JPS6213791B2 - - Google Patents

Info

Publication number
JPS6213791B2
JPS6213791B2 JP3019076A JP3019076A JPS6213791B2 JP S6213791 B2 JPS6213791 B2 JP S6213791B2 JP 3019076 A JP3019076 A JP 3019076A JP 3019076 A JP3019076 A JP 3019076A JP S6213791 B2 JPS6213791 B2 JP S6213791B2
Authority
JP
Japan
Prior art keywords
lamp
radiation power
arc tube
discharge
color temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3019076A
Other languages
Japanese (ja)
Other versions
JPS52113580A (en
Inventor
Yoshiaki Watarai
Haruo Yamazaki
Naoki Saito
Masayuki Yamaguchi
Takio Okamoto
Shuzo Akutsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP3019076A priority Critical patent/JPS52113580A/en
Priority to US05/777,149 priority patent/US4109175A/en
Priority to FR7707687A priority patent/FR2344961A1/en
Priority to GB11369/77A priority patent/GB1569366A/en
Priority to DE2711733A priority patent/DE2711733C2/en
Priority to CA274,268A priority patent/CA1064566A/en
Publication of JPS52113580A publication Critical patent/JPS52113580A/en
Publication of JPS6213791B2 publication Critical patent/JPS6213791B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamp (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透光性の発光管内にナトリウム、水銀
などの緩衝用金属および始動補助用ガスを封入し
た高圧金属蒸気放電装置に関し、とくに色温度が
高く、かつ演色性および効率ともにすぐれた新規
な放電装置を提供するものである。 高圧ナトリウム放電灯に関して、その発光管内
径がdmmのときに管の平均電位傾度E(V/cm)
が E37.7−2.05d (ただし、Eはランプ電圧を発光管の両電極間距
離で除した値)の範囲で点灯せしめた高圧金属蒸
気放電灯はすぐれた演色性を呈することが既に知
られている。しかしながら、かかる放電灯は効
率、ランプ電圧などの実用上の問題を考慮する
と、色温度を高めることは困難であつて、色温度
2500K以上のものを実用化することはほぼ不可能
であつた。つまり、管内ナトリウム蒸気圧を高め
たり、管壁負荷を増加させたりすることによつて
色温度2500〜3500Kの放電灯を実験的に得ること
はできたが、この場合は効率の低下が大きく、か
つランプ電圧も高くなりすぎるなどの欠点があつ
た。 本発明の目的は上記の欠点を除去して、色温度
が約2500K以上においてもランプ電圧を低い値に
保持したままで、高演色性で高効率なる放電装置
を実現することにある。 本発明者らは、長年高圧ナトリウム放電灯の高
演色性化の課題に取り組んできたが、最終の問題
として上記の色温度が低いという問題のみが未解
決であつた。つまり色温度が約2500K以下の光源
は、屋内一般照明用としては用途が限定され、用
途面からは少なくとも白熱電球やハロゲン電球に
近い色温度の光源が要望されてきた。そこで、本
発明者らは高圧ナトリウム放電灯の演色性の最適
化に関して、再度電子計算機によるシユミレーシ
ヨン実験などをも含めた詳細な検討を行つた。そ
の結果、発光管の平均電位傾度E(V/cm)が E37.7−2.05d なる範囲で発光管を放電せしめ、かつかかる発光
管からに可視放射パワーのうち主として620nmよ
り長波長側の赤色放射パワーを抑制することによ
つて、前記欠点が除去され、高色温度、高演色性
および高効率で、しかもランプ電圧の低い放電装
置が実現することを見い出した。 以下、実施例にもとづき本発明を詳細に説明す
る。 実験に用いた放電装置の発光管1の概要は、第
1図に示すように、透光性の多結晶体アルミナセ
ラミツクまたは単結晶アルミナからなる容囲器2
と、この両端部に設けられた封着用セラミツクエ
ンドキヤツプ3と、このキヤツプ3を貫通する電
極導入ニオブ管4と、同ニオブ管4の管内側先端
に備えた電極5とからなり、管内部に発光物質と
してのナトリウムと緩衝用ガスとしての水銀およ
びカドミウムのうちの1種以上からなる添加物6
を添加し、さらに始動補助用希ガスとしてキセノ
ン、アルゴンおよびネオンのうちの1種以上を封
入したものである。とくに、本発明にかかる実験
においては、管内径dが6.3、7.6、9.7、10.8、
11.5および13.5mmのアルミナ管を用い、両電極間
距離はランプ定格入力に対応して25〜82mmと
し、さらにナトリウム3〜15mg、水銀3〜60mgま
たはカドミウム10〜80mgを添加した。さらに希ガ
スとしては主キセノンおよびネオン・アルゴンベ
ニングガス(Ne+0.1〜1.0%Ar)を約20Torr封
入した。 本発明者らは、再検討の基本思想として、発光
管の寸法、管内蒸気圧、ランプ電圧およびランプ
電流などのパラメータの変更にもとづくところの
いわゆる発光管設計の改良のみでは、本発明の目
的とする放電装置の実現は困難であるとの見地に
立ち、それ以外の方法を探索した。そして、その
方法についての最終的な結論は、発光管から放射
される発光放射パワーのうち特定の波長域放射パ
ワーをカツトするというものであつた。 そこで、第一段階として電子計算機によるシミ
ユレーシヨン実験によつて、高圧ナトリウム放電
からの発光パワー分布から特定波長域放射パワー
をカツトしたときの発光特性について検討したと
ころ、次に述べるような全く画期的な放電装置が
実現できることが明らかとなつた。 ここで、電子計算機によるシミユレーシヨン実
験の内容について説明する。 実験用ランプについて、分光測定により各波長
毎の放射パワー強度を求めておく。380nm〜
780nmの波長範囲にわたり前記放射パワー強度に
遮断波長に対応した任意の定数を全波長または波
長毎に変化させて乗じ、計算上の放射パワー分布
を種々得る。これらの計算上の放射パワー分布か
ら平均演色評価数Ra、色温度Tc、ランプ効率
(減少分Δη)をそれぞれ求めると、計算上のラ
ンプ特性が種々得られる。 これらの計算は電子計算機を使用して行つた。 (1) 長波長域の赤色放射パワーをカツトするのが
有効な方法である。つまり、いま第2図に示す
ように、ある遮断波長λcより長波長域のすべ
ての可視放射パワーを仮想的にカツトしたとき
に、 (i) 第2図の曲線aおよびa′で示すように、色
温度Tcは、たとえばλc=620nmで4000〜
5000K、λc=600nmで6000〜7000Kまで上
昇する。 (ii) 第2図の曲線bおよびb′で示すように、ラ
ンプ効率の赤色放射パワーのカツトによる減
少分Δηは、赤色放射パワーの比視感度が低
いので、わずかである。たとえば、λc=
620nmのときはTcが最高5000Kの値まで上昇
しても、効率の減少分Δηはわずかに約18%
にすぎない。 ここで、効率の減少分Δηは次式で定義さ
れる。 Δη=〔(η−η′)/η〕×100(%) η:赤色放射パワーをカツトしないラン
プの効率 η′:赤色放射パワーをカツトしたラン
プの効率 (iii) さらに演色性については特徴ある事実が明
らかとなつた。すなわち、既存の光源に関し
て長波長域の放射パワーをカツトしたならば
演色性が大きく低下するのは必定であるが、
本発明にかかる放電装置では第2図の曲線c
およびc′で示すように、平均演色評価数Ra
はλcが620nm以上であれば約60〜90の値が
実現できる。 なお、第2図のデータは曲線a,b,cお
よび曲線a′,b′,c′がそれぞれ赤色放射パワ
ーをカツトしないときに色温度約2500Kおよ
び2800Kの放電状態でのものである。また、
このデータをとるに用いた放電灯は、管内径
dが11.5mm、両電極間距離が52mmの管内に
Na8.6mg、Hg32mg、Xe20Torrを封入し、入
力400〜450Wで点灯したものである。 (2) 上記(1)項(iii)に述べた現象をさらに詳しく調べ
ると、これは高圧ナトリウム放電に固有の現象
であることがわかつた。つまり、高圧ナトリウ
ム放電ではたとえばナトリウム蒸気圧が上昇す
るにつれて、発光管からの放射パワーの可視全
域にわたるプロードニングが進み、とくに赤色
放射パワーが著しく増大してくる。そして、つ
いには色温度にして約2300〜2400K以上に相当
する蒸気圧領域では、白熱電球に比べて赤色放
射パワーがむしろ過剰となつて赤色に対するフ
ラツタリング(Flattering)効果が過大とな
り、平均演色評価数Raはむしろ低下しだす。
したがつて、かかる過剰な赤色放射パワーをカ
ツトするのは、Raの上昇をもたらす上で好ま
しい結果となる。第2図において、λcが
700nmから630nmまでの短波長域へと放射パワ
ーのカツト幅を広げるにつれて、Raが増大し
ているのはこのためである。これらの結果から
して、本発明の目的とする放電装置で色温度お
よび演色性をともに高くするための発光管の放
