JPS5835829A - Metal ion source - Google Patents

Metal ion source

Info

Publication number
JPS5835829A
JPS5835829A JP13509281A JP13509281A JPS5835829A JP S5835829 A JPS5835829 A JP S5835829A JP 13509281 A JP13509281 A JP 13509281A JP 13509281 A JP13509281 A JP 13509281A JP S5835829 A JPS5835829 A JP S5835829A
Authority
JP
Japan
Prior art keywords
needle
reservoir
gallium
graphite
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13509281A
Other languages
Japanese (ja)
Other versions
JPS6329373B2 (en
Inventor
Ryuzo Aihara
相原 龍三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP13509281A priority Critical patent/JPS5835829A/en
Publication of JPS5835829A publication Critical patent/JPS5835829A/en
Publication of JPS6329373B2 publication Critical patent/JPS6329373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources

Abstract

PURPOSE:To generate an ion beam of a long life and stability by a method wherein a holding member thermally connected with a reservoir and a needle- shaped member as well electrically heated is formed with a substance having poor affinity with a liquid metal to prevent needless diffusion of the liquid metal. CONSTITUTION:When a heating current is applied to between the stays 12 and 13, the graphite 20 and 21 is heated by electrification to rise to about 400 deg.K- 600 deg.K in temperature. The heat in the graphite 20 and 21 transfers to a needle- shaped member 25 and gallium 22 while gallium in a reservoir transfers stably and continuously to a tip of the needle-shaped member 25. Gallium exudes to an outer surface of the reservoir 23 through thermal diffusion but does not diffuse on a surface of graphite because of its poor affinity with graphite 20 and 21. Accordingly graphite 20 and 21 is always heated up to the required temperature so as to enable to transfer gallium to the tip of the needle-shaped member 25 stably for hours.

Description

【発明の詳細な説明】 本発明は液体金属イオン源に関し、特tcl&寿命で安
定なイオンビームを発生することができるイオン源1こ
関する0 ガリウム等の金属イオンによるイオンビーム露光がレジ
スト内でのイオンの拡散が電子ビームによる露光に比較
しで小さいことから、サブミクロン以下のパターン製作
用の露光手段として注目されており、その為各方面薯こ
おいて金属イオン源の研究が進められているO第1図は
液体金属イオン源の一例を示しており、1は底部1ど細
孔2が設けられたタンタル等の金属で形成されたりザー
/くであり、該リザーバ1内部にはWL本金金属例えば
ガリウム6が入れられている0該リザー/(底部の細孔
2を貫通してタングステン製の針状部材4が配置され該
針状部材の一端は該リザー/イ側面にガえばスポット溶
接によって固着されており、電解研磨1こより針状lこ
された他端は接地電位の陰極5に対向して配置される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid metal ion source, and particularly relates to an ion source that can generate a stable ion beam with a long lifespan. Because the diffusion of ions is smaller than exposure using an electron beam, it is attracting attention as an exposure method for producing submicron or smaller patterns, and for this reason, research into metal ion sources is progressing in various fields. Figure 1 shows an example of a liquid metal ion source, in which 1 is a reservoir made of metal such as tantalum with pores 2 in the bottom 1, and a WL main body inside the reservoir 1. A gold metal such as gallium 6 is placed in the reservoir (a needle-like member 4 made of tungsten is placed through the pore 2 at the bottom, and one end of the needle-like member is attached to the side surface of the reservoir). It is fixed by welding, and the other end, which has been electropolished into a needle shape, is placed opposite the cathode 5 at ground potential.

該リザーバ11こはタングステン製のフィラメント6が
スポット溶接されでおり該フィラメント6には電源7か
ら加熱を流が供給される0更1こ該リザーバ1.針状部
材41こは電源8から正の高電圧が印加されている。
A tungsten filament 6 is spot-welded to the reservoir 11, and a heating current is supplied to the filament 6 from a power source 7. A positive high voltage is applied to the needle member 41 from the power source 8.

