JPS5836154Y2 - Positive temperature coefficient thermistor for heating elements - Google Patents

Positive temperature coefficient thermistor for heating elements

Info

Publication number
JPS5836154Y2
JPS5836154Y2 JP1976147492U JP14749276U JPS5836154Y2 JP S5836154 Y2 JPS5836154 Y2 JP S5836154Y2 JP 1976147492 U JP1976147492 U JP 1976147492U JP 14749276 U JP14749276 U JP 14749276U JP S5836154 Y2 JPS5836154 Y2 JP S5836154Y2
Authority
JP
Japan
Prior art keywords
resistor
resistance value
voltage
resistance
coefficient thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1976147492U
Other languages
Japanese (ja)
Other versions
JPS5363746U (en
Inventor
隆 鹿間
哲郎 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP1976147492U priority Critical patent/JPS5836154Y2/en
Publication of JPS5363746U publication Critical patent/JPS5363746U/ja
Application granted granted Critical
Publication of JPS5836154Y2 publication Critical patent/JPS5836154Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【考案の詳細な説明】 本考案は温度分布が均一でかつ発熱量の大なる、正特性
サーミスタを用いた発熱体装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a heating element device using a positive temperature coefficient thermistor, which has a uniform temperature distribution and a large amount of heat generation.

例えば角板状正特性サーミスタ素子の相対向する両側面
に電極を付与した発熱体用正特性サーミスタは知られて
いる。
For example, a positive temperature coefficient thermistor for a heating element is known in which electrodes are provided on both opposing sides of a square plate-shaped positive temperature coefficient thermistor element.

しかしこのようなものにおいては、その電極間距離が長
いため、両電極間に電圧を印加して発熱させた場合、往
々にしてその素子の表面温度が不均一になることが多か
った。
However, in such devices, since the distance between the electrodes is long, when a voltage is applied between both electrodes to generate heat, the surface temperature of the device often becomes non-uniform.

すなわち素子に局部的に高抵抗部が生じるのであつた。In other words, a high resistance portion is locally generated in the element.

これは例えば、成型された素子を焼成した後に、不可避
的に生じる気孔分布の不均質等により生じた一部の高抵
抗領域や、素子の放熱の悪い部分で、他の部分よりも温
度が高くなって高抵抗になる領域のことをいい、これは
−個所とは限らない この高抵抗部が生じる形態としては、先づ、第1図に示
したように、素子1の、電流の流れる方向(X方向)と
並行し、かつ両電極2,3にわたって生じる場合がある
This may occur, for example, in some high-resistance areas caused by uneven pore distribution that inevitably occurs after firing a molded element, or in areas with poor heat dissipation, where the temperature is higher than other areas. This refers to a region where the resistance becomes high, and this is not limited to a certain location.As shown in FIG. (X direction) and may occur across both electrodes 2 and 3.

この場合、前記高抵抗部4は高抵抗値で、その他の低抵
抗部は低抵抗値で、それぞれX方向における抵抗値は均
一である。
In this case, the high resistance portion 4 has a high resistance value, the other low resistance portions have a low resistance value, and the resistance values in the X direction are uniform.

従ってこの素子1に電流を流すと、素子1のX方向の温
度分布は、その抵抗値が均一であることから均一となる
Therefore, when a current is passed through this element 1, the temperature distribution of the element 1 in the X direction becomes uniform because its resistance value is uniform.

なお前記高抵抗部4の抵抗温度特性は第2図の曲線イの
ようになり、他の部分のそれは曲線口のようになる。
The resistance-temperature characteristic of the high-resistance portion 4 is as shown by curve A in FIG. 2, and that of the other portions is as shown by curve A.