電状態としては、赤色放射パワーが過剰となる
範囲に保つことが必要である。そして、かかる
範囲は特公昭50−39944号公報で明らかにした
ように、色の満足度が1.0以上となる領域に相
当するものであり、それは管の平均電位傾度E
(V/cm)が E37.7−2.05d なる条件で規定できる。 (3) λcが620nmより短波長域まで至ると、色温
度の上昇は大きくなるが、第2図に示すように
平均演色評価Raの減少が大きくなり、一方で
発光色も黒体放射軌跡からグリーン領域へと大
きく移行するので好ましくない。したがつて、
本発明の目的とする放電装置ではλcが620nm
以上の長波長値であること、つまり620nmの長
波長域の赤色放射パワーをカツトするのが好ま
しい。 (4) 長波長域の放射パワーをカツトしないときの
ランプ電圧は、第3図に示すように、色温度の
上昇につれて急激に上昇する。たとえば、ラン
プ電圧は色温度2550Kでは約120Vであるが、色
温度3000Kでは実に約170Vまで上昇して、かか
る放電装置は点灯用安定器が大形でコスト高に
なるなど実用的でない。一方、ランプ効率(=
全光束/ランプ入力)も第4図に示すように、
色温度とともに急激に低下し、2550Kでは約75
m/Wであるのに対し、3000Kでは約50
m/Wまで低下する。 これに対して、本発明にかかる放電装置にお
いて色温度3000Kのものを実現するには、たと
えばもともと色温度2500Kに相当する発光パワ
ー分布から約640nm以上の長波長域放射パワー
をカツトすればよく、そのときのランプ電圧は
120Vのままであり、またランプ効率も約6%
低下して約70m/Wの値が得られる。 なお、第3図および第4図のデータをとるに
用いた放電灯は、第2図のデータをとるに用い
た放電灯の発光管寸法および点灯条件と全く同
様である。 以上の結果から、発光管の平均電位傾度E
(V/cm)が E37.7−2.05d なる状態で放電せしめ、かつかかる発光管からの
可視放射パワーのうち620nm以上の長波長域の赤
色放射パワーをカツトすることによつて、高色温
度、高演色性および高効率で、そのうえランプ電
圧が低いというすぐれた新光源が実現できること
が明らかとなつた。 ついで、本発明者らは上記のシミユレーシヨン
実験の結果を実際に試作した放電装置により確認
した。典型的な実施例を以下に述べる。 実施例 1 本発明にかかる原理にもとづき色温度約3000K
の150Wおよび400Wの放電灯を試作した。発光管
仕様は第1表に、放電灯を第5表に示す。この場
合、上記原理を具備するため、第1表に示した発
光管1を、第6図に示すような光透過特性を呈す
るところのリン酸系の熱線吸収ガラスからなる外
管7の内部に保持してある。なお比較のために、
外管として可視全域にわたりほぼ平たんな光透過
率をもつ通常の硬質ガラス(モリブデンガラス)
を用いた従来仕様の放電灯も試作した。 試作放電灯の定格入力における諸特性を、色温
度を同等とした従来仕様のものと比較して第1表
にまとめて示す。 第1表に示す結果について、150W放電灯を例
にとつて説明する。同表に示されているように、
従来放電灯では、色温度を3000K(測定値は
2990K)に設定した場合、ランプ効率は38m/
Wでランプ電圧は142Vとなる。このため、安定
器としては二次側電圧が一次側電圧(200V)よ
り高い280V程度まで高めた高価なものが必要と
なる。 一方、本発明放電灯によれば、従来放電灯と同
一仕様の発光管を使用し、同一のランプ入力で
も、色温度を3000K(測定値3010K)に設定した
場合には、ランプ効率は53m/Wで従来放電灯
に比して139.5%と向上し、ランプ電圧も103Vと
低いので、二次側電圧が一次側電圧と同じ安価な
シングルチヨーク形安定器で点灯可能となる。 また放射パワー分布を第7図に示す。同図にお
いて、曲線aは本発明放電灯、曲線bは従来放電
灯を示し、ともに400W放電灯である。これらの
放電灯は色温度約3000Kからして光色としてはハ
ロゲン電球に近いものであるが、その効率はハロ
ゲン電球の約3〜4倍に相当しており、まさにこ
れからの省エネルギー時代に格好の光源といえ
る。 実施例 2 実施例1の150W放電灯と同じ仕様の発光管1
を用い、さらに第8図に示すような可視域の青〜
緑色光を良好に反射し、赤色光を吸収する誘電体
膜8(MgF、ZnSなどを多層蒸着した反射面でコ
ールドミラーと称する膜)を背面ガラス9に設け
たところの第9図のごときシールドビーム型放電
灯を試作した。このランプの諸特性も第1表にま
とめて示す。やはり、シールドビーム型電球に相
当する光色となるが、150Wのものでもその照度
は約500Wのシールドビーム型電球に匹敵するも
のである。 実施例 3 実施例1の150W放電灯と同じ仕様の発光管を
通常の硬質ガラスからなる外管内に保持した従来
仕様の放電灯10を、第6図で示した光透過特性
をもつ熱線吸収ガラス板11を下面にもうけた金
属製灯具と組合せたところの第10図のごとき放
電装置を試作した。その諸特性も第1表に示す。
この放電装置の光色もほぼハロゲン電球に匹敵す
るが、入力150Wで得られる照度は約500Wのハロ
ゲン電球に匹敵するものである。 この放電装置の特長は前記2つの実施例のもの
に比べると、赤色放射パワーを放電灯自体でカツ
トする必要がないので、放電灯試作が容易である
ことである。
The present invention relates to a high-pressure metal vapor discharge device in which buffering metals such as sodium and mercury and starting aid gas are sealed in a light-transmitting arc tube, and in particular a novel discharge device with a high color temperature and excellent color rendering properties and efficiency. It provides equipment. Regarding a high-pressure sodium discharge lamp, when the inner diameter of the arc tube is dmm, the average potential gradient of the tube E (V/cm)
It is already known that high-pressure metal vapor discharge lamps operated in the range of E37.7−2.05d (where E is the lamp voltage divided by the distance between the electrodes of the arc tube) exhibit excellent color rendering. ing. However, considering practical issues such as efficiency and lamp voltage, it is difficult to increase the color temperature of such discharge lamps.
It was almost impossible to put anything higher than 2500K into practical use. In other words, it was possible to experimentally obtain a discharge lamp with a color temperature of 2500 to 3500K by increasing the sodium vapor pressure inside the tube or increasing the load on the tube wall, but in this case the efficiency was greatly reduced; In addition, there were drawbacks such as the lamp voltage becoming too high. An object of the present invention is to eliminate the above-mentioned drawbacks and to realize a discharge device with high color rendering properties and high efficiency while keeping the lamp voltage at a low value even when the color temperature is about 2500K or higher. The present inventors have been working on the problem of improving the color rendering properties of high-pressure sodium discharge lamps for many years, but the final problem remained unsolved: the above-mentioned low color temperature. In other words, light sources with a color temperature of approximately 2,500K or less have limited uses for general indoor lighting, and from an application standpoint, there has been a demand for light sources with a color temperature at least close