上述したイオン源において針状部材4の先端部には強電
界が印加され、その結果リザーバ内部のガリウムは該強
電界lこよって底部の細孔2を通り、針状部材4先端部
lこまで引出される。該先端部のガリウムは強電界−こ
よってテーラ−の円錐(TaylorCone )と称
される円−突起を形成する。この円錐突起の先端部1こ
は電界が集中し、先端部のガリウムは電界蒸発し、ガリ
ウムイオンとなって引出される。このようなイオン源は
非常tC輝度が高いがガリウムの温度がある温度に保持
されていないと安定なイオンビームの発生が困難となる
0すなわら、ガリウムの温度が低いと、針状部材4の表
面を先端部iこ向けて移送される通路の移送抵抗が高く
なり、先端部より電界蒸発1こ供されるガリウムの流れ
が不安定、不連続となり、結果としてイオンビームの不
安定性を招くこと1こなる。このためフィラメント6+
c[流を供給して加熱し、jl!1こは該フィラメント
6からの伝導熱iζよってリザーバ1、針状部材4.ガ
リウムを加熱し、安定6ζ連続してリザーバ内のガリウ
ムが針状部材の先端s1こ移送されるよう−こしている
In the above-mentioned ion source, a strong electric field is applied to the tip of the needle-like member 4, and as a result, gallium inside the reservoir passes through the pore 2 at the bottom due to the strong electric field and reaches the tip of the needle-like member 4. be drawn out. The gallium at the tip forms a circular protrusion with a strong electric field, hence the name Taylor's cone. The electric field is concentrated at the tip of the conical protrusion, and the gallium at the tip is evaporated by the electric field and extracted as gallium ions. Although such an ion source has very high tC brightness, it is difficult to generate a stable ion beam unless the gallium temperature is maintained at a certain temperature.In other words, if the gallium temperature is low, the needle-like member 4 The transport resistance of the path through which the surface of the ion beam is directed toward the tip increases, and the flow of gallium that is subjected to field evaporation from the tip becomes unstable and discontinuous, resulting in instability of the ion beam. There is one thing. Therefore filament 6+
c [supply flow and heat, jl! 1. Due to the conductive heat iζ from the filament 6, the reservoir 1, the needle-shaped member 4. The gallium is heated and strained so that the gallium in the reservoir is continuously and stably transferred to the tip s1 of the needle-like member.

さて一般1こガリウム等の液体金属は熱拡畝によって物
質表面を移動するが、この拡散速度は温度によって変化
し、高@度では速く、温度が低くなるlこ従って遅くな
り、ある温度以下では拡散が生じない。このため、丘述
した従来のイオン源においてはリザーバ1内のガリーウ
ムは熱拡畝醤こよってリザーバの外側表面瘉こ1こじみ
出し、更にはフィラメント6表面を移動する。該フィラ
メント5は支持体91と一端が固定されでいるが、該支
持体9に接近したフィラメント部分は温度が低くなって
おり、この部分でガリウムの拡散速度は著しく低下しそ
のため、ガリウム金属が停留し、塊り10を形成する0
このフィラメント表面のガリウム特に塊り10はフィラ
メントの実効的な電気抵抗を低下させ、結果としてリザ
ーバ内のガリウムの加熱11&が低(なり、安定にリザ
ーバ内のガリウムが針状部材4先端1こ移送されな(な
り、安定なイオンビームが得られなくなる。更にフィラ
メント表面を熱拡散1こよって移動するガリウムは、リ
ザーバ内のガリウムの消鍛を早めイオン源の寿命を短く
する。
Now, in general, liquid metals such as gallium move on the surface of a material by thermal expansion, but this diffusion rate changes depending on the temperature, it is fast at high temperatures, slows down as the temperature decreases, and below a certain temperature, the diffusion rate changes depending on the temperature. No diffusion occurs. Therefore, in the conventional ion source mentioned above, the gallium in the reservoir 1 oozes out from the outer surface of the reservoir 1 due to the thermal expansion and further moves on the surface of the filament 6. Although one end of the filament 5 is fixed to the support 91, the temperature of the portion of the filament close to the support 9 is low, and the diffusion rate of gallium decreases significantly in this portion, causing gallium metal to remain. 0 to form a lump 10
This gallium on the surface of the filament, especially the lump 10, lowers the effective electrical resistance of the filament, and as a result, the heating 11 of the gallium in the reservoir becomes low (and the gallium in the reservoir is stably transferred to the tip of the needle member 4). (As a result, a stable ion beam cannot be obtained.Furthermore, the gallium that moves on the filament surface due to thermal diffusion 1 accelerates the dissipation of gallium in the reservoir, shortening the life of the ion source.