ところが電流を流し始めた当初においては、前記低抵抗
部には所定の電流が流れるものの、高抵抗部には余り電
流が流れることがなく、第3図の曲線Aで示したように
、素子1の電流の流れる方向と直交する方向(Y方向)
において温度分布が生じ、前記高抵抗部4の温度が他の
部分の温度よりも低くなることになる。
However, when the current begins to flow, although a predetermined current flows through the low-resistance portion, not much current flows through the high-resistance portion, and as shown by curve A in FIG. Direction perpendicular to the direction of current flow (Y direction)
A temperature distribution occurs in the region, and the temperature of the high-resistance portion 4 becomes lower than that of other portions.

ところがこの素子においては、電流を流し始めてしばら
くすると、前記低抵抗部の温度がさらに上昇し、その抵
抗値がキュリ一点を越えて高くなり、前記高抵抗部4の
抵抗値と同様のレベルにまで達することになる。
However, in this element, after a while after starting to flow current, the temperature of the low resistance part further rises, and its resistance value increases beyond the Curie point, reaching a level similar to the resistance value of the high resistance part 4. will be reached.

この場合前記高抵抗部4は、他の部分よりも流れる電流
量が少ないために発熱が遅れ、容易に低抵抗部の抵抗上
昇による追随を許し、もはや高抵抗部は高抵抗部でなく
なってしまう。
In this case, since the amount of current flowing through the high resistance part 4 is smaller than that in other parts, heat generation is delayed, and the resistance increase in the low resistance part easily follows, and the high resistance part is no longer a high resistance part. .

この結果、最終的な動作安定時における素子1のY方向
の温度分布は、第3図の曲線Bのように、殆んど無視で
きる程度のものとなるのである。
As a result, the temperature distribution of the element 1 in the Y direction at the time of final stable operation becomes almost negligible, as shown by curve B in FIG.

この第3図の曲線Bにおいて僅かに温度が小さくなって
いる部分は、第2図の曲線イの動作安定点イ′と合致す
るものでありこれは曲線口の動作安定点口′よりも僅か
に温度が低くなっている程度のもので全く問題とはなら
ない。
The part where the temperature is slightly lower in curve B in Fig. 3 coincides with the stable operation point A' of curve A in Fig. 2, which is slightly smaller than the stable operation point A' at the beginning of the curve. As long as the temperature is low, it is not a problem at all.

従って素子1に、第1図のようなX方向の高抵抗部4が
生じる場合には、実用上全く問題になることはない。
Therefore, if a high resistance portion 4 in the X direction as shown in FIG. 1 occurs in the element 1, there will be no practical problem at all.

単に動作安定状態に至るまでの時間に差があるだけであ
る。
There is simply a difference in the time it takes to reach a stable state of operation.

素子1に高抵抗部4が生じる形態として、次に第4図に
示したように、素子1の、電流の流れる方向と直交する
方向(Y方向)に両端面にわたって生じる場合がある。
As shown in FIG. 4, the high resistance portion 4 may occur in the element 1 over both end faces of the element 1 in the direction (Y direction) orthogonal to the direction in which the current flows.

この場合高抵抗部4は高抵抗値で、その他の低抵抗部は
低抵抗値で、それぞれY方向における抵抗値は均一であ
り、従ってこの素子1に電流を流した場合、素子1のY
方向の温度分布は均一となる。
In this case, the high resistance part 4 has a high resistance value, and the other low resistance parts have a low resistance value, and the resistance values in the Y direction are uniform. Therefore, when current is passed through this element 1, the Y
The directional temperature distribution becomes uniform.

ところがこの素子1の電流の流れる方向(X方向)では
、一部に高抵抗部4が必ず存在するため、両電極2,3
に電圧を印加すると、第5図に示すように、X方向の前
記高抵抗部4の部分に電圧の集中が起ることになる。
However, in the current flow direction (X direction) of this element 1, since there is always a high resistance part 4 in a part, both electrodes 2 and 3
When a voltage is applied to the high resistance portion 4 in the X direction, the voltage is concentrated in the high resistance portion 4, as shown in FIG.