to that of incandescent light bulbs or halogen light bulbs. Accordingly, the present inventors once again conducted detailed studies including computer simulation experiments regarding the optimization of the color rendering properties of high-pressure sodium discharge lamps. As a result, the arc tube is discharged in a range where the average potential gradient E (V/cm) of the arc tube is E37.7-2.05d, and the visible radiation power from the arc tube is mainly red in wavelengths longer than 620 nm. It has been found that by suppressing the radiation power, the above drawbacks can be eliminated and a discharge device with high color temperature, high color rendering properties, high efficiency and low lamp voltage can be realized. Hereinafter, the present invention will be explained in detail based on Examples. As shown in FIG. 1, the outline of the arc tube 1 of the discharge device used in the experiment is as follows.
It consists of a sealing ceramic end cap 3 provided at both ends of the cap, a niobium tube 4 for introducing an electrode through the cap 3, and an electrode 5 provided at the tip inside the niobium tube 4. Additive 6 consisting of sodium as a luminescent substance and one or more of mercury and cadmium as a buffer gas
is added, and one or more of xenon, argon, and neon is further enclosed as a rare gas for starting aid. In particular, in experiments related to the present invention, tube inner diameters d were 6.3, 7.6, 9.7, 10.8,
Alumina tubes of 11.5 and 13.5 mm were used, the distance between both electrodes was set to 25 to 82 mm, corresponding to the rated lamp input, and 3 to 15 mg of sodium, 3 to 60 mg of mercury, or 10 to 80 mg of cadmium were added. Furthermore, as rare gases, approximately 20 Torr of main xenon and neon/argon Benning gas (Ne + 0.1 to 1.0% Ar) was sealed. The inventors of the present invention have concluded that the basic concept of the reexamination is that improvements in the so-called arc tube design based on changes in parameters such as arc tube dimensions, vapor pressure inside the tube, lamp voltage, and lamp current alone do not meet the objectives of the present invention. Considering that it would be difficult to realize a discharge device that does this, we searched for other methods. The final conclusion regarding this method was to cut out the radiation power in a specific wavelength range out of the luminous radiation power emitted from the arc tube. Therefore, as a first step, we conducted a simulation experiment using a computer to examine the emission characteristics when the emission power in a specific wavelength range was cut out from the emission power distribution from a high-pressure sodium discharge. It has become clear that a discharge device with a similar shape can be realized. Here, the content of the simulation experiment using an electronic computer will be explained. For the experimental lamp, the radiation power intensity for each wavelength is determined by spectrometry. 380nm~
Various calculated radiation power distributions are obtained by multiplying the radiation power intensity by an arbitrary constant corresponding to the cutoff wavelength over the wavelength range of 780 nm, varying for all wavelengths or for each wavelength. If the average color rendering index Ra, color temperature Tc, and lamp efficiency (decrease Δη) are determined from these calculated radiation power distributions, various calculated lamp characteristics can be obtained. These calculations were performed using an electronic computer. (1) An effective method is to cut the red radiation power in the long wavelength range. In other words, as shown in Figure 2, when all visible radiation power in the wavelength range longer than a certain cutoff wavelength λc is virtually cut off, (i) as shown by curves a and a' in Figure 2, , the color temperature Tc is, for example, 4000 ~ at λc = 620nm.
It increases to 6000-7000K at 5000K and λc=600nm. (ii) As shown by curves b and b' in FIG. 2, the reduction Δη of the lamp efficiency due to the cut of the red radiation power is small because the relative luminous efficiency of the red radiation power is low. For example, λc=
At 620nm, even if Tc increases to a maximum value of 5000K, the efficiency decrease Δη is only about 18%.
