JPS5835660Y2 - Spherical inner surface electrolytic polishing device - Google Patents

Spherical inner surface electrolytic polishing device

Info

Publication number
JPS5835660Y2
JPS5835660Y2 JP10213278U JP10213278U JPS5835660Y2 JP S5835660 Y2 JPS5835660 Y2 JP S5835660Y2 JP 10213278 U JP10213278 U JP 10213278U JP 10213278 U JP10213278 U JP 10213278U JP S5835660 Y2 JPS5835660 Y2 JP S5835660Y2
Authority
JP
Japan
Prior art keywords
cathode
tank
electrolytic polishing
anode
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10213278U
Other languages
Japanese (ja)
Other versions
JPS5519177U (en
Inventor
秀樹 大橋
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP10213278U priority Critical patent/JPS5835660Y2/en
Publication of JPS5519177U publication Critical patent/JPS5519177U/ja
Application granted granted Critical
Publication of JPS5835660Y2 publication Critical patent/JPS5835660Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【考案の詳細な説明】 本考案は例えば宇宙ロケットに塔載するような球形のガ
スタンクの製造に際してタンク内面の電解研摩に使用さ
れる球体内面電解研摩装置の改良に関する。
[Detailed Description of the Invention] The present invention relates to an improvement in a spherical inner surface electrolytic polishing device used for electrolytically polishing the inner surface of a spherical gas tank such as one mounted on a space rocket.

一般に球体の内面を研摩するには、電解研摩方式あるい
は化学研摩方式が採用されることが多い。
Generally, an electrolytic polishing method or a chemical polishing method is often employed to polish the inner surface of a sphere.

この化学研摩は電解研摩に比べてその研摩状態が相当劣
るという難点がある。
This chemical polishing has the disadvantage that the polishing quality is considerably inferior to that of electrolytic polishing.

これに対して電解研摩は球体内面を鏡面に研摩できる利
点がある。
On the other hand, electrolytic polishing has the advantage that the inner surface of the sphere can be polished to a mirror surface.

即ち従来の電解研摩装置は第1図に示すように、絞り加
工によって製作された球状ステンレスタンクを陽極11
とし、このタンク上部の小さな挿入口12からタンク内
へ陰極13としてステンレス棒を挿入すると共に挿入口
12と陰極13とを絶縁ビニール14により絶縁し、さ
らに挿入口12からタンク内へ研摩液15を注入し、陰
極13の突出端部と陽極取り出し部16との間に直流電
源17を接続して戊る。
That is, in the conventional electrolytic polishing apparatus, as shown in Fig. 1, a spherical stainless steel tank manufactured by drawing is connected to the anode 11.
Then, a stainless steel rod is inserted as a cathode 13 into the tank from a small insertion port 12 at the top of the tank, and the insertion port 12 and cathode 13 are insulated with an insulating vinyl 14. Furthermore, the polishing liquid 15 is poured into the tank from the insertion port 12. A DC power source 17 is connected between the protruding end of the cathode 13 and the anode take-out portion 16.

このような従来の電解研摩方式においては、陽極11で
あるタンクの内面を鏡面に研摩することができるが、棒
状の陰極13に対して陽極11は球面状であるからタン
ク中央部と上下部とでは電極間距離が大きく異なってお
り、このため陽極11上の電流分布にばらつきが生じて
均一な研摩が出来ない欠点があった。
In such a conventional electrolytic polishing method, the inner surface of the tank, which is the anode 11, can be polished to a mirror surface, but since the anode 11 is spherical in contrast to the rod-shaped cathode 13, the center and upper and lower parts of the tank can be polished to a mirror surface. In this case, the distance between the electrodes differs greatly, which causes variations in the current distribution on the anode 11, which has the disadvantage that uniform polishing cannot be achieved.

また研摩時に水素ガスが発生するが、挿入口12はタン
クの機械的強度を得るべく必要最小限の径に限られてい
るため小さく、この挿入口12から水素ガスがなかなか
抜けきらない。
Further, hydrogen gas is generated during polishing, but the insertion port 12 is small because the diameter is limited to the minimum necessary in order to obtain the mechanical strength of the tank, and hydrogen gas cannot easily escape from the insertion port 12.