この結果、この高抵抗部4(電圧集中部分)の温度は他
の部分よりも高くなるので、そこに電圧集中の加速が生
じ(第6図)、前記高抵抗部4の抵抗値がますます高く
なって、低抵抗部の抵抗値との差を拡げることになる。
As a result, the temperature of this high resistance part 4 (voltage concentration part) becomes higher than other parts, so voltage concentration accelerates there (Figure 6), and the resistance value of the high resistance part 4 increases. This increases the resistance value of the low resistance part and widens the difference between the resistance value and the resistance value of the low resistance part.

従って素子1のX方向における温度分布は、第7図に示
したように、前記高抵抗部4の温度が極めて高いものと
なって均熱化できず、また電流の流入量も大きくできず
、実用上大きな問題となっていた。
Therefore, as shown in FIG. 7, the temperature distribution of the element 1 in the X direction is such that the temperature of the high resistance part 4 is extremely high, making it impossible to equalize the temperature, and also making it impossible to increase the amount of current flow. This was a big problem in practice.

素子1に高抵抗部4が生じるさらに別の形態として、第
8図に示したように、電極2,3間のいずれか一部分に
のみ、点的に高抵抗部4が生じる場合がある。
As yet another form of high resistance portion 4 occurring in element 1, as shown in FIG. 8, high resistance portion 4 may occur at a point only in a portion between electrodes 2 and 3.

この場合、高抵抗部4が僅かな領域にしか存在しないた
め、前述の第1図に示したもののように実用上無視でき
るかのように思われるが、実際には逆で、結果的には第
4図で示したもののようになってしまうのである。
In this case, since the high resistance part 4 exists only in a small area, it seems that it can be ignored in practical terms like the one shown in FIG. The result will be something like the one shown in Figure 4.

以下順を追ってこの動作について説明する。This operation will be explained step by step below.

まず、電流の流れるX方向の、高抵抗部4の存在する領
域(X1領域)と、この部分にごく隣接した高抵抗部4
を含まない領域(X2領域)との関係をとってみると、
Xl領域の抵抗値分布は第9図aのようになり、X2領
域の抵抗値分布は同図すのようになる。
First, the area where the high resistance part 4 exists (X1 area) in the X direction where the current flows, and the high resistance part 4 very adjacent to this area.
Looking at the relationship with the area that does not include (X2 area),
The resistance value distribution in the Xl region is as shown in FIG. 9a, and the resistance value distribution in the X2 region is as shown in the same figure.

この状態において電極2,3間に電圧を印加すると、本
来それぞれの抵抗値分布に応じた電圧分布となるが、実
際にはX1領域、X2領域が隣接しているために、相互
に干渉し合い、第10図a、l)のような電圧分布とな
る。
If a voltage is applied between electrodes 2 and 3 in this state, the voltage distribution will originally correspond to the resistance value distribution of each electrode, but in reality, since the X1 region and the X2 region are adjacent to each other, they interfere with each other. , the voltage distribution is as shown in Fig. 10 a, l).

すなわち、X1領域の電圧分布のムラがX2領域によっ
て緩和されて小さくなり、逆にX2領域ではその反作用
によってムラが生じるのである。
That is, the unevenness of the voltage distribution in the X1 region is alleviated and reduced by the X2 region, and conversely, the unevenness occurs in the X2 region due to the reaction thereof.

これはX1領域の高電圧部の熱がX2領域に伝導し、そ
の部分の温度を高めて抵抗値をも高くするためである。
This is because the heat of the high voltage section in the X1 region is conducted to the X2 region, increasing the temperature of that region and increasing the resistance value.

この結果X2領域の発熱速度はもはや均一とはならず、
そこに抵抗値の高い高抵抗部4が形成されたと同様にな
ってしまうことになる。
As a result, the heat generation rate in the X2 region is no longer uniform,
The result will be the same as if a high resistance portion 4 with a high resistance value were formed there.