本発明はと述した点に鑑みてなされたもので、イオン化
すべき金属を貯蔵するリザーバ部と、該リザーバ部から
液状金属が供給される針状先端部を有した針状部材と、
鋏針状先端部に強電界を形成するための手段と、該リザ
ーバ部あるいは咳針状部材に熱的に接続され通IE基ζ
よって発熱する支持部材とを備え、該支持部材は該液状
金属と親和性の恐い物質によって形成されていることを
特徴としており、畏寿命で安定なイオンビームを発生す
ることができる金属イオン源を提供する〇以下本発明の
実施例を添付図面に基づき詳説するO 第2図1こおいで11は絶縁性物質で形成された基台で
あり、該基台11には加熱電源(図示せず)1こ接続さ
れた導電性の支柱12及び16が取付けられている。各
支柱12及び16の先端は夫々支持部12a、161と
可動部12b、15bと5こ分れており、該支持部12
a、15mには帯状の弾性体14.15の一端が夫々ビ
ス16.17+こよって固定されている。該弾性体14
.15の他端番こは熱伝導率の低い材料、例えば碍子1
13.19の一端が当接しでいるが、該碍子18.19
は夫々支持512 m 。
The present invention has been made in view of the above points, and includes: a reservoir section for storing a metal to be ionized; a needle-like member having a needle-like tip section to which liquid metal is supplied from the reservoir section;
means for forming a strong electric field at the tip of the scissors needle, and a means for forming a strong electric field at the tip of the scissor needle, and a through IE base ζ thermally connected to the reservoir part or the cough needle member.
Therefore, the metal ion source is equipped with a support member that generates heat, and the support member is made of a substance that has a low affinity with the liquid metal, and is capable of generating a stable ion beam over a short lifetime. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. One connected conductive strut 12 and 16 is attached. The tips of each of the pillars 12 and 16 are divided into five parts, including support parts 12a and 161 and movable parts 12b and 15b, respectively.
One ends of band-shaped elastic bodies 14 and 15 are fixed to a and 15 m with screws 16 and 17, respectively. The elastic body 14
.. The other end of 15 is made of a material with low thermal conductivity, such as insulator 1.
One end of 13.19 is in contact with the insulator 18.19.
Each support 512 m.

16aを移動可能に貝通しておりその他端は可動部12
b、I Abに接している。その結果該可動部12b。
16a is movably passed through the shell, and the other end is the movable part 12
b, I is in contact with Ab. As a result, the movable portion 12b.

tabは該弾性体14.15の弾性力)こよって内側に
押圧される。該可動部12b、15bの内11111こ
は、グラフアイ)20.21を介して内部に液体金属、
例えばガリウム22が入れられたタンタル製あるいはタ
ングステン製のリザーバ26が配置されている。該リザ
ーバ26の底部には細孔24が設けられ父、該細孔24
を貫通して一端が該リザーバ25の側−1とスポット溶
接されたタングステン製の針状部材25が配置される。
The tab is pressed inward by the elastic force of the elastic bodies 14 and 15. Of the movable parts 12b and 15b, 11111 is filled with liquid metal,
For example, a tantalum or tungsten reservoir 26 containing gallium 22 is arranged. A pore 24 is provided at the bottom of the reservoir 26 .
A needle-like member 25 made of tungsten, one end of which is spot-welded to side-1 of the reservoir 25, is disposed through the reservoir 25.

