流の流速は一般流の流速に近付き、底壁
3近傍で実験を行う際に問題となる境界層の影響は少な
《なる。
Therefore, the flow velocity of the boundary layer flow approaches the flow velocity of the general flow, and the influence of the boundary layer, which is a problem when conducting experiments near the bottom wall 3, is reduced.

また、一般流の流速Uを種々に変える場合にもそれに応
じて常にp1−p2が一定の許容内に収まるように境界
層内の流速が制御されるので、自動的に水路2内の流速
分布は容易に所望の流速分布に維持される。
Furthermore, even when the flow velocity U of the general flow is varied, the flow velocity within the boundary layer is controlled so that p1-p2 always falls within a certain tolerance, so the flow velocity distribution within the waterway 2 is automatically controlled. is easily maintained at the desired flow rate distribution.

なお、上記実施例では境界層を吸込んで加速する制御装
置を示したが、境界層内に加速流体を吹出して境界層流
を加速するようにしてもよく、この例を第6図に示す。
Although the above embodiment shows a control device that sucks in and accelerates the boundary layer, it is also possible to blow out an accelerating fluid into the boundary layer to accelerate the boundary layer flow, and an example of this is shown in FIG.

第6図において、22は底壁3に設けられた加速流体の
吹出口である。
In FIG. 6, reference numeral 22 indicates an outlet for accelerating fluid provided in the bottom wall 3.

その他の構成は上記実施例とほぼ同様であり、吹出量を
制御して境界層流の流速を制御する。
The rest of the configuration is almost the same as the above embodiment, and the flow rate of the boundary layer flow is controlled by controlling the blowout amount.

また、動圧検出手段Dとしてはピトー管にかえて一般の
小型の流速検出装置または半導体圧力検出器などによっ
て動圧を検出するようにしてもよい。
Further, as the dynamic pressure detection means D, the dynamic pressure may be detected by a general small flow rate detection device or a semiconductor pressure detector, instead of the pitot tube.

上記実施例では水槽の底壁3付近に形成される境界層を
制御する例を示したが、上記装置を用いて水槽の側壁付
近の境界層を制御することも容易である。
Although the above embodiment shows an example of controlling the boundary layer formed near the bottom wall 3 of the aquarium, it is also easy to control the boundary layer near the side wall of the aquarium using the above device.

また吸込口4、吹出口22の位置は回流水槽の観測部内
の適当な個所に線または面状に分布させてもよく、本構
戒の原理の範囲内で応用できることは勿論である。
Further, the positions of the suction port 4 and the blowout port 22 may be distributed linearly or planarly at appropriate locations within the observation section of the recirculation water tank, and of course this can be applied within the scope of the principles of this precept.

以上の説明で明らかなように本発明によれば次のような
優れた効果を発揮する。
As is clear from the above description, the present invention exhibits the following excellent effects.

(1)境界層流を加速し、その流速を一般流の流速に近
似し得、回流水槽で実験する際に問題となる境界層の影
響を除去または減少できる。
(1) The boundary layer flow can be accelerated and its flow velocity approximated to that of a general flow, and the influence of the boundary layer, which is a problem when conducting experiments in a circulating water tank, can be eliminated or reduced.

(2)水槽を流れる一般流の流速を種々に変えると境界
層の厚さや流速分布が変化してしまうが、それに応じて
迅速に最適状態に制御し境界層の流速分布を容易に所望
の流速分布に改善することができる。
(2) Varying the flow velocity of the general flow flowing through the aquarium will change the thickness and flow velocity distribution of the boundary layer, but it is possible to quickly control the flow velocity distribution of the boundary layer to the desired flow rate by quickly controlling it to the optimum state accordingly. The distribution can be improved.

(3)境界層に起因する流速変動を防止し得、境界層の
流速分布を一定に維持でき、従って一般流の流速変動が
減少する。
(3) Fluctuations in flow velocity caused by the boundary layer can be prevented, and the flow velocity distribution in the boundary layer can be maintained constant, thus reducing fluctuations in the flow velocity of the general flow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一実施例を示す縦断面図、
第2図は吸込みを行なわない場合の流速分布を示す図、
第3図は吸込みを行なった場合の流速変化及び流速分布
を説明する図、第4図は圧力の時間的変動を示すグラフ
、第5図は平滑化された第4図の変動圧力を示すグラフ
、第6図は本発明の別の実施例を示す縦断面図である。 図中、1は回流水槽、Aは加速手段、Dは動圧検出手段
、Cは制御手段、p1は一般流の動圧値、p2 は境界層流の動圧値である。
FIG. 1 is a longitudinal sectional view showing an embodiment of the device according to the present invention;
Figure 2 is a diagram showing the flow velocity distribution when no suction is performed;
Fig. 3 is a diagram explaining flow velocity changes and flow velocity distribution when suction is performed, Fig. 4 is a graph showing temporal fluctuations in pressure, and Fig. 5 is a graph showing the smoothed fluctuating pressure of Fig. 4. , FIG. 6 is a longitudinal sectional view showing another embodiment of the present invention. In the figure, 1 is a circulating water tank, A is an acceleration means, D is a dynamic pressure detection means, C is a control means, p1 is a dynamic pressure value of a general flow, and p2 is a dynamic pressure value of a boundary layer flow.