It's nothing more than that. Here, the decrease in efficiency Δη is defined by the following equation. Δη = [(η - η′) / η] × 100 (%) η: Efficiency of a lamp that does not cut red radiation power η′: Efficiency of a lamp that cuts red radiation power (iii) Furthermore, there are characteristics regarding color rendering properties. The facts have become clear. In other words, if the radiation power in the long wavelength range is cut with respect to existing light sources, it is inevitable that the color rendering will be greatly reduced.
In the discharge device according to the present invention, the curve c in FIG.
and c′, the average color rendering index Ra
A value of about 60 to 90 can be achieved if λc is 620 nm or more. The data in FIG. 2 are for the discharge state at color temperatures of approximately 2500K and 2800K when curves a, b, c and curves a', b', and c' do not cut off the red radiation power, respectively. Also,
The discharge lamp used to collect this data had a tube inner diameter d of 11.5 mm and a distance between both electrodes of 52 mm.
It contains 8.6 mg of Na, 32 mg of Hg, and 20 Torr of Xe, and lights up with an input of 400 to 450 W. (2) A more detailed investigation of the phenomenon described in item (1) (iii) above revealed that it is a phenomenon unique to high-pressure sodium discharge. That is, in a high-pressure sodium discharge, for example, as the sodium vapor pressure increases, the radiation power from the arc tube increases over the entire visible range, and in particular, the red radiation power increases significantly. Finally, in the vapor pressure region corresponding to a color temperature of approximately 2300 to 2400K or higher, the red radiation power becomes rather excessive compared to an incandescent lamp, and the fluttering effect on red becomes excessive, resulting in an average color rendering index. Ra will actually start to decline.
Therefore, cutting off such excessive red radiation power has a favorable result in increasing Ra. In Figure 2, λc is
This is why Ra increases as the radiation power cut width is widened from 700 nm to 630 nm. From these results, it is necessary to maintain the discharge state of the arc tube in a range where the red radiation power is excessive in order to increase both the color temperature and color rendering properties in the discharge device that is the object of the present invention. . As revealed in Japanese Patent Publication No. 50-39944, this range corresponds to the area where the color satisfaction is 1.0 or more, and it is determined by the average potential gradient E of the tube.
It can be specified under the condition that (V/cm) is E37.7−2.05d. (3) When λc reaches a wavelength range shorter than 620 nm, the color temperature increases significantly, but as shown in Figure 2, the average color rendering evaluation Ra decreases significantly, and on the other hand, the emitted color also changes from the blackbody radiation locus. This is not preferable because it largely shifts to the green area. Therefore,
In the discharge device targeted by the present invention, λc is 620 nm.
It is preferable to have a long wavelength value of 620 nm or more, that is, to cut red radiation power in the long wavelength range of 620 nm. (4) As shown in Figure 3, the lamp voltage when the radiation power in the long wavelength region is not cut rises rapidly as the color temperature rises. For example, the lamp voltage is about 120V at a color temperature of 2550K, but increases to about 170V at a color temperature of 3000K, making such a discharge device impractical as the lighting ballast is large and expensive. On the other hand, lamp efficiency (=
The total luminous flux/lamp input) is also as shown in Figure 4.
It decreases rapidly with color temperature, about 75 at 2550K.
m/W, whereas at 3000K it is approximately 50
m/W. On the other hand, in order to realize a color temperature of 3000K in the discharge device according to the present invention, it is sufficient to cut out the radiation power in the long wavelength region of about 640nm or more from the emission power distribution originally corresponding to the color temperature of 2500K. The lamp voltage at that time is
The voltage remains at 120V, and the lamp efficiency is approximately 6%.
A value of about 70 m/W is obtained. The discharge lamp used to obtain the data in FIGS. 3 and 4 has exactly the same arc tube dimensions and lighting conditions as the discharge lamp used to obtain the data in FIG. From the above results, the average potential gradient E of the arc tube