ところが前述の第4図のものの場合で説明したように、
電流の流れる方向に高抵抗部(高温部)が存在すると、
その部分の電圧集中が加速度的に生じ、高温部はさらに
高温になるので、X2領域において一旦高抵抗部が生じ
ると、その部分における温度は加速度的に上昇すること
になるのである(第11図)。
However, as explained in the case of Figure 4 above,
If there is a high resistance part (high temperature part) in the direction of current flow,
The voltage concentration in that part occurs at an accelerated rate, and the high temperature part becomes even hotter, so once a high resistance part occurs in the X2 region, the temperature in that part increases at an accelerated rate (Figure 11). ).

そしてこの高抵抗部(高温部)は瞬時に形成されるもの
であるため、同じ現象が次にはX2領域と近接する領域
に転移し、これがまた次の領域に転移し、というように
順次高抵抗部が形成され、遂には第12図に示したよう
に、素子1の両端部にわたって、っまりY方向全域に高
抵抗部が形成されることになるのである。
Since this high-resistance region (high-temperature region) is formed instantaneously, the same phenomenon will next transfer to the region adjacent to the X2 region, which will also transfer to the next region, and so on. A resistance portion is formed, and finally, as shown in FIG. 12, a high resistance portion is formed over both ends of the element 1, over the entire Y direction.

この第12図は、第4図に示したものと実質的に同じに
なってしまう。
This FIG. 12 ends up being substantially the same as that shown in FIG.

従ってこれもまた素子1の均熱化は望めず、発熱量の大
なるものを得ることのできないものであった。
Therefore, in this case as well, it was not possible to equalize the temperature of the element 1, and it was not possible to obtain a large amount of heat generation.

そこで従来よりこの欠点を除去せんとして、第13図に
示すように、電極2,3間に存在する素子1表面上に、
均熱板5を当接させたものがあった。
Therefore, in an attempt to eliminate this defect, as shown in FIG.
There was one in which a heat equalizing plate 5 was brought into contact.

しかしこの従来のものでは、素子1と均熱板5との密接
が困難であり、素子1の発生熱を有効に放散させる上で
問題となっていた。
However, in this conventional device, it is difficult to bring the element 1 and the heat equalizing plate 5 into close contact with each other, which poses a problem in effectively dissipating the heat generated by the element 1.

またこの従来のものでは、正特性サーミスタ素子1より
取り出す熱は、均熱板5にてほぼ均熱化されるが、素子
1自身は均熱化されていないので、やはり局部的に高温
部が存在し、発熱体として使用する場合にはヒートサイ
クル等の点で種々不都合があった。
In addition, in this conventional type, the heat taken out from the positive temperature coefficient thermistor element 1 is almost equalized by the heat equalizing plate 5, but since the temperature of the element 1 itself is not equalized, there are still localized high-temperature parts. However, when used as a heat generating element, there were various disadvantages in terms of heat cycles and the like.

本考案の主たる目的は、上記第4図、第8図の各側で示
したような、正特性サーミスタ素子の電流の流れる方向
に高抵抗部があっても、この部分に電圧集中を行なわせ
ないようにした発熱体用正特性サーミスタを提供せんと
するところに存する。
The main purpose of the present invention is to prevent voltage concentration from occurring even if there is a high resistance part in the direction of current flow of a positive temperature coefficient thermistor element, as shown on each side of Figures 4 and 8 above. It is an object of the present invention to provide a positive temperature coefficient thermistor for a heating element in which the temperature is reduced.