Claims (1)

【特許請求の範囲】[Claims] 1 回流水槽内に形成される境界層の層内流速分布を制
御し、流速分布を改善する回流水槽の境界層制御装置に
おいて、上記回流水槽に設けられ境界層流を加速する加
速手段と、上記境界層流中と境界層外の一般流中とにそ
れぞれ設けられそれぞれの動圧を検出する動圧検出手段
と、該動圧検出手段から得られる一般流の動圧値と境界
層内流の動圧値とを比較し、境界層内流の動圧値を一般
流の動圧値に近似させるように上記加速手段を作動させ
る制御手段とを備えた回流水槽の境界層制御装置。
1. A boundary layer control device for a circulating water tank that controls the intralayer flow velocity distribution of a boundary layer formed in the circulating water tank and improves the flow velocity distribution, comprising an acceleration means provided in the circulating water tank and accelerating the boundary layer flow; Dynamic pressure detection means is provided in the boundary layer flow and in the general flow outside the boundary layer to detect the respective dynamic pressures, and the dynamic pressure value of the general flow obtained from the dynamic pressure detection means and the flow inside the boundary layer are A boundary layer control device for a circulating water tank, comprising: a control means for comparing the dynamic pressure value with the dynamic pressure value of the flow in the boundary layer and operating the acceleration means so as to approximate the dynamic pressure value of the flow within the boundary layer to the dynamic pressure value of the general flow.
JP13332080A 1980-09-25 1980-09-25 Boundary layer control device for circulating water tank Expired JPS5836207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13332080A JPS5836207B2 (en) 1980-09-25 1980-09-25 Boundary layer control device for circulating water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13332080A JPS5836207B2 (en) 1980-09-25 1980-09-25 Boundary layer control device for circulating water tank

Publications (2)

Publication Number Publication Date
JPS5757905A JPS5757905A (en) 1982-04-07
JPS5836207B2 true JPS5836207B2 (en) 1983-08-08

Family

ID=15101933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13332080A Expired JPS5836207B2 (en) 1980-09-25 1980-09-25 Boundary layer control device for circulating water tank

Country Status (1)

Country Link
JP (1) JPS5836207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442277U (en) * 1987-09-04 1989-03-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442277U (en) * 1987-09-04 1989-03-14

Also Published As

Publication number Publication date
JPS5757905A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
US3620238A (en) Fluid-control system comprising a viscosity compensating device
US5002459A (en) Surge control system
EP0214206B1 (en) Procedure and means for use in pumping and volumetry of foodstuff liquids
JP2747603B2 (en) Method and apparatus for venting vacuum processing equipment
CN109458355A (en) The surge controlling method of compressor and the surge control system of compressor
US2452421A (en) Vacuum return pumping unit
JPH10268942A (en) Flow control valve using sonic velocity nozzle
US3327529A (en) Lift sensing and measuring system
JPS5836207B2 (en) Boundary layer control device for circulating water tank
CA1299496C (en) Fluidic apparatus
US4556018A (en) Steam boiler
US3855859A (en) Flowmeter
JPS6210299Y2 (en)
US4521156A (en) Self-priming pump system having diaphragm-type flow sensor
JPH11351651A (en) Air conditioner
JP2538894Y2 (en) Pressurizer water level control device
US4534383A (en) Fluidic set point pressure sensor
CN208519517U (en) Throttling set flowing full current stabilization auxiliary device
SU1030729A1 (en) Pneumatic anemometer
CN114620239A (en) Aircraft fuel oil suction vortex suppression system
SU1172090A1 (en) Device for measuring sound level in aqueous medium of pipeline
US3545675A (en) Unit ventilator control system
GB2374152A (en) Apparatus and method for detecting a change in fluid flow
CN211321146U (en) Cooling system of motor equipment
US3550610A (en) Means to detect changes in level of a stream of water