このためこのガスの圧力によりタンク内の研摩液が挿入
口12から溢れ出る。
Therefore, the polishing liquid in the tank overflows from the insertion port 12 due to the pressure of this gas.

あるいはタンク内にガスが滞まって液抵抗が大きくなり
、結局、水の電解が生じて電流効率が下がり電力消費量
が増加する。
Alternatively, gas may accumulate in the tank, increasing liquid resistance and eventually electrolyzing the water, reducing current efficiency and increasing power consumption.

また小さな挿入口12から挿入できるように陰極13を
細く形成しているため、当然に陽極11の内面面積に対
して陰極13の表面積が極端に小さくなるので、電流効
率は100%以下となり、ガス発生は更に顕著になる。
In addition, since the cathode 13 is formed thin so that it can be inserted through the small insertion opening 12, the surface area of the cathode 13 is naturally extremely small compared to the inner surface area of the anode 11, so the current efficiency is less than 100%, and the gas The occurrence becomes more pronounced.

本考案は上記の欠点を除去すべくなされたもので、球体
陽極内に挿入される陰極部分の外表面を陽極内面と相似
状に形成することによって、陽極上の電流分布のばらつ
きを抑えて均一に研摩でき、陰極対陽極の面積比の向上
により電流効率を向上し得る球体内面電解研摩装置を提
供するものである。
The present invention was developed to eliminate the above-mentioned drawbacks. By forming the outer surface of the cathode part inserted into the spherical anode in a similar shape to the inner surface of the anode, the current distribution on the anode is suppressed and uniform. The object of the present invention is to provide an electrolytic polishing device for the inner surface of a sphere, which can polish the surface of the sphere and improve the current efficiency by improving the area ratio of the cathode to the anode.

以下図面を参照して本考案の一実施例を詳細に説明する
An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図において11は陰極であり、例えば絞り加工によ
って製作された球状ステンレスタンクよりなり、その上
部にはタンクの機械的強度を考慮して定められた大きさ
の陰極挿入口12が設けられている。
In Fig. 2, 11 is a cathode, which is made of, for example, a spherical stainless steel tank manufactured by drawing, and a cathode insertion port 12 of a size determined in consideration of the mechanical strength of the tank is provided in the upper part of the tank. There is.

一方、陰極20は棒状部分21の下端部にタンク内面形
状と相似状に彎曲された弓形部分22か゛形成されてい
る。
On the other hand, the cathode 20 has an arcuate portion 22 formed at the lower end of a rod-shaped portion 21 and curved in a shape similar to the inner surface of the tank.

そしてこの弓形部分22およびこれに連なる棒状部分2
1の一部が挿入口12からタンク内に挿入されている。
This arcuate portion 22 and the rod-shaped portion 2 connected thereto
1 is inserted into the tank through the insertion port 12.

そして棒上部分21の上端部はモータ23のチャック2
4に挟持されている。
The upper end of the rod upper part 21 is connected to the chuck 2 of the motor 23.
It is held between 4.

この場合、棒上部分21はタンク中心軸と同一軸上に位
置している。
In this case, the rod upper portion 21 is located on the same axis as the tank center axis.

そして棒状部分21のうち弓形部分22との境界部から
挿入口12よりやや上方位置までの部分には絶縁物、例
えば絶縁ビニール14が外装されている。
A portion of the rod-shaped portion 21 from the boundary with the arcuate portion 22 to a position slightly above the insertion port 12 is covered with an insulating material, for example, an insulating vinyl 14.

これにより陰極20と陽極11とは絶縁されている。Thereby, the cathode 20 and the anode 11 are insulated.

またタンク内への棒状部分21の突入量は、弓形部分2
2の外表面とこれに対向するタンク内面との間隔が一定
となるように定められている。
Furthermore, the amount of thrust of the rod-shaped portion 21 into the tank is the same as that of the arc-shaped portion 2.
The distance between the outer surface of the tank 2 and the inner surface of the tank opposite thereto is determined to be constant.

そしてタンク外の棒状部分21外周面に摺接するように
スリップリング25が配置され、このスリップリング・
・・・・・25と陽極取り出し部16との間に直流電源
17が接続されている。
A slip ring 25 is arranged so as to be in sliding contact with the outer peripheral surface of the rod-shaped portion 21 outside the tank.
. . . A DC power source 17 is connected between the anode extraction portion 16 and the anode extraction portion 16.

