JPS5835858A - Compact metal halide lamp - Google Patents

Compact metal halide lamp

Info

Publication number
JPS5835858A
JPS5835858A JP56135107A JP13510781A JPS5835858A JP S5835858 A JPS5835858 A JP S5835858A JP 56135107 A JP56135107 A JP 56135107A JP 13510781 A JP13510781 A JP 13510781A JP S5835858 A JPS5835858 A JP S5835858A
Authority
JP
Japan
Prior art keywords
sealed
lamp
sealing
metal halide
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56135107A
Other languages
Japanese (ja)
Inventor
Shinji Mochimaru
持丸 真次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56135107A priority Critical patent/JPS5835858A/en
Publication of JPS5835858A publication Critical patent/JPS5835858A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To provide a compact metal halide lamp of improved luminous efficiency, by restricting the size of the electrode sealing part of the lamp to reduce the heat conduction loss and prevent the self-absorption of sodium. CONSTITUTION:The central spherical part 1 of a luminous tube is formed by expansion. Each sealed part 2 of the tube is formed as a bar by tight deformation or vacuum sealing on a molybdenum leaf 4 so that the cross section of the sealed part is nearly circular or elliptic. Prescribed quantities of mercury, scandium iodide and sodium iodide are provided in the sealed central spherical part 1. Argon gas is also provided at prescribed pressure in the sealed central part 1. The cross-sectional area S (mm.<2>) of the sealed part 2 at the molybdenum leaf 4, the consumed electric power P (watt) of the luminous tube, its total length L (mm.) and the distance M (mm.) between the ends of the central spherical part 1 are related to each other as formulaeI, II.

Description

【発明の詳細な説明】 本発明は発光管内容積が1 c、e以下の小形メタルハ
シイドランプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a small metal hashide lamp having an internal volume of an arc tube of 1 c, e or less.

近年省エネルギーの観点から効率の高い光源が要求され
ている。特に、従来においては主として屋外照明用光源
として使用されていた高効率、高演色性のメタルハライ
ドランft−1屋内照明用光源として使用することが注
目されている。メタルハライドランプを屋内照明用光源
として使用するための条件は、この種ラングの持つ高効
率、高演色性および長寿命の利点に加えて、小ワ、ト化
、特に一般家庭で使用されている白熱電球やけい光ラン
プに代替して使用できることが挙げられ、100ワ、ト
以下特に50ワツト以下のランプが必要となる。
In recent years, highly efficient light sources have been required from the viewpoint of energy conservation. In particular, attention has been paid to the use of metal halide ft-1, which has high efficiency and high color rendering properties, and which has conventionally been mainly used as a light source for outdoor lighting, as a light source for indoor lighting. The conditions for using metal halide lamps as a light source for indoor lighting are that in addition to the advantages of high efficiency, high color rendering, and long life that this type of lamp has, it is also necessary to reduce One example is that it can be used in place of a light bulb or a fluorescent lamp, and a lamp of 100 watts or less, especially 50 watts or less, is required.

しかしながら、このような100ワツト以下、場合によ
っては50ワ、ト以下のメタルハライドランプは、従来
の中・高ワットタイグのラングをその11相似的に小形
化することができない欠点がある。すなわち従来の中・
高ワットタイグの製造技術をこの種小形ラングに相似的
に適用した場合、ラング電力が小形化されるほど発光効
率の減少が著しくなシ、これが原因して小形メタルハラ
イドランプの開発が遅れているものであった。
However, such metal halide lamps of 100 watts or less, in some cases 50 watts or less, have the disadvantage that they cannot be made as compact as the conventional medium-to-high watt lamp. In other words, within the conventional
If the manufacturing technology of high-wattage lamps were applied analogously to this type of small-sized lamp, the luminous efficiency would decrease significantly as the lamp power became smaller, and this is the reason why the development of small-sized metal halide lamps has been delayed. there were.