(V/cm) is E37.7-2.05d, and by cutting out the red radiation power in the long wavelength range of 620 nm or more from the visible radiation power from the arc tube, a high color temperature can be achieved. It has become clear that an excellent new light source with high color rendering properties, high efficiency, and low lamp voltage can be realized. Next, the present inventors confirmed the results of the above simulation experiment using an actual prototype discharge device. A typical example is described below. Example 1 Color temperature approximately 3000K based on the principle of the present invention
We prototyped 150W and 400W discharge lamps. The arc tube specifications are shown in Table 1, and the discharge lamps are shown in Table 5. In this case, in order to implement the above principle, the arc tube 1 shown in Table 1 is placed inside an outer tube 7 made of phosphoric acid-based heat ray absorbing glass that exhibits light transmission characteristics as shown in FIG. I have kept it. For comparison,
Ordinary hard glass (molybdenum glass) with almost flat light transmittance over the entire visible range as the outer tube.
We also prototyped a discharge lamp with conventional specifications using . Table 1 summarizes the various characteristics of the prototype discharge lamp at the rated input and compares it with a conventional specification lamp with the same color temperature. The results shown in Table 1 will be explained using a 150W discharge lamp as an example. As shown in the table,
Conventional discharge lamps have a color temperature of 3000K (measured value is
2990K), the lamp efficiency is 38m/
At W, the lamp voltage is 142V. For this reason, an expensive stabilizer with a secondary voltage of around 280V, which is higher than the primary voltage (200V), is required. On the other hand, according to the discharge lamp of the present invention, when using an arc tube with the same specifications as a conventional discharge lamp and setting the color temperature to 3000K (measured value 3010K) even with the same lamp input, the lamp efficiency is 53m/ The lamp voltage is 139.5% higher than that of conventional discharge lamps, and the lamp voltage is low at 103V, so it can be lit with an inexpensive single-choke type ballast whose secondary voltage is the same as the primary voltage. Moreover, the radiation power distribution is shown in FIG. In the figure, curve a shows the discharge lamp of the present invention, and curve b shows the conventional discharge lamp, both of which are 400W discharge lamps. These discharge lamps have a color temperature of about 3000K, which is similar to halogen bulbs, but their efficiency is about 3 to 4 times that of halogen bulbs, making them ideal for the coming energy-saving era. It can be said to be a light source. Example 2 Arc tube 1 with the same specifications as the 150W discharge lamp of Example 1
Furthermore, as shown in Figure 8, the visible range of blue ~
A shield as shown in Figure 9 is obtained by providing a dielectric film 8 (a reflective surface made of multi-layered vapor deposited MgF, ZnS, etc., called a cold mirror) on the back glass 9, which reflects green light well and absorbs red light. A prototype beam-type discharge lamp was manufactured. The characteristics of this lamp are also summarized in Table 1. After all, the light color is comparable to that of a sealed beam bulb, but even with a 150W bulb, the illuminance is comparable to a 500W sealed beam bulb. Example 3 A discharge lamp 10 with conventional specifications in which an arc tube with the same specifications as the 150W discharge lamp of Example 1 was held in an outer bulb made of ordinary hard glass was replaced with heat ray absorbing glass having the light transmission characteristics shown in FIG. A prototype discharge device was manufactured as shown in FIG. 10, which was combined with a metal lamp having a plate 11 on the bottom surface. Its properties are also shown in Table 1.
The light color of this discharge device is almost comparable to that of a halogen bulb, but the illuminance obtained with an input of 150W is comparable to that of a 500W halogen bulb. The feature of this discharge device is that, compared to the two embodiments described above, it is not necessary to cut off the red radiation power in the discharge lamp itself, so it is easy to prototype the discharge lamp.