またタンク内には研摩液15が注入されている。Further, a polishing liquid 15 is injected into the tank.

上記構成の電解研摩装置によれば、陰極20の弓形部分
22はタンク内面に相似状に彎曲されており、またモー
タ23の回転に伴って陰極20が回転すると弓形部分2
2はタンク中心軸回りに回転し、この回転弓形部分の外
表面(回転外面)とタンク内面各部との電極間隔が一定
である。
According to the electrolytic polishing apparatus configured as described above, the arcuate portion 22 of the cathode 20 is curved to resemble the inner surface of the tank, and when the cathode 20 rotates with the rotation of the motor 23, the arcuate portion 22
2 rotates around the central axis of the tank, and the electrode spacing between the outer surface of this rotating arcuate portion (rotating outer surface) and each part of the inner surface of the tank is constant.

したがって陽極11上の電流分布のばらつきが抑えられ
るので、均一な研摩が行われ、タンク内面は均一な鏡面
になる。
Therefore, variations in the current distribution on the anode 11 are suppressed, so that uniform polishing is performed and the inner surface of the tank becomes a uniform mirror surface.

この場合、弓形部分22の回転外面とタンク内面との電
極間隔は、所定範囲内(例えば0.5cm以上3crn
以下。
In this case, the electrode interval between the rotating outer surface of the arcuate portion 22 and the inner surface of the tank is within a predetermined range (for example, 0.5 cm or more and 3 crn
below.

)に設定される。その理由は電極間隔が小さ過ぎると陽
極11上局部的に大電流が生じ、均一に研摩され難くな
り、また電極相互の短絡の危険が生じる。
) is set. The reason for this is that if the electrode spacing is too small, a large current will locally occur on the anode 11, making it difficult to polish uniformly and creating a risk of short circuit between the electrodes.

逆に電極間隔が大き過ぎると、研摩液15内での電圧降
下が大きくなり、十分な研摩が得られない。
On the other hand, if the electrode spacing is too large, the voltage drop within the polishing liquid 15 will increase, making it impossible to obtain sufficient polishing.

また弓形部分22の太さは、陽極11と陰極20との面
積比を縮めて電流効率を高める意味で太い程良いが、挿
入口12の大きさにより当然限定される。
Further, the thickness of the arcuate portion 22 is preferably as thick as possible in the sense of reducing the area ratio between the anode 11 and the cathode 20 and increasing current efficiency, but is naturally limited by the size of the insertion port 12.

しかし上記実施例では陰極20が回転することに陽極面
積と陰極面積との比が等価的に縮まるので、電流効率は
向上し、水素ガスの発生量は抑制される。
However, in the above embodiment, the ratio of the anode area to the cathode area is equivalently reduced as the cathode 20 rotates, so the current efficiency is improved and the amount of hydrogen gas generated is suppressed.

また陰極20の回転により研摩液15の攪拌が行われる
ので、研摩液15も効率よく使用され、同時に発生する
ガスも挿入口′12から速やかに放出するようになる。
Further, since the polishing liquid 15 is stirred by the rotation of the cathode 20, the polishing liquid 15 is used efficiently, and the gas generated at the same time is quickly discharged from the insertion port '12.

なお陰極20の回転数は所定範囲内(例えば100〜5
00 V 、 p、m)に定められる。
Note that the rotation speed of the cathode 20 is within a predetermined range (for example, 100 to 5
00 V, p, m).

その理由は、回転数が低過ぎると、陽極11上の電流分
布のばらつきを少なくする効果、換言すれば均一な研摩
面を得る効果は少なくなる。
The reason is that if the rotation speed is too low, the effect of reducing variations in current distribution on the anode 11, in other words, the effect of obtaining a uniform polished surface will be reduced.

逆に回転数が高過ぎると研摩液15が挿入口12からタ
ンク外へ溢れ出てしまい危険であり、またタンク内に空
間が生じるため研摩時の電圧降下が大きくなり、十分な
研摩が得られない。
On the other hand, if the rotation speed is too high, the polishing liquid 15 will overflow from the insertion port 12 to the outside of the tank, which is dangerous, and since a space is created in the tank, the voltage drop during polishing will increase, making it impossible to obtain sufficient polishing. do not have.