う/fが小形化されるに応じて発光効率が著しく低下す
るのは、ランプが小形化するほど、電極封止部の影餐に
よる最冷部の温度上昇が低くなり、封入金属の蒸発を阻
害するためであり、ランプの小形化に応じて放電空間に
対する封止部の容積が相対的に増加することから、封止
部を通じて熱伝導損失が相対的に大きくなるからである
。つまり、従来の中、大形ランプは封止部を平偏状に圧
潰封止しており、このような圧潰封止技術をそのtま小
形ランプに適用すると、封止部の容積が放電空間に対し
て相対的に大きくなるものである。
The reason why the luminous efficiency decreases significantly as the lamp becomes smaller is because the smaller the lamp, the lower the temperature rise in the coldest part due to the effect of the electrode sealing part, which reduces the evaporation of the enclosed metal. This is because as the lamp becomes smaller, the volume of the sealing portion relative to the discharge space increases, so that heat conduction loss through the sealing portion becomes relatively large. In other words, in conventional large lamps, the sealing part is flattened and sealed, and when this type of crushing sealing technology is applied to small lamps, the volume of the sealing part becomes smaller than the discharge space. It is relatively large.

しかしガから、上記封止部の熱伝導損失全減少させるた
めに、封止部の寸法を極めて小さくすると、発光効率は
逆に減少してしまうことがある。これif最最冷湿温度
上昇し過ぎるためであり、封入金属中のナトリウムが自
己吸収を生じるためである。
However, if the dimensions of the sealing section are made extremely small in order to completely reduce the heat conduction loss in the sealing section, the luminous efficiency may conversely decrease. This is because if the coldest and lowest humidity temperature rises too much, and the sodium in the enclosed metal causes self-absorption.

本発明はこのような事情にもとづきなされたもので、そ
の目的とするところは、電極封止部の大きさを規制する
ことにより熱伝導損失管束なぐしかつナトリウムの自己
吸収も防止して発光効率が向上する小形メタルハライド
ランプを提供しようとするものである。
The present invention was made based on the above circumstances, and its purpose is to reduce heat conduction loss in the tube bundle and prevent self-absorption of sodium, thereby increasing luminous efficiency by regulating the size of the electrode sealing part. The object of the present invention is to provide a compact metal halide lamp with improved performance.

以下本発明゛全図示の一実施例に屯とづき説明する。The present invention will be explained below based on an embodiment fully shown in the figures.

第1図は内容積1 a、を以下の発光管の構造を示し、
1は石英ガラスチューブを膨張して成形した中央球状部
であシ、文字通りほぼ球形に形成されている。上記中央
球状部1には電極封止部2,2が形成されており、これ
ら封止部2゜2VCは電極3,3が封着されている。電
極3゜3は電極軸に電極コイルを形成したものであり、
上記刺止部2.z内の金属箔導体たとえばモリブデン箔
4.4に接続されている。なおモリブデン箔4.4は外
部リード線5.5に接続されている。
Figure 1 shows the structure of an arc tube with an internal volume of 1 a,
Reference numeral 1 denotes a central spherical part made by expanding and molding a quartz glass tube, and is literally formed into an almost spherical shape. Electrode sealing portions 2, 2 are formed in the central spherical portion 1, and electrodes 3, 3 are sealed to these sealing portions 2°2VC. Electrode 3゜3 has an electrode coil formed on the electrode axis,
The above pricking part 2. It is connected to a metal foil conductor in z, for example a molybdenum foil 4.4. Note that the molybdenum foil 4.4 is connected to an external lead wire 5.5.

上記発光管は中央球状部1と封止部2.zf1本の石英
ガラス細管によって構成し、中央球状部IFi前述の通
シ膨張によって成形するとともに封止部2,2はモリブ
デン箔4,4の部分を圧潰もしくは真空封止により、断
面が略円形もしくは楕円形となるような棒状忙形成され
ている。
The arc tube has a central spherical part 1 and a sealing part 2. zf It is composed of one silica glass thin tube, and the central spherical part IFi is formed by the above-mentioned through-hole expansion, and the sealing parts 2, 2 are formed by crushing or vacuum sealing the molybdenum foils 4, 4 so that the cross section is approximately circular or It is shaped like a rod with an oval shape.