【表】 以上のシミユレーシヨン実験と実際に試作した
放電装置の諸特性の測定から、発光管の平均電位
傾度E37.7−2.05d(V/cm)であつて、かつ
620nm以上の長波長域の赤色放射パワーを抑制す
ることによつて、高色温度、高演色性および高効
率で、しかもランプ電圧が低い放電装置が実現で
きることが明らかとなつた。 かかる本発明にもとづく高圧金属蒸気放電装置
は、省エネルギーランプとして屋内照明用の高輝
度ランプの主流の一つになることが期待できる。
[Table] From the above simulation experiments and measurements of various characteristics of the actually prototyped discharge device, it was found that the average potential gradient of the arc tube was E37.7−2.05d (V/cm), and
It has become clear that by suppressing the red radiation power in the long wavelength region of 620 nm or more, it is possible to realize a discharge device with high color temperature, high color rendering properties, high efficiency, and low lamp voltage. The high-pressure metal vapor discharge device based on the present invention can be expected to become one of the mainstream high-intensity lamps for indoor lighting as an energy-saving lamp.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる放電熱撚の発光管を示
す一部切欠断面図、第2図は高圧ナトリウム放電
からの可視放射パワーのうちから長波長域の赤色
放射パワーをカツトした放電装置の色温度、効率
および平均演色評価数の特性図、第3図および第
4図はそれぞれ従来の高圧ナトリウム放電灯の色
温度とランプ電圧および色温度と効率との関係
図、第5図は本発明の一実施例である放電装置の
側面図、第6図は同放電灯の外管に用いたガラス
の光透過特性図、第7図は同放電灯の定格入力に
おける放射パワー分布図、第8図は本発明の他の
実施例であるシールドビーム型放電灯の赤色放射
パワーを抑制するのに用いた誘電体膜の光反射率
を示す図、第9図は同放電灯の断面図、第10図
は本発明の別の実施例である放電装置の断面図で
ある。 1……発光管、5……電極、7……外管、8…
…誘電体膜、11……熱線吸収ガラス板。
Fig. 1 is a partially cutaway cross-sectional view showing a discharge heat twisted arc tube according to the present invention, and Fig. 2 shows a discharge device in which red radiation power in the long wavelength range is cut out of the visible radiation power from a high-pressure sodium discharge. Characteristic diagrams of color temperature, efficiency, and average color rendering index; Figures 3 and 4 are diagrams of the relationship between color temperature and lamp voltage, and color temperature and efficiency, respectively, of a conventional high-pressure sodium discharge lamp; Figure 5 is a diagram of the relationship between color temperature and efficiency of the present invention. FIG. 6 is a side view of a discharge device that is an example. FIG. 6 is a light transmission characteristic diagram of the glass used for the outer bulb of the discharge lamp. FIG. 7 is a radiation power distribution diagram at the rated input of the discharge lamp. The figure shows the light reflectance of a dielectric film used to suppress the red radiation power of a sealed beam discharge lamp which is another embodiment of the present invention. FIG. 10 is a sectional view of a discharge device according to another embodiment of the present invention. 1... Arc tube, 5... Electrode, 7... Outer tube, 8...
...Dielectric film, 11... Heat ray absorbing glass plate.