すなわち、相対向側面に電極が付与されてなる正特性サ
ーミスタ素子の少なくとも一平面に、前記両電極間のほ
ぼ全長にわたって抵抗体を付与し、この抵抗体の抵抗値
を、前記素子全体が発熱した時の動作安定点の平均抵抗
値よりも高く、前記素子の電流の流れる方向に生じる電
圧集中部分の単位長さ当りの抵抗値よりも低く設定し、
前記素子に、その電流の流れる方向に電圧集中部が生じ
た場合に、前記抵抗体によりその部分の電圧集中を抑制
させるようにしたことを特徴とするものである。
In other words, a resistor is provided on at least one plane of a positive temperature coefficient thermistor element having electrodes provided on opposing sides, and a resistor is provided over almost the entire length between the two electrodes, and the resistance value of this resistor is determined by the amount of heat generated by the entire element. set higher than the average resistance value of the stable operation point at the time, and lower than the resistance value per unit length of the voltage concentrated portion that occurs in the direction of current flow of the element,
If a voltage concentration portion occurs in the element in the direction in which the current flows, the voltage concentration in that portion is suppressed by the resistor.

以下本考案の一具体例を図面とともに詳述する。A specific example of the present invention will be described below in detail with reference to the drawings.

第14図において11は、例えばチタン酸バリウム系磁
器半導体よりなる角板状正特性サーミスタ素子、12.
13はこの素子11の相対向する側面に付与されてなる
一対の電極、14は前記素子11の一表面上の全域に付
与されてなる抵抗体であり、この抵抗体14の抵抗値は
、前記素子11全体が発熱した時の動作安定点の平均抵
抗値よりも高く、かつ前記電圧集中部分の単位長さあた
りの抵抗値よりも低く設定されている。
In FIG. 14, 11 is a square plate-shaped positive temperature coefficient thermistor element made of, for example, a barium titanate-based ceramic semiconductor; 12.
Reference numeral 13 indicates a pair of electrodes provided on opposing side surfaces of the element 11, and reference numeral 14 indicates a resistor provided over the entire surface of the element 11. The resistance value of the resistor 14 is equal to It is set higher than the average resistance value at the stable operation point when the entire element 11 generates heat, and lower than the resistance value per unit length of the voltage concentrated portion.

このような構成において、いよその両電極12゜13間
に電圧を印加したとすると、素子11の抵抗値は抵抗体
14のそれよりも低いため、その電流の殆んどは素子1
1に流れて発熱を開始する。
In such a configuration, if a voltage is applied between the electrodes 12 and 13, most of the current will flow through the element 1 since the resistance value of the element 11 is lower than that of the resistor 14.
1 and starts generating heat.

そして一定時間後、素子11はそのキュリ一点を越えて
抵抗値が増大し、所定の抵抗値で安定する(動作安定点
)。
Then, after a certain period of time, the resistance value of the element 11 increases beyond the Curie point, and stabilizes at a predetermined resistance value (operational stability point).

ところが、素子11の電流の流れる方向に前述の高抵抗
部が存在(点あるいは金山にわたって)していたとする
と、その部分には集中して電圧が印加され、他の部分よ
りも高温状態になろうとする。
However, if the above-mentioned high-resistance portion exists (at a point or across a gold mine) in the direction of current flow in the element 11, voltage will be applied to that portion in a concentrated manner, and the temperature will be higher than other portions. do.

しかしこの電圧集中部分の素子11表面上には、この部
分の抵抗値よりも低い値の抵抗体14が全域に付与され
ているので、この部分に印加される電圧は、抵抗体14
の抵抗値に応じたものとなり、この部分に流れる素子1
1の電流は、抵抗体14に主として流れて一定の発熱を
し、素子11には電圧集中の加速現象が生ぜず、局部的
に発熱することはなく、灼熱化できるものである。
However, on the surface of the element 11 in this voltage concentrated area, a resistor 14 whose resistance value is lower than that of this area is provided over the entire area, so the voltage applied to this area is applied to the resistor 14.
The resistance value of element 1 flows through this part.
The current No. 1 mainly flows through the resistor 14 and generates a certain amount of heat, and no acceleration phenomenon of voltage concentration occurs in the element 11, so that the element 11 does not generate heat locally and can become scorching.