該部材25の針状先端は陰極(図示せず)に対向して配
置される。
The needle-like tip of the member 25 is placed opposite a cathode (not shown).

上述した如き構成−こおいてリザーバ25とグラファイ
ト20,21は弾性体14.15の押圧力lζよって支
柱12.15!こ保持される。ここで該2本の支柱12
と16との間に加熱電流を供給すればグラファイト20
,21は通電によって加熱し、400 K〜600 K
@度に昇温する。該グラフアイ1−20.21の熱はリ
ザーバ2Sを介して針状部材25.ガリウム22に伝導
し、その結果リヂーバ内のガリウムは安定番こ連続して
針状部材25の先端部に移送される。ここで該加熱され
たガリウムは熱拡散1こよってリザーバ25の外側表面
ににじみ出すが、鋏グラファイト20,21はガリウム
との親和性が惑いため、該ガリウムはグラファイトの表
面には拡麹ルΔない。従ってグラフアイ)20.21は
常fζ通電iζよって所望側1ご加熱されるため、長時
間に亙って安定iこガリウム7を針状部材25の先端に
移送することができ、安定なイオンビームが得られる0
又ガリウムがグラファイト表面から支柱12.15方向
へ拡散しないため、直状金属の無駄な消費がなくなり、
長寿命のイオン源が提供される。
In the configuration as described above, the reservoir 25 and the graphite 20, 21 are supported by the support 12.15 due to the pressing force lζ of the elastic body 14.15! This is retained. Here, the two pillars 12
If a heating current is supplied between and 16, graphite 20
, 21 is heated by electricity to 400 K to 600 K
Raise the temperature to @ degrees. The heat of the graph eye 1-20.21 is transferred to the needle member 25.21 through the reservoir 2S. As a result, the gallium in the reservoir is stably and continuously transferred to the tip of the needle-like member 25. Here, the heated gallium oozes out to the outer surface of the reservoir 25 due to thermal diffusion 1, but since the scissors graphite 20 and 21 have a confusing affinity with gallium, the gallium is not spread on the surface of the graphite due to the spreading koji Δ. do not have. Therefore, since the desired side 1 of graph eye) 20.21 is constantly heated by fζ energization iζ, the gallium 7 can be stably transferred to the tip of the needle member 25 for a long time, and stable ion 0 beam is obtained
In addition, since gallium does not diffuse from the graphite surface toward the support column 12.15, there is no wasteful consumption of straight metal.
A long-life ion source is provided.

5IN3図は不発明の他の実施例を示しており、一方の
端部が針状盪こされた部材61の中間部分はコイル状と
され、この部分がガリウム等の液状金属のリザーバ部6
2となる。該針状部材51はグラファイト20,21を
介して図示していないが、第2図の実施例で示した如き
支柱12.16+こよって抑圧保持され、該グラファイ
ト20,21には加熱電流が供給されるように構成され
ている。
Figure 5IN3 shows another embodiment of the invention, in which the middle part of a member 61 with one end cut into a needle shape is coiled, and this part serves as a reservoir part 6 of liquid metal such as gallium.
It becomes 2. Although not shown, the needle-like member 51 is suppressed and held by the graphite supports 12, 16+ as shown in the embodiment of FIG. 2, and a heating current is supplied to the graphites 20, 21. is configured to be

この実施例1ζおいても針状部材61表面を熱拡散する
液状金属はグラファイト表面では拡散しないため、長寿
命で安定なイオン源が提供される。
Also in this Example 1ζ, the liquid metal that thermally diffuses on the surface of the needle member 61 does not diffuse on the graphite surface, so a stable ion source with a long life is provided.