Claims (1)

【特許請求の範囲】[Claims] 1 両端に電極を設け内部にナトリウム、緩衝用
ガスおよび始動用ガスを封入した発光管を備え、
前記発光管内径をd(mm)としたとき、この発光
管の平均電位傾度E(V/cm)がE37.7−
2.05dなる関係を有し、さらに前記発光管の少な
くとも一部を取り囲むように設けられ、前記発光
管からの可視放射パワーのうち620nm以上の長波
長域の赤色放射パワーを抑制するための手段を有
していることを特徴とする高圧金属蒸気放電装
置。
1 Equipped with an arc tube with electrodes on both ends and filled with sodium, buffer gas, and starting gas,
When the inner diameter of the arc tube is d (mm), the average potential gradient E (V/cm) of this arc tube is E37.7-
2.05d, and is further provided to surround at least a portion of the arc tube, and includes means for suppressing red radiation power in a long wavelength range of 620 nm or more out of the visible radiation power from the arc tube. A high-pressure metal vapor discharge device comprising:
JP3019076A 1976-03-19 1976-03-19 High pressure metal vapor discharge apparatus Granted JPS52113580A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3019076A JPS52113580A (en) 1976-03-19 1976-03-19 High pressure metal vapor discharge apparatus
US05/777,149 US4109175A (en) 1976-03-19 1977-03-14 High pressure sodium vapor discharge lamp
FR7707687A FR2344961A1 (en) 1976-03-19 1977-03-15 HIGH PRESSURE SODIUM STEAM DISCHARGE LAMP
GB11369/77A GB1569366A (en) 1976-03-19 1977-03-17 Discharge lamp
DE2711733A DE2711733C2 (en) 1976-03-19 1977-03-17 High pressure sodium vapor discharge lamp
CA274,268A CA1064566A (en) 1976-03-19 1977-03-18 High pressure sodium vapor discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3019076A JPS52113580A (en) 1976-03-19 1976-03-19 High pressure metal vapor discharge apparatus