なお前記の高抵抗部は、素子11のいずれに発生するか
予測がつかないが、上記のように素子11の表面の全域
あるいはほぼ全域、または両電極12.13間の全長あ
るいはほぼ全長にわたって抵抗体14を付与しておけば
、どこに発生しても良好にその電圧集中を抑制させるこ
とができる。
It is not possible to predict in which part of the element 11 the high resistance part will occur, but as mentioned above, the resistance will occur over the entire or almost the entire surface of the element 11, or over the entire length or almost the entire length between the electrodes 12 and 13. By providing the voltage body 14, voltage concentration can be effectively suppressed no matter where it occurs.

また前記高抵抗部が複数個新生じた場合も同様に良好な
結果が得られる。
Further, even when a plurality of new high-resistance portions are generated, similarly good results can be obtained.

いうまでもないことだが、少なくとも前記抵抗体14は
、素子11と実質的に導電接続させる必要がある。
Needless to say, at least the resistor 14 needs to be substantially conductively connected to the element 11.

なお図面および上記実施例は、本考案の一具体例を示し
たものにすぎず、これに限定されることはない。
Note that the drawings and the above-mentioned embodiments merely show one specific example of the present invention, and the present invention is not limited thereto.

特に素子11や電極12.13の形状は任意であり、例
えば円板素子を用いて、この素子の周面の相対向位置に
電極を付与すること等は、単なる設計的事項である。
In particular, the shapes of the element 11 and the electrodes 12, 13 are arbitrary; for example, using a disk element and providing electrodes at opposing positions on the circumferential surface of this element is simply a matter of design.

また抵抗体14の付与は素子11の両平面に行ってもよ
いとともに、その両端を両電極12.13に直接接続さ
せてもよく、さらにその付与方法は塗布や貼着等、いか
なる方法を用いてもよい。
Further, the resistor 14 may be applied to both planes of the element 11, and both ends thereof may be directly connected to both electrodes 12.13. Furthermore, the resistor 14 may be applied by any method such as coating or pasting. It's okay.

この場合、この抵抗体14と素子11とを、直接電気的
に接続させた場合には、素子11の電極12.13と抵
抗体14とを接続させる必要はない。
In this case, if the resistor 14 and the element 11 are directly electrically connected, it is not necessary to connect the electrodes 12, 13 of the element 11 and the resistor 14.

さらに抵抗体14の形状も、素子11全面に付与したも
のに限らず、第15図、第16図示のような帯状のもの
であってもよい。
Further, the shape of the resistor 14 is not limited to the one provided on the entire surface of the element 11, but may be in the shape of a band as shown in FIGS. 15 and 16.

要するに本考案においては、前もって素子14に生じる
高抵抗部を想定することが難しいことから、素子の表面
に、前記高抵抗部がどこに生じても、良好にその部分に
電圧集中が起らないような形態で抵抗体を付与しておく
ようにすればよいのであり、上記各側のような形状に何
らとられれる必要はない。
In short, in the present invention, since it is difficult to anticipate in advance the high-resistance portion that will occur in the element 14, no matter where the high-resistance portion occurs on the surface of the element, it is possible to prevent voltage concentration from occurring at that portion. It is only necessary to provide the resistor in a similar shape, and there is no need for the resistor to be shaped like the above-mentioned shapes on each side.

さらに本考案においては、素子11の放熱をより良好に
するために、表面に付与した抵抗体14の外表面を粗面
化し、その放熱面積を大きくシ、素子11の発熱量を増
大させることが容易である。
Furthermore, in the present invention, in order to improve the heat dissipation of the element 11, the outer surface of the resistor 14 provided on the surface is roughened to increase its heat dissipation area, thereby increasing the amount of heat generated by the element 11. It's easy.

つまり、素子に流れる電流は厚みに対して垂直に流れる
ので、表面部の放熱が多ければそれに見合う電流が素子
11表面近傍帯に流れ、それだけ発熱量が増すのである
が、比較的粗面化し易い抵抗体14を粗面化すればよい
本考案では、この効果が意外に大きい。
In other words, the current that flows through the element flows perpendicularly to its thickness, so if there is more heat dissipated from the surface, a commensurate amount of current will flow to the area near the surface of the element 11, and the amount of heat generated will increase accordingly, but the surface will become relatively rough. In the present invention, which only requires roughening the surface of the resistor 14, this effect is surprisingly large.