なおモリブデン箔4,4は、各ワット毎にランプ電流に
みあった大きさの箔、つまりランプ電流を許容し得る幅
をもりた箔が使用さ九、また石英チ、−プの肉厚は、こ
の種ラングの点灯中における発光管内圧が20気圧以上
に達することから、1■以上の本のが使用される。
It should be noted that the molybdenum foils 4, 4 should be of a size that matches the lamp current for each watt, that is, a foil that has a width that can accommodate the lamp current.The thickness of the quartz chips is as follows: Since the internal pressure of the arc tube during lighting of this kind of rung reaches 20 atmospheres or more, a tube of 1 inch or more is used.

また中央球状部1内KFi水銀、沃化スカンジウム、沃
化す)リウムがそれぞれ所定量封入され、かつアルゴン
ガスが所定圧封入されている。
Further, in the central spherical portion 1, predetermined amounts of KFi mercury, scandium iodide, and lium iodide are each filled, and argon gas is filled at a predetermined pressure.

しかしてこのような構成の発光管において、モリブデン
箔4,4に対応した箇所の封止部2゜2の断面積を8(
■2)、ラング電力t−P(ワット)。
However, in the arc tube with such a configuration, the cross-sectional area of the sealing portion 2°2 at the location corresponding to the molybdenum foils 4, 4 is 8 (
■2) Lang power t-P (watts).

発光管全長をL (m) 、中央球状部1の内端間距離
t−M(■)とした場合、 0、IXP≦8≦0.4XP+4・・・・・曲・・・・
・・・・曲・・・曲・(1)1.6 X 10−’≦M
/L≦2.9X10−1 °−°−−−−−−−−(2
)に規制されている。
When the total length of the arc tube is L (m) and the distance between the inner ends of the central spherical part 1 is t-M (■), 0, IXP≦8≦0.4XP+4... Song...
... Song... Song (1) 1.6 X 10-'≦M
/L≦2.9X10−1 °−°−−−−−−−(2
) is regulated.

これら(1)式および(2)式は発明者の実験にもとづ
き得られたものである。
These formulas (1) and (2) were obtained based on the inventor's experiments.

まず(1)式について説明する。封止部2の断面積Sは
熱伝導損失を減少させるためには小さいことが有利であ
るが、封止部2は単に熱伝導損失の観点だけで決定する
ことはできず、モリブデン箔4.4の封着性も配属し危
ければならない。モリブデン箔4.4の大きさは、各ワ
ット毎にそのラング電流を流し得るi容値が異なること
から、それぞれラング電力ごとに寸法が異なる。換言す
れば、モリブデン箔4.4の断面積を少なくともそのラ
ンプ電力に応じた当該ランプ電流を許容し得る大きさに
選択した場合、これらモリブデン箔4,4の大きさに応
じた封止s2,2の最低断面積Sを選ぶことができる・
このような観点から、封止部2,2の断面積Sとランプ
電圧P(ワット)との関係′ft8iilべると・第2
図のごとき結果が得られた。第2図において特性人は8
=0.IXPに該当するとともVC特性BはS=0.4
XP+4に該当する。そして断面積Sは縛゛性AとBで
囲まれた領域(斜線領域)Kあればよく、したがって、 0、IXP≦S≦0.4XP+4 となる。
First, equation (1) will be explained. Although it is advantageous for the cross-sectional area S of the sealing part 2 to be small in order to reduce heat conduction loss, the sealing part 2 cannot be determined solely from the viewpoint of heat conduction loss, and the molybdenum foil 4. The sealing properties of No. 4 are also dangerous. The size of the molybdenum foil 4.4 differs depending on the rung power because the i-capacity value that allows the rung current to flow is different for each watt. In other words, if the cross-sectional area of the molybdenum foil 4.4 is selected to be at least large enough to allow the lamp current corresponding to the lamp power, then the sealing s2, which corresponds to the size of the molybdenum foils 4, 4, You can choose the minimum cross-sectional area S of 2.
From this point of view, the relationship between the cross-sectional area S of the sealing parts 2 and the lamp voltage P (watts) is expressed as follows:
The results shown in the figure were obtained. In Figure 2, the characteristic person is 8
=0. Even if it corresponds to IXP, VC characteristic B is S=0.4
Corresponds to XP+4. The cross-sectional area S only needs to be an area (shaded area) K surrounded by constraints A and B, and therefore, 0, IXP≦S≦0.4XP+4.