以上本発明を詳述したが、本発明1こ基づくイオン源は
液状金属の不必要な拡散を防止することができるため、
長寿命で安定なイオンビームを発生することができる0
尚本発明は上述した実施力iこ限定されることなく幾多
の変形が可能である。飼えば、イオン化する金属として
ガリウムを用いたがセシウム等地の金属をイオン化金属
とする場合−こも本発明を適用し得る。又リザーバ部に
液状金属を入れる臘のイオン源のみならず、例えばセシ
ウム化合物の如き粉末状の物質をリザーバ部に入れ、該
物質を加熱することによって液状として針状先端部に供
給するようにした臘のイオン源にも本発明を適用し得る
。更1こ液状金属と親和性の悪い発熱性物質としてグラ
フ1イトを使用したが、炭化シリコン等の炭化物、ある
いは他の液状金属と親和性の恐い物質を使用することが
できる。
The present invention has been described in detail above, and since the ion source based on the present invention 1 can prevent unnecessary diffusion of liquid metal,
Able to generate a stable ion beam with long life.
It should be noted that the present invention is not limited to the above-mentioned implementation capabilities and can be modified in many ways. Although gallium is used as the ionized metal, the present invention can also be applied to cases where a similar metal such as cesium is used as the ionized metal. In addition to the ion source in which a liquid metal is placed in the reservoir, a powdered substance such as a cesium compound is placed in the reservoir, and by heating the substance, it is supplied to the needle-like tip as a liquid. The present invention can also be applied to other ion sources. Furthermore, although graphite was used as the exothermic substance that has poor affinity with liquid metals, carbides such as silicon carbide or other substances that have poor affinity with liquid metals may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第五図は従来の金属イオン源を示す図、第2図及び第3
図は夫々本発明の一実施例を示す図である0 1:リザーバ、2:細孔、6:ガリウム、4:針状部材
、5:陽極、6:フィラメント、7:加熱電流、8:高
圧電源、9:支持体、10:塊り、11:基台、12.
15:支柱、12g、15m:支持部、12b、lb:
可動部、14.Is二弾性体、16.17=ビス、18
,19:碍子、20,21:グラファイト、22:ガリ
ウム、26:リザーバ、24:細孔、25:針状部材。 特許出願人 日本電子株式会社 代表者加勢忠雄 乍 第2ロ ー13:
Figure 5 shows a conventional metal ion source, Figures 2 and 3.
Each figure shows an embodiment of the present invention. Power source, 9: Support, 10: Mass, 11: Base, 12.
15: Post, 12g, 15m: Support part, 12b, lb:
Movable part, 14. Is dielastic body, 16.17=bis, 18
, 19: insulator, 20, 21: graphite, 22: gallium, 26: reservoir, 24: pore, 25: needle-like member. Patent Applicant JEOL Ltd. Representative Tadao Kase 2nd Row 13:

Claims (1)

【特許請求の範囲】 L イオン化すべき金属を貯蔵するリザーバ部と、該リ
ザーバ部から液状金属が供給される針状先端部を有した
針状部材と、該針状先端部に強電界を形成するための手
段と、該リザーバ部あるいは核針状部材6〔熱的に接続
され、通電によって発熱する支持部材とを備え、該支持
部材は該液状金属と親和性の悪い物質によって形成され
ていることを特徴とする金属イオン源〇λ 該リザーバ
部は底部に細孔を有した容器であり練絹孔を貫通して該
針状部材が配置されでいる特許請求の範囲第1項記載の
金属イオン源。 & 該針状部材の一部がイオン化すべき金属を保持する
リザーバ部となっている特許請求の範囲第1項記載の金
属イオン源。 転 該支持部材はグラファイトによって形成されている
特許請求の範囲第1項、第2項及び第3項のいずれかに
fe載の金属イオン源。 a 該支持部材は炭化物によって形成されてしする特許
請求の範囲第1項、第2項及び第3項のに%ずれかに記
載の金属イオン源O
[Scope of Claims] L: A reservoir section for storing metal to be ionized, a needle-like member having a needle-like tip section to which liquid metal is supplied from the reservoir section, and forming a strong electric field in the needle-like tip section. and a support member that is thermally connected and generates heat when energized, and the support member is made of a substance that has poor affinity with the liquid metal. A metal ion source 〇λ, characterized in that the reservoir portion is a container having a pore at the bottom, and the acicular member is disposed through the pores of the metal ion source according to claim 1. ion source. & The metal ion source according to claim 1, wherein a part of the needle-like member serves as a reservoir portion that holds the metal to be ionized. The fe-based metal ion source according to any one of claims 1, 2 and 3, wherein the support member is made of graphite. a The metal ion source O according to any one of claims 1, 2 and 3, wherein the support member is formed of a carbide.
JP13509281A 1981-08-28 1981-08-28 Metal ion source Granted JPS5835829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13509281A JPS5835829A (en) 1981-08-28 1981-08-28 Metal ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13509281A JPS5835829A (en) 1981-08-28 1981-08-28 Metal ion source