以上のように本考案は、素子の一平面に抵抗体を付与し
、この抵抗体の抵抗値を、素子全体が発熱した時の動作
安定点の平均抵抗値よりも高く、かつ素子の電圧集中部
分の単位長さあたりの抵抗値よりも低い値に設定し、素
子に生じる高抵抗部の電圧集中を良好に抑制しているの
で、素子が局部的に発熱することがなく、均熱化が図れ
、その使用用途が拡大されるという効果を有する。
As described above, the present invention provides a resistor on one plane of the element, and the resistance value of this resistor is higher than the average resistance value at the stable point of operation when the entire element generates heat, and the voltage concentration of the element is The resistance value is set lower than the resistance value per unit length of the part, and voltage concentration in the high resistance part of the element is well suppressed, so the element does not generate heat locally and the temperature is equalized. This has the effect of expanding its usage.

また本考案においては、局部発熱を防止しているので、
ヒートサイクルによる素子のヒビ割れ等の問題も解消で
きるという効果を有する。
In addition, in this invention, local heat generation is prevented, so
This has the effect of solving problems such as cracking of the element due to heat cycling.

さらに本考案では、前記抵抗体の付与によって、これに
も若干乍ら常時発熱させることができるので、全体とし
ての発熱量をさらに大きくできる。
Furthermore, in the present invention, by providing the resistor, it is possible to generate a certain amount of heat all the time, so that the overall amount of heat generated can be further increased.

また本考案では、抵抗体をあらかじめ付与しておくこと
ができるので、生産性を向上できるという効果をも有す
る等、実用上効果多大なる考案である。
In addition, in this invention, since the resistor can be applied in advance, it has the effect of improving productivity, and is a device that has many practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の背景となる正特性サーミスタ素子の斜
視図、第2図はその抵抗温度特性図、第3図は第1図Y
方向の温度分布図、第4図は本考案の背景となる他の正
特性サーミスタ素子の斜視図、第5図、第6図はいずれ
も第4図X方向の電圧分布図、第7図は同じく温度分布
図、第8図は本考案の背景となるさらに他の正特性サー
ミスタ素子の斜視図、第9図は第8図のX方向の抵抗値
分布図、第10図は同電圧分布図、第11図は同温度分
布図、第12図は第8図の素子の動作安定時の斜視図、
第13図は、従来の発熱体用正特性サーミスタを示した
側面図、第14図は本考案発熱体用正特性サーミスタの
形状例を示した側面図、第15図、第16図は本考案の
他の例を示した斜視図である。 11−正特性サーミスタ素子、12,13−電極、14
抵抗体。
Figure 1 is a perspective view of a positive temperature coefficient thermistor element, which is the background of the present invention, Figure 2 is its resistance temperature characteristic diagram, and Figure 3 is the same as Figure 1.
Figure 4 is a perspective view of another positive temperature coefficient thermistor element that forms the background of the present invention, Figures 5 and 6 are voltage distribution diagrams in the X direction in Figure 4, and Figure 7 is a diagram of the voltage distribution in the X direction. Similarly, the temperature distribution diagram, Figure 8 is a perspective view of yet another positive temperature coefficient thermistor element which is the background of the present invention, Figure 9 is the resistance value distribution diagram in the X direction of Figure 8, and Figure 10 is the same voltage distribution diagram. , FIG. 11 is the temperature distribution diagram, FIG. 12 is a perspective view of the device in FIG. 8 when its operation is stable,
Fig. 13 is a side view showing a conventional PTC thermistor for a heating element, Fig. 14 is a side view showing an example of the shape of the PTC thermistor for a heating element of the present invention, and Figs. 15 and 16 are It is a perspective view showing other examples. 11-positive temperature coefficient thermistor element, 12, 13-electrode, 14
resistor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 相対向する側面に電極が付与されてなる正特性サーミス
タ素子の少なくとも一平面に、前記両電極間のほぼ全長
にわたって抵抗体を付与し、この抵抗体の抵抗値を、前
記素子全体が発熱した時の動作安定点の平均抵抗値より
も高く、その素子の電流の流れる方向に生じる電圧集中
部分の単位長さ当りの抵抗値よりも低く設定し、前記素
子に、その電流の流れる方向に電圧集中部が生じた場合
に、前記抵抗体によりその部分の電圧集中を抑制させる
ようにしたことを特徴とする発熱体用正特性サーミスタ
A resistor is provided on at least one plane of a positive temperature coefficient thermistor element having electrodes provided on opposing sides thereof, and a resistor is provided along almost the entire length between the two electrodes, and the resistance value of this resistor is determined when the entire element generates heat. The voltage is set higher than the average resistance value at the stable operating point of the element and lower than the resistance value per unit length of the voltage concentrated part that occurs in the current flow direction of the element, and the voltage concentration in the current flow direction of the element is set. 1. A positive temperature coefficient thermistor for a heating element, characterized in that, when a portion occurs, voltage concentration at that portion is suppressed by the resistor.
JP1976147492U 1976-11-01 1976-11-01 Positive temperature coefficient thermistor for heating elements Expired JPS5836154Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1976147492U JPS5836154Y2 (en) 1976-11-01 1976-11-01 Positive temperature coefficient thermistor for heating elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976147492U JPS5836154Y2 (en) 1976-11-01 1976-11-01 Positive temperature coefficient thermistor for heating elements