ここで8が特性A未満であると、モリブデン箔周囲の石
英ガラス肉厚が薄くなりすぎてモリブデン箔が酸化して
箔切れを生じるものであり、またSが特性Bt−超える
と、モリブデン箔に対して石英ガラスの肉厚が大きすぎ
るのでモリブデン箔と石英ガラスとのなじみが悪く両者
の接着が良好に保たれず、リークの原因となるものであ
る。
If 8 is less than characteristic A, the quartz glass wall around the molybdenum foil becomes too thin and the molybdenum foil oxidizes, causing foil breakage.If S exceeds characteristic Bt-, the molybdenum foil becomes On the other hand, since the wall thickness of quartz glass is too large, the molybdenum foil and quartz glass do not fit well with each other, and the adhesion between the two cannot be maintained well, causing leaks.

このように封止部の断面mは、モリブデン箔の封着機能
の面から、その断rkJ積を小さくすることには制約を
受け、少なくとも(1)式を満足する必要がある。
As described above, the cross section m of the sealing portion is limited in reducing its rupture rkJ product from the viewpoint of the sealing function of the molybdenum foil, and must satisfy at least formula (1).

このような(1)式を前提として封止H6xの熱伝導に
よる損失を減少させようとすれば、封止部の長さを考慮
しなければならない。
In order to reduce the loss due to thermal conduction of the seal H6x based on the premise of equation (1), the length of the sealing portion must be taken into consideration.

そこで本発明は(1)式の範囲に□おいてyi/LO値
をどのように選択すればよいかを調べた。
Therefore, the present invention investigated how to select the yi/LO value within the range of formula (1).

定格40Wのメタルハライドランプであシ、電極間距離
4■、内径約7■の中央球状部1(内容積約0.2−・
@)内に水銀6■、沃化スカンジウム0.3119.沃
化ナトリウム1.51by、アルデンガスf 200 
Torr封入した。
A metal halide lamp with a rating of 40 W is used, the distance between the electrodes is 4 cm, and the central spherical part 1 has an inner diameter of about 7 cm (internal volume of about 0.2 cm).
@ ) contains 6■ mercury and 0.3119 scandium iodide. Sodium iodide 1.51by, Alden gas f 200
Torr was enclosed.

上記40Wのメタルハライドラングは、第2図および(
1)式から封止部2の断面積SはS = 4m2〜20
雪2の範囲に規制される。そこで、S = 4w+2゜
7m2,2011112について各々M/L t一種々
変更して発光効率(ムいりを調べたところ、#!3図の
ごとき特性を得た。第3図の特性においてM/L(1,
6X10−’ Kありては封止部からの熱伝導損失が大
きくなることに4とづき最冷部温度が充分に得られず、
水銀の発光が主となって効率は低下する。しかしg/L
が1.6 X 10−’ t−越えるとナトリウムやス
カンジウムの発光[伴って効率が次第に上昇してくる。
The above 40W metal halide lung is shown in Figure 2 and (
From formula 1), the cross-sectional area S of the sealing part 2 is S = 4 m2 ~ 20
It is restricted to snow level 2. Therefore, we changed M/Lt one by one for each of S = 4w + 2゜7m2, 2011112, and investigated the luminous efficiency (M), and obtained the characteristics as shown in Figure 3.In the characteristics shown in Figure 3, M/L (1,
With 6X10-'K, the temperature of the coldest part cannot be obtained sufficiently due to the large heat conduction loss from the sealing part.
Efficiency decreases due to mercury light emission being the main source. However, g/L
When it exceeds 1.6 x 10-' t-, the luminescence of sodium and scandium [accompanyingly, the efficiency gradually increases].