なお上記実施例は、陰極20の弓形部分22が半円弧形
であって長いので、挿入口12からの挿入が困難な場合
がある。
In the above embodiment, since the arcuate portion 22 of the cathode 20 is semi-circular and long, it may be difficult to insert the cathode 20 through the insertion port 12.

そこで上記弓形部分の長さだけを短かくして挿入を容易
にした陰極(第3図30参照。
Therefore, the length of the arcuate portion was shortened to facilitate insertion of the cathode (see FIG. 30).

)を用いるようにしても、上記実施例と同様の効果が得
られる。
), the same effect as in the above embodiment can be obtained.

さらには第4図に示すように棒状部分41の下端部にら
せん状部分42を有する陰極40を用いてもよい。
Furthermore, as shown in FIG. 4, a cathode 40 having a spiral portion 42 at the lower end of a rod-shaped portion 41 may be used.

このらせん状部分42は外表面がタンク内面に相似の球
面状に形成されており、らせん状部分42の中心はタン
ク内中心に一致しており、らせん状部分42の外表面と
タンク内面各部との対向距離は一定にされている。
The outer surface of this spiral portion 42 is formed into a spherical shape similar to the inner surface of the tank, and the center of the spiral portion 42 coincides with the center inside the tank. The facing distance is kept constant.

またこのらせん状部分42とタンク内面との電極間隔は
所定範囲内(例えば前述した0、5〜3cm)に定めら
れており、らせん状部分42の総表面積はタンク内面の
表面積の少なくともh以上となるように巻数および使用
素材の太さが定められている。
Further, the electrode spacing between this spiral portion 42 and the inner surface of the tank is set within a predetermined range (for example, 0.5 to 3 cm as described above), and the total surface area of the spiral portion 42 is at least h or more than the surface area of the inner surface of the tank. The number of turns and the thickness of the material used are determined so that

このようにらせん状部分42を有する陰極40によれば
回転しなくてもタンク内面にほぼ均一の電流分布を生じ
させることができ、しかもらせん状部分42とタンク内
面との面積比が前記陰極20の弓形部分22に比べて十
分大きいので電流効率を高めることができ、はぼ均一な
鏡面を得ることができる。
In this way, the cathode 40 having the spiral portion 42 can generate a substantially uniform current distribution on the inner surface of the tank without rotating, and the area ratio of the spiral portion 42 and the inner surface of the tank is smaller than that of the cathode 20. Since it is sufficiently large compared to the arcuate portion 22, the current efficiency can be increased and a nearly uniform mirror surface can be obtained.

なおらせん状部分42は全体として挿入口12より大き
く拡がっているがねじ込み操作により挿入口12からタ
ンク内へ挿入することが可能である。
Although the spiral portion 42 as a whole is wider than the insertion port 12, it can be inserted into the tank from the insertion port 12 by screwing.

なお第3図、第4図中、第2図と同一部分は同一符号を
付してその説明を省略する。
In FIGS. 3 and 4, the same parts as those in FIG. 2 are designated by the same reference numerals, and the explanation thereof will be omitted.