Publications (2)

Publication Number Publication Date
JPS5363746U JPS5363746U (en) 1978-05-29
JPS5836154Y2 true JPS5836154Y2 (en) 1983-08-15

Family

ID=28755920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976147492U Expired JPS5836154Y2 (en) 1976-11-01 1976-11-01 Positive temperature coefficient thermistor for heating elements

Country Status (1)

Country Link
JP (1) JPS5836154Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147491A (en) * 1975-06-03 1976-12-17 Haldor Topsoe As Catalysts for conversion to methane and method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147491A (en) * 1975-06-03 1976-12-17 Haldor Topsoe As Catalysts for conversion to methane and method thereof

Also Published As

Publication number Publication date
JPS5363746U (en) 1978-05-29

Similar Documents

Publication Publication Date Title
US4034207A (en) Positive temperature coefficient semiconductor heating element
JPS5836154Y2 (en) Positive temperature coefficient thermistor for heating elements
US3275801A (en) Electrical heat exchanger
JPS587042B2 (en) Kotaiden Atsugataseitokuseisa Mista
US2874257A (en) Electrical resistor units
JPS5836153Y2 (en) Positive temperature coefficient thermistor for heating elements
WO2018214847A1 (en) Ceramic heating sheet structure
US2680178A (en) Resistor unit and method of making the same
JPS5836155Y2 (en) heating element device
US2740033A (en) Electrical resistor units
US5656987A (en) Resistance temperature sensor
US3041569A (en) Heating element
US1778884A (en) Electric heating unit
KR200372489Y1 (en) Plane heater
JPS6019347Y2 (en) Heating element device using positive temperature coefficient thermistor
TWI643522B (en) Ceramic heating sheet structure
JPH0727594Y2 (en) Ceramic heater
JPH065353A (en) Positive characteristic thermistor heating element
JPS6230793Y2 (en)
JPS6019348Y2 (en) Holding structure of heating resistor element
JPS6244477Y2 (en)
WO2022089242A1 (en) Heating sheet, heating tube and electrical appliance
JP2820804B2 (en) PTC heater for flat surface
JPS631428Y2 (en)
JPS6218921Y2 (en)