Publications (2)

Publication Number Publication Date
JPS52113580A JPS52113580A (en) 1977-09-22
JPS6213791B2 true JPS6213791B2 (en) 1987-03-28

Family

ID=12296824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3019076A Granted JPS52113580A (en) 1976-03-19 1976-03-19 High pressure metal vapor discharge apparatus

Country Status (1)

Country Link
JP (1) JPS52113580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487426A (en) * 1987-09-25 1989-03-31 Honda Motor Co Ltd Positioning method for workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487426A (en) * 1987-09-25 1989-03-31 Honda Motor Co Ltd Positioning method for workpiece

Also Published As

Publication number Publication date
JPS52113580A (en) 1977-09-22

Similar Documents

Publication Publication Date Title
EP0215524B1 (en) High-pressure mercury vapour discharge lamp
JP4693995B2 (en) Metal halide lamp
US4253037A (en) High-pressure sodium-vapor discharge lamp
KR101445122B1 (en) Discharge lamp with high color temperature
JP3209752B2 (en) High pressure discharge lamp
EP2269211A1 (en) High efficiency discharge lamp
JPS6213791B2 (en)
JPWO2006080189A1 (en) Metal halide lamp and lighting device using the same
US7105989B2 (en) Plasma lamp and method
JP2003272560A (en) Metal halide lamp
Dorleijn et al. Power balances for some fluorescent lamps
JP4488856B2 (en) Mercury-free metal halide lamp
JPS58214266A (en) Metal halide lamp
EP0204382B1 (en) High-pressure sodium discharge lamp
RU173371U1 (en) High pressure discharge lamp
JP2005209502A (en) Fluorescent lamp and luminaire
JPS59101759A (en) High pressure sodium lamp
JPS63218145A (en) High pressure sodium lamp
JPH04355045A (en) Metal halide lamp
JPS5929344A (en) High pressure sodium lamp
JPS6115550B2 (en)
JPH04355044A (en) Metal halide lamp
JPH04218252A (en) High-pressure sodium lamp
JP2002110094A (en) Fluorescent lamp, fluorescent lamp device and lighting system
JP2000188086A (en) Metallic vapor discharge lamp