しかしながらあるピークを越えるとナトリウムの自己吸
収が生じはじめて効率は次第に低下し、ル化)2.9X
10”−’!lc4達すると、ナトリウムの自己吸収に
よる効率低下が著しくなり、M/L(1,6X10  
の領域とほぼ同じ程度の効率になる。
However, once a certain peak is exceeded, self-absorption of sodium begins to occur and the efficiency gradually decreases.
When reaching 10"-'!lc4, the efficiency decreases significantly due to self-absorption of sodium, and M/L (1,6X10
The efficiency is approximately the same as in the area of .

したがって効率向上がある一定レベル以上の領域はM/
Lが1.6X10−’〜2.9 X 10−’の範囲で
あシ、これらの範囲を外れると効率があるレベル以下と
なる。なお上記ある一定レベルとは発光効率(tm/N
%’)の絶対値ではなく、Sの値に応じて個々のラング
のレベルが存在するものである。
Therefore, the area where efficiency improves above a certain level is M/
L is in the range of 1.6 x 10-' to 2.9 x 10-', and when it is out of this range, the efficiency drops below a certain level. Note that the above-mentioned certain level is the luminous efficiency (tm/N
%'), but there are individual rung levels depending on the value of S.

第4図においては分光分布特性を示し、40Wのメタル
ハライドランプにおける8 = 7 m2にあって、実
線はg/L=2.0X10  、破IiIはM/L=2
.2 X 10−’の各々分光分布状I!!1を示す、
この図から判る通り、M/L= 2.2 X 10−1
においては(破線のもの)す) IJウムの自己吸収が
始まっていることが観測される。このことから第3図の
特性の傾向が裏付けられる0 また、第5図は20Wメタルノーライドラングにおける
M7Lと効率との関係を示し、20Wのランプは第2図
および(1)式より、Sは2〜12■2の範囲である。
Figure 4 shows the spectral distribution characteristics, where 8 = 7 m2 in a 40W metal halide lamp, the solid line is g/L = 2.0X10, and the broken line is M/L = 2.
.. 2 x 10-' each spectral distribution shape I! ! 1,
As you can see from this figure, M/L = 2.2 x 10-1
In (the broken line) it is observed that self-absorption of IJium has begun. This confirms the tendency of the characteristics shown in Figure 3. In addition, Figure 5 shows the relationship between M7L and efficiency in a 20W metal-no-ride lamp. ranges from 2 to 12*2.

したがって8=2■2の場合と5−12■2の場合とで
yI/Lt−変化させた場合についての効率を調べたも
のである。第5図においても、g/Lは1.6X 10
−’〜2.9 X 10−’の範囲であれば、発光効率
が向上する領域となることが判る。
Therefore, the efficiency was investigated when yI/Lt- was varied between the case of 8=2*2 and the case of 5-12*2. Also in Figure 5, g/L is 1.6X 10
It can be seen that the range of -' to 2.9 x 10-' is a region where luminous efficiency is improved.

したがって(0式の範囲においては 1.6X10”−’≦M/L≦2.9X10−’に規制
すれば、発光効率の向上が認められる。
Therefore, if it is restricted to 1.6X10''-'≦M/L≦2.9X10-' in the range of formula 0, an improvement in luminous efficiency is recognized.

これは、封止部の容積が(1)式と(2)式とで規制さ
れることを示し、封止部を通じて熱伝導損失を抑止する
とともに、逆に最冷部温度の過度な上昇本抑止すること
にtlかならない。
This shows that the volume of the sealing part is regulated by equations (1) and (2), which suppresses heat conduction loss through the sealing part, and conversely prevents excessive rise in the temperature of the coldest part. TL is essential to deter this.