Publications (2)

Publication Number Publication Date
JPS5835829A true JPS5835829A (en) 1983-03-02
JPS6329373B2 JPS6329373B2 (en) 1988-06-13

Family

ID=15143644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13509281A Granted JPS5835829A (en) 1981-08-28 1981-08-28 Metal ion source

Country Status (1)

Country Link
JP (1) JPS5835829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204297A2 (en) * 1985-06-04 1986-12-10 Denki Kagaku Kogyo Kabushiki Kaisha Charged particle emission source structure
JPS6266547A (en) * 1985-09-17 1987-03-26 Mitsubishi Electric Corp Liquid metallic ion source
US6509570B1 (en) 1999-01-07 2003-01-21 Denki Kagaku Kogyo Kabushiki Kaisha Gallium ion source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514646A (en) * 1978-07-17 1980-02-01 Toshiba Corp Electron gun
JPS5633468A (en) * 1979-08-23 1981-04-03 Atomic Energy Authority Uk Spray generating source of fine droplet and ion of liquid material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514646A (en) * 1978-07-17 1980-02-01 Toshiba Corp Electron gun
JPS5633468A (en) * 1979-08-23 1981-04-03 Atomic Energy Authority Uk Spray generating source of fine droplet and ion of liquid material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204297A2 (en) * 1985-06-04 1986-12-10 Denki Kagaku Kogyo Kabushiki Kaisha Charged particle emission source structure
US4721878A (en) * 1985-06-04 1988-01-26 Denki Kagaku Kogyo Kabushiki Kaisha Charged particle emission source structure
JPS6266547A (en) * 1985-09-17 1987-03-26 Mitsubishi Electric Corp Liquid metallic ion source
US6509570B1 (en) 1999-01-07 2003-01-21 Denki Kagaku Kogyo Kabushiki Kaisha Gallium ion source

Also Published As

Publication number Publication date
JPS6329373B2 (en) 1988-06-13

Similar Documents

Publication Publication Date Title
JPS5838906B2 (en) metal ion source
JPS5835829A (en) Metal ion source
JPS60115122A (en) Liquid metal ion source
JPS5842143A (en) Metal ion source
JPS5840743A (en) Metal ion source
JPH0542094B2 (en)
JPS5835828A (en) Metal ion source
JPH1064438A (en) Liquid metallic ion source
JPS60216432A (en) Reduction type liquid metal ion source
JPS6050841A (en) Liquid metal ion source
JPH0228221B2 (en)
JPS58137943A (en) Ion source
JP3176348B2 (en) Gallium ion source
JPH0531796Y2 (en)
JPH02247951A (en) Electric field-discharge type ion source
JPS58137942A (en) Ion source
JPS6151723A (en) Directly heating impregnated cathode structure
JPS58137941A (en) Ion source
JPS58137939A (en) Ion source
JPS62133643A (en) Ion generating device
JPS6130277Y2 (en)
JPH1092362A (en) Liquid metal ion source
JPS639339B2 (en)
JPH0158613B2 (en)
JPS58112230A (en) Ion gun