本考案は上述したように、球体陽極内に挿入される陰極
部分の外表面を陽極内面と相似上に形成することによっ
て、陽極上の電流分布のばらつきを抑えて均一に研摩で
き、陰極対陽極の面積比の向上により電流効率を向上し
得る球体内面電解研摩装置を提供できる。
As mentioned above, the present invention has the outer surface of the cathode inserted into the spherical anode similar to the inner surface of the anode, thereby suppressing variations in the current distribution on the anode and achieving uniform polishing. It is possible to provide a spherical inner surface electrolytic polishing device that can improve current efficiency by improving the area ratio of .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電解研摩装置を示す構成説明図、第2図
は本考案に係る球体内面電解研摩装置の一実施例を示す
構成説明図、第3図および第4図はそれぞれ本考案の他
の実施例を示す構成説明図である。 11・・・・・・陽極、12・・・・・・挿入口、20
,40・・・・・・陰極、22・・・・・・弓形部分、
42・・・・・・らせん部分。
Fig. 1 is a structural explanatory diagram showing a conventional electrolytic polishing device, Fig. 2 is a structural explanatory diagram showing an embodiment of a spherical inner surface electrolytic polishing device according to the present invention, and Figs. 3 and 4 are respectively diagrams of the present invention. FIG. 7 is a configuration explanatory diagram showing another embodiment. 11... Anode, 12... Insertion port, 20
, 40... cathode, 22... arcuate portion,
42...Spiral part.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)陽極となる球体の一部に設けられた挿入口から陰
極の一部を挿入して球体内面の電解研摩を行う装置にお
いて、上記挿入された陰極部はその外表面が球体内面に
相似状で球体内面各部にほぼ一定間隔で対向するように
設けられてなることを特徴とする球体内面電解研摩装置
(1) In a device that performs electrolytic polishing of the inner surface of a sphere by inserting a part of the cathode through an insertion opening provided in a part of the sphere that will serve as the anode, the outer surface of the inserted cathode portion is similar to the inner surface of the sphere. 1. A spherical inner surface electrolytic polishing device, characterized in that the spherical inner surface electrolytic polishing device is arranged so as to face each part of the spherical inner surface at approximately constant intervals.
(2)前記陰極部は弓形に彎曲形成されてなりかつ球体
中心軸回りに回転駆動されることを特徴とする実用新案
登録請求の範囲第1項記載の球体内面電解研摩装置。
(2) The electrolytic polishing apparatus for the inner surface of a sphere according to claim 1, wherein the cathode portion is curved in an arcuate shape and is driven to rotate around the center axis of the sphere.
(3)前記陰極部は陰極棒がらせん状に巻回されてなる
ことを特徴とする実用新案登録請求の範囲第1項記載の
球体内面電解研摩装置。
(3) The spherical inner surface electrolytic polishing apparatus according to claim 1, wherein the cathode portion is formed by a cathode rod wound spirally.
JP10213278U 1978-07-25 1978-07-25 Spherical inner surface electrolytic polishing device Expired JPS5835660Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10213278U JPS5835660Y2 (en) 1978-07-25 1978-07-25 Spherical inner surface electrolytic polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10213278U JPS5835660Y2 (en) 1978-07-25 1978-07-25 Spherical inner surface electrolytic polishing device

Publications (2)

Publication Number Publication Date
JPS5519177U JPS5519177U (en) 1980-02-06
JPS5835660Y2 true JPS5835660Y2 (en) 1983-08-11

Family

ID=29041420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10213278U Expired JPS5835660Y2 (en) 1978-07-25 1978-07-25 Spherical inner surface electrolytic polishing device

Country Status (1)

Country Link
JP (1) JPS5835660Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145171Y2 (en) * 1981-01-17 1986-12-19

Also Published As

Publication number Publication date
JPS5519177U (en) 1980-02-06

Similar Documents

Publication Publication Date Title
TW416064B (en) Process for making wire
SU629865A3 (en) Method of making eye lens with gradually varying magnification
SE7409895L (en)
JPS5835660Y2 (en) Spherical inner surface electrolytic polishing device
GB1098837A (en) Method of and apparatus for carrying out electro-chemical reactions
CN108633157A (en) Double spiral electrode low-temperature plasma generator
US3939053A (en) Apparatus for the electrolytic polishing of niobium structures
CN209508321U (en) It is evenly heated heat-treatment furnace
US3616341A (en) Chemical and electropolishing
US3547796A (en) Apparatus for electropolishing spherical surfaces
US5578101A (en) Method of making a sol-gel glass body and removing same from mold
JPH07285027A (en) Electrolytic polishing method
US3131137A (en) Method for conducting an electrochemical oxidation
JPH07326358A (en) Alkaline battery
JPS62224522A (en) Electropolishing method for internal surface of elbow pipe and electrolyte supply cylinder and negative electrode rod drive device
JPS54146343A (en) Shelter type wiper
US2773024A (en) Method for electrolytically pointing wire
JPS6230900A (en) Electrolytic polishing method for inside surface of pipe
CN216458261U (en) Agitating unit for chemistry
CN217596771U (en) Stainless steel internal surface polishing machine
CN2469449Y (en) Multiple rotation electrode
SU1518413A1 (en) Apparatus for eldectrolytic working of articles
JPH0734911Y2 (en) Hard contact lens surface treatment equipment
JPS5952238B2 (en) Cladding tube plating method
JPS6239579Y2 (en)