以上詳述した通り本発明によれば、封止部の容積が規制
されて熱伝導損失が防止されるとともに、逆に過度な最
冷部の温度上昇を防止するので、発光効率の向上を実現
し、かつ封止部の熱的負荷を減少して長時間点灯後の金
属箔切れなども防止する利点がある。
As detailed above, according to the present invention, the volume of the sealing part is regulated to prevent heat conduction loss, and conversely, an excessive rise in temperature of the coldest part is prevented, thereby improving luminous efficiency. Moreover, it has the advantage of reducing the thermal load on the sealing part and preventing the metal foil from breaking after being lit for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、llX1図は発光管の
側面図、第2図ないし第5図はそれぞれ実験結果を示す
特性図である。 1・・・中央球状部、2・・・封止部、S・・・電極、
4・・・モリブデン箔。 出願人代理人 弁理士 鈴、江 武 彦第1図 第2図 P(ワット)
The drawings show an embodiment of the present invention, and FIG. 1... Central spherical part, 2... Sealing part, S... Electrode,
4...Molybdenum foil. Applicant's agent Patent attorney Suzu, Takehiko E Figure 1 Figure 2 P (Watt)

Claims (1)

【特許請求の範囲】 発光管内容積が1 c、e以下のメタルノ・ライドラン
プにおいて、電極封止部における金属箔導体部分の断面
積S(■)がラング電力P(ワット)に対して 0、IXP≦S≦0.4XP+4 とし、発光管内端部間距離Mと発光管全長りとの比M/
Lを 1.6 X 10−1≦M/L ≦2.9 X 10−
 ’としたことを特徴とする小形メタルハライドランプ
[Claims] In a metalno-ride lamp with an internal volume of the arc tube of 1 c, e or less, the cross-sectional area S (■) of the metal foil conductor portion in the electrode sealing part is 0 with respect to the Lang power P (watts). IXP≦S≦0.4XP+4, and the ratio of the distance M between the inner ends of the arc tube to the total length of the arc tube M/
L is 1.6 x 10-1≦M/L≦2.9 x 10-
A small metal halide lamp characterized by the following.
JP56135107A 1981-08-28 1981-08-28 Compact metal halide lamp Pending JPS5835858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135107A JPS5835858A (en) 1981-08-28 1981-08-28 Compact metal halide lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135107A JPS5835858A (en) 1981-08-28 1981-08-28 Compact metal halide lamp

Publications (1)

Publication Number Publication Date
JPS5835858A true JPS5835858A (en) 1983-03-02

Family

ID=15143994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135107A Pending JPS5835858A (en) 1981-08-28 1981-08-28 Compact metal halide lamp

Country Status (1)

Country Link
JP (1) JPS5835858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620857A1 (en) * 1987-09-21 1989-03-24 Toshiba Kk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620857A1 (en) * 1987-09-21 1989-03-24 Toshiba Kk

Similar Documents

Publication Publication Date Title
US4418300A (en) Metal vapor discharge lamp with heat insulator and starting aid
JP2765146B2 (en) Single sealed metal vapor discharge lamp
JP3397064B2 (en) Discharge lamp
JPS5835858A (en) Compact metal halide lamp
US6650042B2 (en) Low-wattage fluorescent lamp
KR910009664B1 (en) Miniature metal halide lamp
JP2886077B2 (en) Metal vapor discharge lamp with integrated front cover and reflector
JP3158633B2 (en) Short arc metal halide lamp equipment
JPS5983337A (en) Small metal halide lamp
JPS5923446A (en) Low pressure mercury vapor electric-discharge lamp
JPH0121586B2 (en)
JPS58214266A (en) Metal halide lamp
JPH0313704B2 (en)
JPS5851457A (en) Miniture metal halide lamp
CA1181459A (en) Metal vapor discharge lamp
JPS60235353A (en) Electrodeless discharge lamp
JPH08222183A (en) Bulb type fluorescent lamp
JPH02820B2 (en)
JPS5838452A (en) Miniature metal halide lamp
JPS60200455A (en) Miniature metal halide lamp
JPS59230253A (en) Metal vapor electric-discharge lamp
JPH04355045A (en) Metal halide lamp
JPH04355044A (en) Metal halide lamp
JPH08162068A (en) Low power type metal halide lamp
JPS6213791B2 (en)